РазноеСтирлинга мотор – Двигатель Стирлинга — простая и надежная тепловая машина своими руками принцип работы купить цена как сделать чертежи 1 квт кпд модель видео самому мощность сгорания домашний большой низкотемпературный схема термоакустический типы применение расчет альфа как работает чертежи тепловой проект конструкция устройство скачать свободнопоршневой простейший солнечный цикл из банки размеры на алиэкспресс

Стирлинга мотор – Двигатель Стирлинга — простая и надежная тепловая машина своими руками принцип работы купить цена как сделать чертежи 1 квт кпд модель видео самому мощность сгорания домашний большой низкотемпературный схема термоакустический типы применение расчет альфа как работает чертежи тепловой проект конструкция устройство скачать свободнопоршневой простейший солнечный цикл из банки размеры на алиэкспресс

Содержание

Двигатель Стирлинга. Виды и конструкции. Устройство и работа

Современная автомобильная промышленность достигла такого уровня, что без серьезных исследований невозможно добиться кардинальной модернизации в конструкции двигателей внутреннего сгорания. Это способствовало тому, что конструкторы стали обращать внимание на альтернативные разработки силовых установок, таких как двигатель Стирлинга.

Одни автоконцерны сконцентрировали свои силы на разработке и подготовке к выпуску в серию электрических и гибридных автомобилей, другие инженерные центры затрачивают финансовые средства в проектирование двигателей на альтернативном топливе, изготовленном из возобновляемых источников. Существуют другие различные разработки двигателей, которые в будущем могут стать новым двигателем для различных средств транспорта.

Таким возможным источником энергии механического движения для автомобильного транспорта будущего может стать двигатель внешнего сгорания, изобретенный в 19 веке ученым Стирлингом.

Устройство и принцип работы

Двигатель Стирлинга выполняет преобразование тепловой энергии, получаемой из внешнего источника, в механическое движение благодаря изменению температуры жидкости, циркулирующей в закрытом объеме.

В первое время после изобретения такой двигатель существовал в виде машины, действующей на принципе теплового расширения.

В цилиндре тепловой машины воздух перед расширением нагревался, перед сжатием охлаждался. Вверху цилиндра 1 находится водяная рубашка 3, дно цилиндра непрерывно нагревается огнем. В цилиндре расположен рабочий поршень 4, имеющий уплотнительные кольца. Между поршнем и дном цилиндра расположен вытеснитель 2, передвигающийся в цилиндре со значительным зазором.

Воздух, находящийся в цилиндре, перекачивается вытеснителем 2 к дну поршня или цилиндра. Вытеснитель движется под действием штока 5, проходящего через уплотнение поршня. Шток в свою очередь приводится в действие эксцентриковым устройством, вращающимся с запаздыванием на 90 градусов от привода поршня.

В позиции «а» поршень расположен в нижней точке, а воздух находится между поршнем и вытеснителем, охлаждается стенками цилиндра.

В следующей позиции «б» вытеснитель перемещается вверх, а поршень остается на месте. Воздух, находящийся между ними, выталкивается ко дну цилиндра, охлаждаясь.

Позиция «в» — рабочая. В ней воздух нагревается дном цилиндра, расширяется и поднимает два поршня к верхней мертвой точке. После выполнения рабочего хода вытеснитель опускается ко дну цилиндра, выталкивая воздух под поршень, и охлаждаясь.

В позиции «г» охлажденный воздух готов к сжатию, и поршень перемещается от верхней точки к нижней. Так как работа сжатия охлажденного воздуха меньше, чем работа расширения нагретого воздуха, то образуется полезная работа. Маховик при этом служит своеобразным аккумулятором энергии.

В рассмотренном варианте двигатель Стирлинга обладает малым КПД, так как теплота воздуха после рабочего хода должна отводиться через стенки цилиндра в охлаждающую жидкость. Воздух за один ход не успевает снизить температуру на необходимую величину, поэтому необходимо было продлить время охлаждения. Из-за этого скорость мотора была маленькой. Термический КПД был также незначительным. Тепло отработанного воздуха уходило в охлаждающую воду и терялось.

Разные конструкции

Существуют различные варианты устройства силовых агрегатов, действующих по принципу Стирлинга.

Конструкция исполнения «Альфа»

Этот двигатель включает в себя два отдельных рабочих поршня. Каждый поршень расположен в отдельном цилиндре. Холодный цилиндр находится в теплообменнике, а горячий нагревается.

Конструкция исполнения «Бета»

Цилиндр с поршнем охлаждается с одной стороны, и нагревается с противоположной стороны. В цилиндре перемещается силовой поршень и вытеснитель, служащий для уменьшения и увеличения объема рабочего газа. Регенератор выполняет обратное перемещение остывшего газа в нагретое пространство двигателя.

Конструкция исполнения «Гамма»

Вся система состоит из двух цилиндров. Первый цилиндр весь холодный. В нем перемещается рабочий поршень, Второй цилиндр с одной стороны нагретый, а с другой – холодный, и предназначен для передвижения вытеснителя. Регенератор для перекачки охлажденного газа может являться общим для двух цилиндров, либо может быть включен в устройство вытеснителя.

Преимущества
  • Как и множество двигателей внешнего сгорания, двигатель Стирлинга способен функционировать на разном топливе, так как для него важно наличие перепада температуры. При этом не важно, каким топливом он вызван.
  • Двигатель имеет простое устройство, и не нуждается во вспомогательных системах и навесных устройствах (коробка передач, ремень ГРМ, стартер и т.д.).
  • Особенности конструкции обеспечивают длительную эксплуатацию: больше 100 тысяч часов постоянной работы.
  • Работа двигателя Стирлинга не создает большого шума, так как внутри двигателя не происходит детонация топлива, и отсутствует выпуск отработанных газов.
  • Исполнение «Бета», снабженное кривошипно-шатунным устройством в виде ромба, является наиболее сбалансированным механизмом, который при функционировании не создает вибрацию.

  • В цилиндрах мотора не возникают процессы, оказывающие вредное воздействие на природную среду. При подборе оптимального источника тепла мотор Стирлинга может стать экологически чистым устройством.
Недостатки
  • При значительных положительных характеристиках быстрое серийное производство двигателей Стирлинга нереально по некоторым причинам. Основной вопрос в материалоемкости устройства. Чтобы охлаждать рабочее тело, необходим большой радиатор, что значительно увеличивает габариты и вес оборудования.
  • Сегодняшний уровень технологий дает возможность двигателю Стирлинга конкурировать по свойствам с новыми бензиновыми двигателями за счет использования сложных типов рабочего тела (водород или гелий), находящихся под очень большим давлением. Это значительно повышает опасность использования таких двигателей.
  • Серьезная проблема эксплуатации связана с проблемами температурной стойкости стальных сплавов и их теплопроводности. Тепло подходит к рабочему пространству с помощью теплообменников. Это приводит к значительным потерям тепла. Также теплообменник должен производиться из термоустойчивых сплавов, которые также должны быть устойчивы к повышенному давлению. Соответствующие этим условиям материалы очень сложны в обработке и имеют высокую стоимость.
  • Принципы перехода двигателя Стирлинга на другие режимы функционирования также существенно отличаются от привычных принципов. Для этого необходимо создание специальных устройств управления. Например, для изменения мощности нужно менять угол фаз между силовым поршнем и вытеснителем, давление в цилиндрах, либо изменить емкость рабочего объема.
Двигатель Стирлинга и его использование

При необходимости создания преобразователя тепла компактных размеров можно вполне использовать мотор Стирлинга. При этом эффективность других аналогичных двигателей значительно ниже.

  • Универсальные источники электричества. Моторы Стирлинга могут преобразовывать тепло в электричество. Существуют проекты солнечных электроустановок с применением таких двигателей. Их используют как автономные электростанции для туристов. Некоторые производители изготавливают генераторы, действующие от газовой конфорки. Существуют также проекты генераторов, которые работают от радиоизотопных источников тепла.
  • Насосы. Если в контуре системы отопления установлен насос, то эффективность отопления значительно возрастает. В системах охлаждения также устанавливают насосы. Электрический насос может выйти из строя, к тому же, он потребляет электрическую энергию. Насос, действующий по принципу Стирлинга, решает этот вопрос. Двигатель Стирлинга для перекачивания жидкостей будет проще обычной схемы, так как вместо поршня может применяться сама перекачиваемая жидкость, служащая также для охлаждения.
  • Холодильное оборудование. В конструкции всех холодильников используется принцип тепловых насосов. Некоторые производители холодильников планируют устанавливать на свои изделия двигатель Стирлинга, которые будут очень экономичны. Рабочим телом будет выступать воздух.
  • Сверхнизкие температуры. Для сжижения газов такие моторы очень эффективны. Их использование более выгодное, чем турбинные устройства. Также двигатель Стирлинга применяется в устройствах для охлаждения датчиков точных приборов.

  • Солнечные электростанции. Электрическую энергию можно получать путем преобразования энергии солнца. Для этого могут применяться двигатели Стирлинга, которые устанавливают в фокус зеркала так, чтобы место нагрева непрерывно освещалось лучами солнца. Отражатель управляется по мере перемещения солнца, энергия которого концентрируется на малой площади. При этом происходит отражение излучения зеркалами около 92%. Рабочим телом двигателя служит чаще всего гелий или водород.
  • Аккумуляторы тепла. С помощью устройства Стирлинга можно резервировать тепловую энергию, используя теплоаккумуляторы на основе расплавов солей. Такие устройства имеют запас энергии, превосходящий химические аккумуляторы, и имеют меньшую стоимость. Применяя для регулировки мощности увеличение и уменьшение угла фазы между двумя поршнями, можно накапливать механическую энергию, осуществляя торможение двигателя. При этом двигатель служит тепловым насосом.
  • Автомобилестроение. Несмотря на сложности, существуют действующие модели мотора Стирлинга, использующиеся для автомобилей. Заинтересованность в таком двигателе, подходящем для автомобиля, возникла еще в прошлом веке. Разработки в этом направлении проводили английские и немецкие автоконцерны. В Швеции также был разработан двигатель Стирлинга, в котором применялись унифицированные серийные агрегаты и узлы. В результате получился 4-цилиндровый мотор, параметры которого сравнимы с характеристиками небольшого дизельного двигателя. Этот двигатель был успешно испытан в качестве силового агрегата для многотонного грузовика.

Сегодня исследования установок Стирлинга для подводных, космических и других установок, а также проектирование основных двигателей проводятся во многих зарубежных странах. Такой высокий интерес к моторам Стирлинга стал итогом интереса общественности в борьбе с загрязнением атмосферы, шумом и сохранением природных энергетических источников.

Похожие темы:

electrosam.ru

Так в чем же проблемы изготовления двигателя Стирлинга с высоким КПД?: engineering_ru — LiveJournal

Beta_stirling_animation.gif
   Как и большинство «виртуальных стирлингостроителей», заинтересовавшихся теоретическим КПД двигателя «Стирлинга», столкнулся с множеством вопросов и заново вспомнил (да и пересмотрел с практической точки зрения) законы термодинамики. В итоге, так до конца и не выяснил, почему же при таких хороших показателях в теории, все так плохо обстоит на практике. Вот то, что смог нарыть в Интернет.

  1.  Теоретический КПД, вроде бы, может быть равен КПД идеального цикла Карно (то есть максимально возможному, при определенной разнице температур),но при условии «идеального» регенератора, с коэффициентом теплопередачи 1,0. Вот тут неясно. В одних источниках пишут, что максимальный коэффициент 0,5, обосновывая тем, что тепло будет переходить от горячего тела к холодному, пока не сравняется их температура, то есть достигнет половины разницы температур горячего и холодного тела (тот самый коэффициент 0,5). Но в некоторых источниках упоминается коэффициент теплопередачи регенератора до 0,98, при этом не описывается, каким образом это достигается. Где правда, непонятно.
  2. Альфа-стирлинг (два цилиндра с поршнями — горячий и холодный) имеет проблемы со смазкой горячего поршня. Тогда почему именно этот тип пользуется популярностью?
  3. Бетта-стирлиг (один цилиндр, с вытеснителем в горячей части и поршнем в холодной) и гамма-стирлинг (два цилиндра — горячий с вытеснителем и холодный с поршнем) не имеют проблем со смазкой, так как трение о стенки только в холодном цилиндре, а вытеснитель имеет зазор от стенок цилиндра и не нуждается в смазке. То есть, такие двигатели могут работать с большой разницей температур, а значит с большим КПД. Но, почему-то, они считаются менее перспективными, чем альфа-стирлинги.

   К тому же, важным показателем, влияющим на КПД, является время циклов (количество оборотов) – чем оно больше, тем лучше теплообмен и выше КПД. Но, при этом, наблюдается «гонка за оборотами», которую обосновать чем-то, кроме как маркетинговыми интересами довольно трудно. То есть, причина типа «потери в редукторе при низких оборотах» не выдерживает критики – такие потери исчисляются всего лишь процентами, а прирост КПД может быть выше 10-30%. Поэтому, создается ощущение, что разработчики гонятся больше за такими характеристиками, как удельная мощность и оборотистость, чтобы противопоставить «стирлинги» ДВС, а КПД приносят в жертву.

   Но ведь можно оставить пока гонки с ДВС на транспорте и сосредоточится на стационарных двигателях Стирлинга, работая над повышением их КПД и удешевлением конструкции.  Работающие на любом виде топлива, в том числе и на солнечной энергии,  эти двигатели могут, в перспективе, конкурировать с солнечными батареями. И у них неплохие перспективы в области возобновляемой энергии, в том числе древесное топливо, которое за счет солнечной энергии «восстанавливается» за несколько десятилетий. И опять же, всеядность этих двигателей позволяет создавать электростанции (в том числе бытовые) комбинированного типа – пока есть солнце, работает от солнечной энергии, когда нет, то на твердом топливе.

   Правда, достижение высокого КПД, это не единственное направление, за которое стоит бороться, двигатели Стирлинга имеют еще один недостаток – так как источник тепла находится за пределами объема двигателя, а рабочее тело (газ) имеет низкую теплопроводность, то получается, что в работе участвует только газ, находящийся у стенок цилиндра. А значит, что отношение роста мощности к увеличению объема цилиндра, находится в обратной квадратичной зависимости. То есть, чтобы увеличить мощность в 5 раз, надо увеличить объем цилиндра в 25 раз.
   Именно поэтому, на заре «стирлингостроения» более-менее мощные двигатели были массивнее даже паровых машин при той же мощности. Сейчас эта проблема решается путем накачки двигателя газом под большим давлением, то есть увеличивается масса рабочего тела при том же объеме. Но этот путь тоже тупиковый – в двигателях больше пары литров, опять же, стоит та же проблема, квадратичное отношение роста объема к росту мощности. Да и проблемы с утечкой рабочего тела при давлениях в 100-200 атмосфер трудно решить.

   На этом фоне, более перспективным видится другое решение – заставить работать весь газ внутри двигателя, независимо от объема. Такое решение, несмотря на простоту реализации было предложено только недавно (источник — http://zayvka2016131416.blogspot.ru/) — поставить насос или вентилятор, которые будут создавать потоки газа внутри двигателя. И, по аналогии с вентилятором, дующим на радиатор, будет увеличиваться скорость охлаждения стенок цилиндров рабочим газом двигателя и обеспечиваться максимальное участие этого газа в работе, независимо от размера цилиндра. По идее, это должно дать толчок развитию двигателей Стирлинга, так как позволяет создавать довольно простые и мощные варианты этих двигателей.
   А если не гнаться за массогабаритными показателями автомобильных ДВС, то, может быть, скоро мы наконец то услышим о двигателях, работающих на дровах или солнечной энергии, с КПД 60-70%. И пусть они не смогут конкурировать по размерам с ДВС, но зато могут обеспечить выработку дешевой электроэнергии. А это, в свою очередь, может поспособствовать увеличению экономической целесообразности электромобилей. Ну, а в сочетании с получающими распространение пиролизными  котлами, может привести к полной автономии в энергоснабжении жилья (особенно новых домов, для подключения которых к электросети и газопроводу требуется немалая сумма).

   Вот как-то так. Буду рад услышать критику моих выкладок.

engineering-ru.livejournal.com

Электростанции на двигателе Стирлинга — простота, экономичность и

Экология потребления.Наука и техника:Мотор Стирлинга чаще всего применяется в ситуациях, когда требуется аппарат для преобразования тепловой энергий, отличающийся простотой и эффективностью.

Менее ста лет назад двигатели внутреннего сгорания пытались завоевать свое законное место в конкурентной борьбе среди прочих имеющихся машин и движущихся механизмов. При этом в те времена превосходство бензинового двигателя не являлось столь очевидным. Существующие машины на паровых двигателях отличались бесшумностью, великолепными для того времени характеристиками мощности, простотой обслуживания, возможностью использования различного вида топлива. В дальнейшей борьбе за рынок двигатели внутреннего сгорания благодаря своей экономичности, надежности и простоте взяли верх.

Дальнейшая гонка за совершенствования агрегатов и движущих механизмов, в которую в середине 20 века вступили газовые турбины и роторные разновидности двигателей, привела к тому, что несмотря на верховенство бензинового двигателя были предприняты попытки ввести на «игровое поле» совершенно новый вид двигателей — тепловой, впервые изобретенный в далеком 1861 году шотландским священником по имени Роберт Стирлинг. Двигатель получил название своего создателя.

ДВИГАТЕЛЬ СТИРЛИНГА: ФИЗИЧЕСКАЯ СТОРОНА ВОПРОСА

Для понимания, как работает настольная электростанция на Стирлинге, следует понимать общие сведения о принципах работы тепловых двигателей. Физически принцип действия заключается в использовании механической энергии, которая получается при расширении газа при нагревании и его последующем сжатии при охлаждении. Для демонстрации принципа работы можно привести пример на основе обычной пластиковой бутыли и двух кастрюль, в одной из которых находится холодная вода, в другой горячая.

Электростанции на двигателе Стирлинга — один из способов использования интересного агрегата

При опускании бутылки в холодную воду, температура которой близка к температуре образования льда при достаточном охлаждении воздуха внутри пластиковой емкости ее следует закрыть пробкой. Далее, при помещении бутыли в кипяток, спустя некоторое время пробка с силой «выстреливает», поскольку в данном случае нагретым воздухом была совершена работа во много раз большая, чем совершается при охлаждении. При многократном повторении опыта результат не меняется.

Первые машины, которые были построены с использованием двигателя Стирлинга, с точностью воспроизводили процесс, демонстрирующийся в опыте. Естественно механизм требовал усовершенствования, заключающееся в применении части тепла, которое терял газ в процессе охлаждения для дальнейшего подогрева, позволяя возвращать тепло газу для ускорения нагревания.

Но даже применение этого новшества не могло спасти положение дел, поскольку первые «Стирлинги» отличались большими размерами при малой вырабатываемой мощности. В дальнейшем не раз предпринимались попытки модернизировать конструкцию для достижения мощности в 250 л.с. приводили к тому, что при наличии цилиндра диаметром 4,2 метра, реальная выходная мощность, которую выдавала электростанция на Стирлинге (Stirling) в 183 кВт на деле составляла всего 73 кВт.

Все двигатели Стирлинга работают по принципу цикла Стирлинга, включающего в себя четыре основные фазы и две промежуточные. Основными являются нагрев, расширение, охлаждение и сжатие. В качестве стадии перехода рассматриваются переход к генератору холода и переход к нагревательному элементу. Полезная работа, совершаемая двигателем, строится исключительно на разнице температур нагревающей и охлаждающей частей.

СОВРЕМЕННЫЕ КОНФИГУРАЦИИ СТИРЛИНГА

Современная инженерия различает три основных вида подобных двигателей:

  • альфа-стирлинг, отличие которого в двух активных поршнях, расположенных в самостоятельных цилиндрах. Из всех трех вариантов данная модель отличается самой высокой мощностью, обладая самой высокой температурой нагревающегося поршня;
  • бета-стирлинг, базирующийся на одном цилиндре, одна часть которого горячая, а вторая холодная;
  • гамма-стирлинг, имеющий кроме поршня еще и вытеснитель.

Производство электростанции на Стирлинге будет зависеть от выбора модели двигателя, что позволит учесть всю положительные и отрицательные стороны подобного проекта.

ПРЕИМУЩЕСТВА И НЕДОСТАТКИ

Благодаря своим конструктивным особенностям данные двигатели обладают рядом преимуществ, но при этом не лишены недостатков.

Электростанции на двигателе Стирлинга — один из способов использования интересного агрегата

Настольная электростанция Стирлинга, купить которую невозможно в магазине, а только у любителей, самостоятельно осуществляющих сбор подобных устройств, относятся:

  • большие размеры, которые вызваны потребностью к постоянному охлаждению работающего поршня;
  • использование высокого давления, что требуется для улучшения характеристик и мощности двигателя;
  • потеря тепла, которая происходит за счет того, что выделяемое тепло передается не на само рабочее тело, а через систему теплообменников, чей нагрев приводит к потере КПД;
  • резкое снижение мощности требует применения особых принципов, отличающихся от традиционных для бензиновых двигателей.

Наряду с недостатками, у электростанций, функционирующих на агрегатах Стирлинга, имеются неоспоримые плюсы:

  • любой вид топлива, поскольку как любые двигатели, использующие энергию тепла, данный двигатель способен функционировать при разнице температур любой среды;
  • экономичность. Данные аппараты могут стать прекрасной заменой паровым агрегатам в случаях необходимости переработки энергии солнца, выдавая КПДна 30% выше;
  • экологическая безопасность. Поскольку настольная электростанция кВт не создает выхлопного момента, то она не производит шума и не выбрасывает в атмосферу вредных веществ. В виде источника получения мощности выступает обычное тепло, а топливо выгорает практически полностью;
  • конструктивная простота. Для своей работы Стирлинг не потребует дополнительных деталей или приспособлений. Он способен самостоятельно запускаться без использования стартера;
  • повышенный ресурс работоспособности. Благодаря своей простоте, двигатель может обеспечить не одну сотню часов беспрерывной эксплуатации.

ОБЛАСТИ ПРИМЕНЕНИЯ ДВИГАТЕЛЕЙ СТИРЛИНГА

Мотор Стирлинга чаще всего применяется в ситуациях, когда требуется аппарат для преобразования тепловой энергий, отличающийся простотой, при этом эффективность прочих видов тепловых агрегатов существенно ниже при аналогичных условиях. Очень часто подобные агрегаты применяются в питании насосного оборудования, холодильных камер, подводных лодок, батарей, аккумулирующих энергию.

Электростанции на двигателе Стирлинга — один из способов использования интересного агрегата

Одним из перспективных направлений области использования двигателей Стирлинга являются солнечные электростанции, поскольку данный агрегат может удачно применяться для того, чтобы преобразовывать энергию солнечных лучей в электрическую. Для осуществления этого процесса двигатель помещается в фокус зеркала, аккумулирующего солнечные лучи, что обеспечивает перманентное освещение области, требующей нагрева. Это позволяет сфокусировать солнечную энергию на малой площади. Топливом для двигателя в данном случае служит гелии или водород. опубликовано econet.ru 

 

econet.ru

Двигатель Стирлинга — Устройство, виды и принцип работы

Для приведения в действие машин и механизмов используются силовые агрегаты различной конструкции. Двигатель Стирлинга является одним из силовых агрегатов внешнего сгорания. Для того чтобы понять как работает двигатель Стирлинга необходимо разобраться в его устройстве.

История создания двигателя Стирлинга

До появления силовых агрегатов Стерлинга использовались моторы, работающие на водяном пару. Такие агрегаты могут работать на твердом топливе. Паровые двигатели имеют сложную конструкцию и требуют особого обслуживания. Двигатели Стирлинга имеют простейшую конструкцию. Выполнять ремонт силовой установки можно, не имея технических знаний и особого оборудования.

работает двигатель Стирлинга

Конструкция была запатентована в 1816 году. По сравнению с паровыми двигателями мотор был безопасен в использовании и имел простую конструкцию. Главным преимуществом силового агрегата является возможность использования любого вида топлива. Мотор работает от перепадов температуры.

СПРАВКА: При одинаковом объеме рабочей камеры двигатель внутреннего сгорания обладает более высокими показателями мощности.

Виды двигателей

Существует несколько видов моторов Стирлинга отличающихся по своей конструкции:

  1. Альфа;
  2. Бета;
  3. Гамма;
  4. Роторный.

Ниже будет подробно рассмотрена конструкция каждого из видов силового агрегата.

Альфа

Конструктивно состоит из двух цилиндров. На один из цилиндров установлен охлаждающей радиатор. Второй край этого цилиндра подвергается нагреву. В каждой рабочей камере установлен отдельный поршень. Передача усилия от поршневой группы осуществляется на коленчатый вал. Коленчатый вал с поршнем и вытеснителем  соединены шарнирно.

Альфа

Бета

В конструкцию входит одна рабочая камера. Она одновременно подвергается нагреву и охлаждению.  Нагреву подвергается один край рабочей камеры, охлаждению – второй. Под действием изменения давления воздуха или газа находящегося в рабочей камере перемещается поршень.

Бета

Гамма

Отличием конструкции являются два рабочих цилиндра отдельно стоящие друг от друга. Одна рабочая камера постоянно подвергается нагреву. На нее устанавливают радиатор охлаждения. Вторая камера постоянно охлаждённая.

Гамма

Роторный двигатель Стирлинга

Отличается отсутствием кривошипно-шатунного механизма. Это уменьшает габаритно массовые параметры силового агрегата. Конструкция роторного двигателя позволяет улучшить герметичность рабочей камеры.

Принцип работы двигателя Стирлинга

Мотор преобразует энергию, получаемую от источника тепла в механическую силу. В рабочей камере находится воздух или газ. Одна часть рабочей камеры оснащена радиатором охлаждения или водяной рубашкой. Это необходимо для охлаждения воздушной массы находящейся в полости цилиндра. Вторая часть подвергается нагреву.

СПРАВКА: Для нормальной работы силового агрегата подойдет любое жидкое, твёрдое или газообразное топливо.

Работа двигателя осуществляется следующим образом:

  • Под действием высокой температуры воздуха в полости рабочей камеры нагревается и увеличивается в объеме. Увеличение объема воздуха воздействует на поршень, перемещая его в верхнюю мертвую точку;
  • Под воздействием радиатора или рубашки охлаждения воздушная масса охлаждается. Поршень возвращается в обратном направлении. После этого цикл повторяется.

вытеснител

Нагревание и охлаждение воздуха в рабочей камере осуществляется при помощи вытеснителя. Он смещает воздушную массу от горячей части цилиндра к холодной и наоборот. Вытеснитель занимает большую часть объема рабочей камеры.

Область применения

Двигатели Стирлинга, работающие от внешнего источника тепла, могут применяться для изготовления:

  • Генераторов. При помощи силового агрегата можно преобразовать тепловую энергию в электрическую. Это очень удобно в местах, где подача электричества осуществляется с перебоями или отсутствует;
  • Насосов для перекачки различных жидкостей.мощности силовой установки достаточно для перекачивания различных жидкостей;
  • Климатического оборудования;
  • Автомобилей и самоходной техники.

Простота конструкции позволяет использовать силовые агрегаты для создания автомобилей и различного оборудования. Работа на любом топливе позволяет использовать такие моторы в местах, где подача электроэнергии осуществляется с перебоями или отсутствует.

Преимущества и недостатки двигателя Стирлинга

Двигатель Стирлинга внешнего сгорания имеет ряд достоинств и недостатков.

Преимущества

  • Возможность работы на разном топливе. Для нормальной работы может быть использован абсолютно любой источник тепла.  В некоторых случаях применяется солнечная энергия. Для этого солнечный свет концентрируется на поверхности цилиндра;
  • Простота конструкции. В силовом агрегате нет большого количества комплектующих. Это делает мотор простым в эксплуатации и ремонте. Обслуживание двигателя может проводить человек, имеющий минимальные технические знания;
  • Минимальный уровень шума. Двигатель Стирлинга при работе издает минимальный уровень шума. Это возможно благодаря отсутствию большого количества вращающихся деталей и воспламенения топлива в рабочей камере;
  • Моторесурс. Минимальное количество комплектующих позволяет использовать мотор длительное время без ремонта и дополнительного обслуживания;
  • Экологичность. При использовании источника тепла не загрязняющего окружающую среду мотор будет экологически чист.

Недостатки

  • Большие габаритно массовые параметры. Для увеличения мощности необходимо использовать рабочую камеру и поршень большого диаметра. Это требует применения охлаждающего радиатора увеличенных размеров;

поршень большого диаметра

  • Сложность в регулировке оборотов. Для регулировки частоты вращения коленчатого вала необходимо изменять показатели температуры;
  • Необходимость в использовании жаропрочных материалов. Увеличение моторесурса возможно при применении материалов устойчивых к высоким температурам.

Двигатель Стирлинга своими руками

Некоторые люди задаются вопросом, как сделать двигатель Стирлинга в домашних условиях? Существует большое количество разновидностей самодельных двигателей Стирлинга. Для того чтобы создать двигатель Стирлинга не обязательно иметь чертежи и специализированные материалы. Создать силовой агрегат дома, можно из подручных материалов, не применяя специализированное сложное оборудование.

Перед сборкой необходимо определиться какой мощности будет силовая установка. Как правило, умельцы создают изделия небольшой мощности, которой хватает для вращения маленького вентилятора. Мотор изготавливается в следующей последовательности:

Рабочая камера

Создавая двигатель Стирлинга своими руками в первую очередь, изготавливают большой цилиндр. В полости этой камеры будет перемещаться вытеснитель воздуха. Он необходим для смещения воздушной массы в рабочей камере.

Камеру изготавливают из термоустойчивых материалов. Это может быть как цельная металлическая ёмкость, так и сосуд, составленный из двух частей. Соединение частей должно быть герметичным. В верхней части камеры необходимо просверлить отверстие.

ВАЖНО: Отсутствие герметичности в рабочей камере приведет к нарушению работоспособности силового агрегата. Во избежание этого необходимо герметизировать места соединения термоустойчивым герметизирующим составом.

герметичности в рабочей камере

Если камера изготавливается из двух частей, то для соединения выбирают клей или пайку. Внутренняя поверхность камеры в месте соединения не должна иметь заусенец или выпирающих частей. Это необходимо для того, чтобы не было препятствий для движения вытеснителя воздушной массы.

Вытеснитель

Перед окончательным соединением частей рабочей камеры необходимо самостоятельно изготовить вытеснитель. Это устройство, которое будет смещать воздушную массу в камере. Размеры вытеснителя должны быть меньше диаметра рабочей камеры. Между стенками камеры и вытеснителем должен быть зазор позволяющий изделию свободно перемещаться.

Для изготовления применяется поролон или другой лёгкий материал. Толщина материала выбирается исходя из внутреннего объема камеры.

После изготовления вытеснителя необходимо закрепить на нём шток. Он изготавливается из металлической проволоки диаметром 0.5 мм. Хорошо подойдет разогнутая канцелярская скрепка. Проволоку крепят к втулке из резины или другого эластичного материала. Втулку крепят к поролоновому диску. Такая конструкция позволяет создать прочное соединение.

Перед сборкой рабочей камеры необходимо продвинуть шток вытеснителя в заранее просверленное, в верхней части камеры, отверстие. Шток должен свободно перемещаться в отверстии. После установки поролонового диска герметизируется рабочая камера.

Подставка

Изготовление подставки является необязательным. Она необходима для установки силового агрегата. В подставке предусматривается место для закладки топлива. Это может быть свеча, сухое горючее, или любой другой источник тепловой энергии.

Подставка изготавливается из термостойких материалов. Хорошо подходит металлическая банка от напитков. Верхнюю часть банки срезают. В боковой части вырезают окно для загрузки топлива. Во избежание травмирования на острые срезы банки устанавливают резиновые уплотнения.

СПРАВКА: При использовании в качестве топлива сухого горючего на дно банки устанавливают металлическую площадку. Хорошо подойдет металлическая шайба толщиной 0.5 – 1 мм. Шайба крепится ко дну банки при помощи самореза или болта.

на дно банки

Цилиндр

Цилиндр используется для установки у него силового поршня. Полость рабочего цилиндра сообщается с полостью камеры через просверленное отверстие в верхней крышке. Соединение цилиндра с рабочей камерой должно быть герметичным. Это необходимо для предотвращения утечки воздуха из полости рабочей камеры в атмосферу.

ВНИМАНИЕ: Герметизация осуществляется путём пайки или нанесения на место соединения герметизирующих составов.

Для изготовления цилиндра используют тонкий лист металла. Из листа вырезают полосу шириной 30-35 мм. Сворачивая полосу, изготавливают цилиндр. Место соединения стенок цилиндра герметизируют при помощи пайки.

Поршень

Поршень изготавливается из пластмассы, дерева или пробки. Для исключения утечки воздуха через зазор между поршнем и цилиндром изделие оснащают мембраной. Мембрану изготавливают из полиэтиленового пакета, воздушного шара, или медицинской перчатки.

Поршень приклеивают к мембране при помощи клея. К цилиндру мембрана крепится при помощи резинки или прочной нити. В верхней части поршня устанавливают крепление для шатуна. Его изготавливают из тонкой проволоки. Крепление выполнено в виде петли с винтом, который вкручивается в поверхность поршня. К петле при помощи болта крепится шатун.

Маховик

Работа свободнопоршневого двигателя собранного своими руками будет нестабильной. Для стабилизации оборотов силового агрегата изготавливают маховик. Он стабилизирует частоту вращения за счёт силы инерции.

Маховик изготавливают из прочного материала. Хорошо подходит  металлическая крышка для консервации или CD диск. В центре маховика необходимо закрепить коленчатый вал.

ВАЖНО: Коленчатый вал необходимо крепить точно в центре маховика. Смещение точки крепления приведет к разбалансировке в работе силового агрегата.

Коленчатый вал и шатун

Коленвал изготавливают из толстой металлической или медной проволоки. На коленчатом валу выполняют два изгиба. Угол между коленами должен составлять 90 градусов. На одно колено шарнирно устанавливается шатун, второй конец которого  крепится к поршню. На второе колено шарнирно устанавливается  шток вытеснителя.

шток вытеснителя

В качестве шарниров можно использовать клеммы для соединения проводов. Для этого необходимо предварительно удалить с них зажимающие винты. Для того чтобы провести расчёт глубины колена необходимо разделить на 2 ход поршня от верхней до нижней мертвой точки.

Держатель коленчатого вала

Держатель изготавливают из металла или пластика. Можно использовать стальную, медную проволоку, стержни, трубки и т.д. Нижняя часть держателя жёстко устанавливается на корпус рабочей камеры. Для этого его приклеивают или припаивают к поверхности. В верхней части держатель шарнирно соединяется с коленчатым валом.

Вентилятор

Вместо вентилятора может быть изготовлено любое другое устройство, которому будет передаваться крутящий момент от коленчатого вала. Вентилятор изготавливают из листа металла или пластика. Перед изготовлением вентилятора на материал наносят чертеж.

После этого вырезают деталь. Во избежание получения травм острые края, полученной детали обрабатывают наждачной бумагой.

наносят чертеж

В центре вентилятора сверлят отверстие. В него устанавливают резиновую, пробковую, или любую эластичную втулку.  Изготовленную деталь крепят на коленчатый вал.

ВНИМАНИЕ: Во избежание разбалансировки необходимо крепить  коленчатый вал точно по центру вентилятора. Найти центр можно при помощи циркуля.

Запуск двигателя

После проверки рабочей камеры на герметичность и сборки двигателя необходимо проверить его работоспособность. Для этого:

  • Подобрать источник тепловой энергии. Это может быть свеча или любое другое топливо. Можно использовать сосуд с горячей водой. Для этого нижнюю поверхность рабочей камеры необходимо установить на емкость с жидкостью;
  • Установить изделия на подставку. На дно подставки поместить источник тепловой энергии;
  • На верхнюю поверхность рабочей камеры поместить кубики льда;
  • Раскрутить маховик вручную.

После раскручивания маховика двигатель должен начать работу. Поршень и шток вытеснителя будут попеременно воздействовать на коленчатый вал установки. Стабильную работу будет обеспечивать сила инерции маховика.

Из вышеперечисленного следует, что двигатель Стирлинга это силовой агрегат, работающий от разницы температур рабочего тела. Мотор может работать на любом виде топлива. Модель силовой установки можно собрать самостоятельно в домашних условиях. Для этого не потребуется специализированных материалов и оборудования. В качестве источника питания для модели силовой установки может использоваться свеча, сухое горючее и т.п.

toptexnik.ru

Двигатель Стирлинга – принцип работы. Низкотемпературный двигатель Стирлинга (фото)

Двигатель Стирлинга, принцип работы которого качественно отличается от привычного для всех ДВС, когда-то составлял последнему достойную конкуренцию. Однако на какое-то время о нем забыли. Как этот мотор используется сегодня, в чем заключается принцип его действия (в статье можно найти также чертежи двигателя Стирлинга, наглядно демонстрирующие его работу), и каковы перспективы применения в будущем, читайте ниже.

История

В 1816 году в Шотландии Робертом Стирлингом была запатентована тепловая машина, названная сегодня в честь своего изобретателя. Первые двигатели горячего воздуха были изобретены еще до него. Но Стирлинг добавил в устройство очиститель, который в технической литературе называется регенератором, или теплообменником. Благодаря ему производительность мотора возрастала при удерживании агрегата в тепле.

двигатель стирлинга принцип работы

Двигатель признали наиболее прочной паровой машиной из имеющихся на тот момент, так как он никогда не взрывался. До него на других моторах такая проблема возникала часто. Несмотря на быстрый успех, в начале двадцатого столетия от его развития отказались, так как он стал менее экономичным, по сравнению с появившимися тогда другими двигателями внутреннего сгорания и электродвигателями. Однако Стирлинг еще продолжал применяться в некоторых производствах.

Двигатель внешнего сгорания

Принцип работы всех тепловых моторов заключается в том, что для получения газа в расширенном состоянии необходимы большие механические усилия, чем при сжатии холодного. Для наглядной демонстрации этого можно провести опыт с двумя кастрюлями, наполненными холодной и горячей водой, а также бутылкой. Последнюю опускают в холодную воду, затыкают пробкой, затем переносят в горячую. При этом газ в бутылке начнет выполнять механическую работу и вытолкнет пробку. Первый двигатель внешнего сгорания основывался на этом процессе полностью. Правда, позже изобретатель понял, что часть тепла можно применять для подогрева. Таким образом, производительность значительно возросла. Но даже это не помогло двигателю стать распространенным.

двигатель внешнего сгорания

Позже Эриксон, инженер из Швеции, усовершенствовал конструкцию, предложив охлаждать и нагревать газ при постоянном давлении вместо объема. В результате немало экземпляров стало использоваться для работы в шахтах, на судах и в типографиях. Но для экипажей они оказались слишком тяжелыми.

Двигатели внешнего сгорания от Philips

Подобные моторы бывают следующих типов:

  • паровой;
  • паротурбинный;
  • Стирлинга.

Последний вид не стали развивать из-за небольшой надежности и остальных не самых высоких показателей по сравнению с появившимися другими типами агрегатов. Однако в 1938 году компания Philips возобновила работу. Двигатели стали служить для приводов генераторов в неэлектрофицированных районах. В 1945 году инженеры компании нашли им обратное применение: если вал раскручивать электромотором, то охлаждение головки цилиндров доходит до минус ста девяносто градусов по Цельсию. Тогда решено было применять в холодильных установках усовершенствованный двигатель Стирлинга.

Принцип работы

Действие мотора заключается в работе по термодинамическим циклам, в которых при разной температуре происходит сжатие и расширение. При этом регулирование потоком рабочего тела реализуется за счет изменяющегося объема (или давления – в зависимости от модели). Таков принцип работы большинства подобных машин, которые могут иметь разные функции и конструктивные схемы. Двигатели могут быть поршневыми или роторными. Машины с их установками работают в качестве тепловых насосов, холодильников, генераторов давления и так далее.

роторный двигатель стирлинга

Помимо этого, есть моторы с открытым циклом, где регулирование потоком реализуется посредством клапанов. Именно их называют двигателями Эриксона, кроме общего названия имени Стирлинга. В ДВС полезная работа осуществляется после предварительного сжатия воздуха, впрыска топлива, нагрева полученной смеси вперемешку со сгоранием и расширения.

Двигатель Стирлинга принцип работы имеет такой же: при низкой температуре происходит сжатие, а при высокой – расширение. Но по-разному осуществляется нагрев: тепло подводится через стенку цилиндра извне. Поэтому он и получил название двигателя внешнего сгорания. Стирлинг применял периодическое изменение температуры с вытеснительным поршнем. Последний перемещает газ с одной полости цилиндра в другую. С одной стороны, температура постоянно низкая, а с другой – высокая. При передвижении поршня вверх газ перемещается из горячей в холодную полость, а вниз – возвращается в горячую. Сначала газ отдает много тепла холодильнику, а затем от нагревателя получает столько же, сколько отдал. Между нагревателем и холодильником размещается регенератор – полость, наполненная материалом, которому газ отдает тепло. При обратном течении регенератор возвращает его.

чертежи двигателя стирлинга

Система вытеснителя соединена с рабочим поршнем, сжимающим газ в холоде и позволяющим расширяться в тепле. За счет сжатия в более низкой температуре происходит полезная работа. Вся система проходит четыре цикла при прерывистых движениях. Кривошипно-шатунный механизм при этом обеспечивает непрерывность. Поэтому резких границ между стадиями цикла не наблюдается, а КПД двигателя Стирлинга не уменьшается.

Учитывая все вышесказанное, напрашивается вывод, что этот двигатель является поршневой машиной с внешним подводом тепла, где рабочее тело не покидает замкнутое пространство и не заменяется. Чертежи двигателя Стирлинга хорошо иллюстрируют устройство и принцип его действия.

Детали работы

Солнце, электричество, ядерная энергия или любой другой источник тепла может подводить энергию в двигатель Стирлинга. Принцип работы его тела заключается в применении гелия, водорода или воздуха. Идеальный цикл обладает термическим максимально возможным КПД, равным от тридцати до сорока процентов. Но с эффективным регенератором он сможет работать и с более высоким КПД. Регенерацию, нагрев и охлаждение обеспечивают встроенные теплообменники, работающие без масел. Следует отметить, что смазки двигателю нужно очень мало. Среднее давление в цилиндре составляет обычно от 10 до 20 МПа. Поэтому здесь требуется отличная уплотнительная система и возможность попадания масла в рабочие полости.

Сравнительная характеристика

В большинстве работающих сегодня двигателей подобного рода используется жидкое топливо. При этом непрерывное давление легко контролировать, что способствует снижению уровня выбросов. Отсутствие клапанов обеспечивает бесшумную работу. Мощность с массой сопоставимы моторам с турбонаддувом, а удельная мощность, получаемая на выходе, равна показателю дизельного агрегата. Скорость и крутящий момент не зависят друг от друга.

двигатель стирлинга с генератором

Затраты на производство двигателя гораздо выше, чем на ДВС. Но при эксплуатации получается обратный показатель.

Преимущества

Любая модель двигателя Стирлинга имеет много плюсов:

  • КПД при современном проектировании может доходить до семидесяти процентов.
  • В двигателе нет системы высоковольтного зажигания, распределительного вала и клапанов. Его не нужно будет регулировать в течение всего срока эксплуатации.
  • В Стирлингах нет того взрыва, как в ДВС, который сильно нагружает коленвал, подшипники и шатуны.
  • В них не бывает того эффекта, когда говорят, что «двигатель заглох».
  • Благодаря простоте прибора его можно эксплуатировать в течение длительного времени.
  • Он может работать как на дровах, так и с ядерным и любым другим видом топлива.
  • Сгорание происходит вне мотора.

Недостатки

  • Главным минусом конструкции является ее материалоемкость.
  • Рабочее тело нужно охлаждать, из-за чего габариты существенно увеличиваются.
  • Для получения равных с ДВС характеристик необходимо использовать высокое давление.кпд двигателя стирлинга
  • К рабочему телу тепло подводят через стенки теплообменников, у которых ограниченная теплопроводность.
  • Чтобы изменить мощность двигателя, изменяют объем буферной емкости, среднее давление рабочего тела, фазного угла между вытеснителем и поршнем.

Применение

В настоящее время двигатель Стирлинга с генератором используют во многих областях. Это универсальный источник электрической энергии в холодильниках, насосах, на подводных лодках и солнечных электрических станциях. Именно благодаря применению различного вида топлива имеется возможность его широкого использования.

Возрождение

Эти двигатели снова стали развиваться благодаря компании Philips. В середине двадцатого века с ней заключила договор General Motors. Она вела разработки для применения Стирлингов в космических и подводных устройствах, на судах и автомобилях. Вслед за ними другая компания из Швеции, United Stirling, стала заниматься их развитием, включая и возможное использование на легковых автомобилях.

линейный двигатель стирлинга

Сегодня линейный двигатель Стирлинга применяется на установках подводных, космических и солнечных аппаратов. Большой интерес к нему вызван из-за актуальности вопросов ухудшения экологической обстановки, а также борьбы с шумом. В Канаде и США, Германии и Франции, а также Японии идут активные поиски по развитию и совершенствованию его использования.

Будущее

Явные преимущества, которые имеет поршневой и роторный двигатель Стирлинга, заключающиеся в большом ресурсе работы, применении разного топлива, бесшумности и малой токсичности, делают его очень перспективным на фоне мотора внутреннего сгорания. Однако с учетом того, что ДВС на протяжении всего времени совершенствовали, он не может быть легко смещен. Так или иначе, именно такой двигатель сегодня занимает лидирующие позиции, и сдавать их в ближайшее время не намерен.

fb.ru

Принцип работы мотора Стирлинга

Многим интересен принцип работы двигателя Стирлинга, и не только из праздного любопытства, но и потому, что если не понять основу его действия, то очень трудно изготовить работающую модель. В данной публикации подробно и насколько возможно, лаконично, дан ответ на этот вопрос. А наглядно все представлено в видеоуроке со всеми схемами.

В этом китайском магазине можно найти отличный генератор.

Рассмотрим сначала

Принцип работы низкотемпературного двигателя.

Сам двигатель состоит из цилиндра, в котором движется вытеснитель и из второго цилиндра, в котором ходит рабочий поршень. Боковые стенки большого цилиндра не проводят тепло. Верхняя часть холодная, нижняя – горячая. Когда вытеснитель опускается вниз, перекрывая горячую пластину, воздух резко охлаждается и сжимается, втягивая рабочий поршень (зеленого цвета на видео).

Схема низкотемпературного двигателя Стирлинга Схема низкотемпературного двигателя Стирлинга

При движении вытеснителя вверх, он перекрывает холодную пластину, воздух от нижней пластины резко нагревается, расширяется (от нагрева) и вытесняет рабочий зеленый поршень вверх.

Далее цикл повторяется, так как вытеснитель и рабочий поршень связаны между собой коленвалом со смещением 90 градусов.

Принцип действия высокотемпературного мотора Стирлинга

Левая и правая части цилиндра не касаются друг друга. Между ними стоит теплоизолятор. Когда вытеснитель находится в левой стороне, он вытесняет весь горячий воздух вправо, воздух остывает, всасывая рабочий поршень. Когда же вытеснитель уходит вправо, он выгоняет весь воздух в горячую камеру, воздух нагревается, расширяется и вытесняет рабочий поршень вправо. Рабочий поршень и вытеснитель связаны между собой коленвалом со смещением 90 градусов. Далее цикл повторяется.

Схема высокотемпературного двигателя СтирлинкаСхема высокотемпературного двигателя Стирлинка

Далее вся механика наглядно на видео. Во второй части видео один из вариантов сборки Стирлинга.

Чтобы окончательно понять принцип действия мотора Стирлинга, нужно собрать его работающую конструкцию и в процессе доводки совершенствовать его и тестировать при разных конфигурациях.
Для наиболее простого понимания законов, по которым работает двигатель, достаточно сделать так:
– сделать цилиндр с вытеснителем;
– вместо рабочего поршня установить резиновый воздушный шарик;
– маховик пока не ставить;
– нагреть нижнюю часть устройства, остудить верхнюю и начать изменять положение вытеснителя;
– если попробовать поднять вытеснитель вверх – шарик резко надуется;
– если опустить вытеснитель вниз – шарик сдуется.
Таким образом эти простые действия наглядно покажут, как все происходит в механизме двигателя.
– Далее заменим воздушный шарик на поршень;
– поршень должен свободно двигаться, но следует настроить все так, чтобы он не пропускал воздух;
– смазать поршень силиконовой смазкой;
– проделать те же действия, что ранее были выполнены с шариком, но уже с поршнем;
– понаблюдать ход поршня, зафиксировать в записях в рабочем блокноте для того, чтобы подсчитать ход (выгиб) коленвала;
– изготовить маховик, шатун, коленвал и всё, мотор Стирлинга готов!
– окончательно протестировать готовый аппарат.

Важные моменты, если вы делаете сами движок

При изготовлении мотора Стирлинга придерживайтесь рекомендаций.

1. Стенки цилиндра, где ходит вытеснитель, должны быть сделаны так, чтобы не проводить тепло.
2. Один край цилиндра – холодный, другой- горячий. Чем больше разница температур – тем выше эффективность работы.
3. Между стенками цилиндра и вытеснителем должен быть зазор (3 мм достаточно), чтобы было куда воздуху просачиваться с холодной камеры в горячую.
4. Не должно быть утечек воздуха (свести их к минимуму). Это одно из основных причин, которые не дают двигателю работать.
5. Убрать все трение по максимуму. Используйте силиконовую смазку – она дает очень хороший результат.
Удачи в техническом творчестве!

В другом материале о том, как приспособить для этого движка генератор тока. А тут еще одна модель, которую можно собрать дома.

Как работают двигатели Стирлинга?

В течение почти 200 лет термические двигатели, известные по имени их изобретателя, были известны в как двигатели Стирлинга. Их изобретатель работал над построением наиболее эффективного или оптимального рабочего теплового двигателя. Стирлинг подошел к проблеме довольно научным образом. То есть, двигатель (его теоретическая циркуляция) был проанализирован и проверен вычислительно до того, как был построен прототип. Все в теории выглядело очень многообещающим. В принципе, до сих пор предполагалось, что они должны быть одним из наиболее эффективных тепловых двигателей. Так почему бы нам не путешествовать с автомобилями, использующими Стирлинг, несмотря на их многочисленные преимущества?

Схема высокотемпературного двигателя Стирлинка

Рисунок двигателя Стирлинга из оригинального патента от 1816 года. Источник: Wikimedia Commons , автор: Индийский технологический институт, копия изображения в патенте Роберта Стирлинга 1816 года .

Чтобы получить полезную мощность от поршневого двигателя, он должен развивать достаточно высокий крутящий момент или достигать высокой скорости вращения. Двигатели Стирлинга не достигают высоких скоростей вращения, поэтому давайте рассмотрим момент. В основном, это будет зависеть от силы, действующей на поршень, а это, в свою очередь, от давления рабочего тела в рабочем ходу и поверхности поршня, которое работает. Эти упрощенные рассуждения помогут нам понять структурные проблемы двигателей Стирлинга. Для того, чтобы двигатель был больше, чем модель на столе, он должен быть огромным – иметь большой диаметр рабочего поршня, или поршень должен находиться под высоким давлением во время рабочего хода.

C:UsersdomЧто случилось с двигателями Стирлинга - Technique.pl_files400px-WP_20150223_001-stirling-biurko.jpg

Типичная «настольная» модель двигателя Стирлинга с рубежа 20 и 21 веков. Диаметр маховика: около 30 мм. Он должен быть включен в группу так называемых «Гаджеты».

История двигателя Стирлинга в 19 веке

В начале 19-го века двигатели в основном использовались для привода машин (например, насосов в шахтах, приводов центральных машин на заводах), а двигатели могли быть огромными. На повестке дня были указаны рабочие цилиндры диаметром более 0,5-1 м. Несмотря на это, паровые двигатели Уатта выиграли конкурс на двигатели Стирлинга. Правда, двигатели Стирлинга были проще в дизайне и обработке, но паровые двигатели, включая всю систему (котельную) и все их недостатки, однако, были более эффективными (читай: более дешевый в эксплуатации) и обеспечили большую мощность. Даже в мобильных системах, таких как корабли и поезда (в Англии и Шотландии в середине 19 века сеть железных дорог уже была разработана), паровые двигатели были намного лучше.

C:UsersdomЧто случилось с двигателями Стирлинга - Technique.pl_files400px-WP_20150223_001-stirling-biurko.jpg

Промышленный двигатель Стирлинга примерно с 1860 года. Представленный двигатель, произведенный Эрикссоном, реализовал модифицированный цикл Стирлинга, названный в честь его создателя Эрикссоном . Источник: Wikimedia Commons , Vasárnapi Ujság, 1861/8 [1] .

Конечно, двигатели Стирлинга использовались здесь и там, но они не доминировали на рынке. Более того, установленные двигатели Стирлинга часто заменялись паровыми двигателями, а те, которые остались, уже считались раритетами и нишевыми приложениями. В Европе, возможно, самыми известными двигателями Стирлинга с рубежа XIX и XX веков были те, которые использовались в… аквариумных насосах. Одним из наиболее известных производителей таких двигателей в этот период стала компания Louis Heinrici .

C:UsersdomЧто случилось с двигателями Стирлинга - Technique.pl_files400px-WP_20150223_001-stirling-biurko.jpg

Семейство двигателей Стирлинга от компании Louis Heinrici. Иллюстрация из каталога компании с 1914 года. Источник: Wikimedia Commons , автор: First-Neutron .

Но вернемся к теме. В конце 19-го века появились двигатели внутреннего сгорания, сначала с газом, а затем с жидким топливом. Кроме того, в автомобильных приводах появились также электродвигатели. Теоретически двигатели Стирлинга должны быть лучше всех (независимо от того, что это означает), поэтому все время мир науки и техники периодически интересовался ими. Поскольку строительство огромных двигателей Стирлинга в 19 веке утратило свой смысл, предпринимались попытки построить небольшие двигатели, но с высоким давлением рабочего тела, так что создаваемые двигательные системы были бы конкурентоспособными с двигателями внутреннего сгорания. Пик работы на таких двигателях произошел в 1950-х и 1960-х годах. Конечно, возникла значительная группа проблем, которые были более или менее успешно решены.

C:UsersdomЧто случилось с двигателями Стирлинга - Technique.pl_files400px-WP_20150223_001-stirling-biurko.jpg

Коммерчески доступный электрический генератор, приводимый в движение двигателем Стирлинга от Philips с середины 20-го века (1953). Электрическая мощность: около 180 Вт. Высота корпуса: около 0,5 м. Источник: Викисклада , Норберт Шнитцлер .

Использование гелия

В то же время появилась идея заменить рабочий фактор. До сих пор под лозунгом «рабочий фактор» в двигателях Стирлинга мы понимали обычный атмосферный воздух. В какой-то момент инженеры и ученые задали вопрос, есть ли что-то лучше с точки зрения термодинамических свойств? Да. Более или менее с 1930-х годов этот газ был коммерчески продан в промышленных количествах. Это гелий. Использование гелия в качестве рабочего вещества значительно повышает эффективность двигателей Стирлинга. Однако использование нового фактора вызвало совершенно новые проблемы. Гелий плохо хранится даже при комнатной температуре. То есть. из-за очень малых частиц, он имеет тенденцию проникать в большинство материалов, используемых в технологии со сталью в головке. В 60-х и 70-х годах были изучены гелиевые двигатели. Их характерная особенность, видимая на фотографиях,… прикреплена к двигателю гелиевого цилиндра, используемого для пополнения газа, выходящего из двигателя практически через все его элементы. Проблема была серьезной. Для обеспечения конкурентоспособности с другими двигательными системами (т. Е. В основном двигателями внутреннего сгорания) среднее давление рабочей среды в двигателях Стирлинга составляло 20… 30 бар, а температура горячих частей двигателей (нагреватель) часто превышала 500 градусов по Цельсию (с разностью температур 400 градусов). Проблемы утечки двигателей «на гелие» до сих пор не были решены практически и экономично. Для обеспечения конкурентоспособности с другими двигательными системами (т. Е. В основном двигателями внутреннего сгорания) среднее давление рабочей среды в двигателях Стирлинга составляло 20… 30 бар, а температура горячих частей двигателей (нагреватель) часто превышала 500 градусов по Цельсию (с разностью температур 400 градусов). Проблемы утечки двигателей «на гелие» до сих пор не были решены практически и экономично. Для обеспечения конкурентоспособности с другими двигательными системами (т. Е. В основном двигателями внутреннего сгорания) среднее давление рабочей среды в двигателях Стирлинга составляло 20… 30 бар, а температура горячих частей двигателей (нагреватель) часто превышала 500 градусов по Цельсию (с разностью температур 400 градусов). Проблемы утечки двигателей «на гелие» до сих пор не были решены практически и экономично.

Моторы Стирлинга, их применение в конце 20 века

В конце 20-го века двигатели Стирлинга снова вернулись. Оба НАСА, Государственный департамент США и Европейский союз инвестировали в исследования новых поколений двигателей Стирлинга. Они были в основном предназначены для солнечных систем (т. Е. Источник тепла должен был быть солнечным светом, сфокусированным на обогревателе двигателя большим параболическим зеркалом). Многие из этих двигателей имели неровный дизайн.

C:UsersdomЧто случилось с двигателями Стирлинга - Technique.pl_files400px-WP_20150223_004-silin-ML.jpg

Пример проекта двигателя Стирлинга, предложенного г-ном Мацей Жукашем в соответствии с патентом P.389415 . Проект выполнен в рамках магистерской работы на факультете SiMR в Варшавском технологическом университете (руководитель: проф. Вяслав Остапски, PhD, Eng.

Идея этой идеи заключалась в том, что весь двигатель с электрическим генератором должен быть запечатан в герметичном (для гелиевого) несъемного корпуса, считая, что он не может использоваться на протяжении всего срока его службы. Однако на этот раз технология не удалась. Если были получены положительные результаты, они были связаны со слишком высокими издержками. Наилучшим образом, самые распространенные двигатели Стирлинга в двадцатом веке остались в Индии настольные вентиляторы, конструктивно похожие на вышеупомянутые насосы для аквариума…

C:UsersdomЧто случилось с двигателями Стирлинга - Technique.pl_files400px-WP_20150223_004-silin-ML.jpg

Пример солнечной системы с электрическим генератором, приводимым в движение двигателем Стирлинга. Источник: Wikimedia Commons , автор: Загружено Skyemoor .

Одной из последних идей использования двигателей Стирлинга было «спуск с параметров». То есть нашли применение для двигателей с низкими характеристиками и существенно более низкой эффективностью, чем двигатели внутреннего сгорания и электродвигатели. Примерно в начале XXI века с помощью двигателей Стирлинга была обнаружена идея восстановления энергии, утраченной в процессах нагрева, таких как «дымоход» с дымовым газом из СО-печей. Однако экономический расчет по-прежнему был против использования таких решений в больших масштабах.

Конечно, несмотря на все технологические проблемы, двигатели Стирлинга производятся и используются. Однако это очень специфические приложения, которые позволяют оправдать высокие производственные и / или эксплуатационные расходы. В дополнение к военным применениям примерами являются энергетические системы, работающие на биогазе, восстановленном на полигонах. Яднак таких двигателей по-прежнему остается большой «экзотикой» в мире технологий, и, вероятно, большинство читателей этого текста никогда не встретит такой движок…

C:UsersdomЧто случилось с двигателями Стирлинга - Technique.pl_files400px-STM_Stirling_Generator_set.jpg

Коммерчески доступный электрический генератор, приводимый в движение двигателем Стирлинга STM с начала 21 века. Электрическая мощность: около 38 кВт или 65 кВт. Высота корпуса: около 1 м. Источник: Викисклада , автор: В.Т.Чыманский.

Заключение

Мы процитировали выше упрощенную историческую схему тенденций проектирования двигателей Стирлинга. Конечно, мы опустили множество проектов как энтузиастов, так и тех, которые были разработаны в «серьезных» исследовательских проектах (например, машины с жидкими поршнями – «жидкость», термоакустические двигатели и т.д.). Это не меняет того факта, что инженеры и ученые пытались построить эффективный и надежный двигатель Стирлинга почти 200 лет. Практически каждое последующее поколение инженеров пытается решить проблемы этих двигателей, надеясь, что это обеспечит технический прогресс, который произошел в предыдущие 20-25 лет. К сожалению, усилия по-прежнему неэффективны. Я должен признать, что, по-видимому, мое поколение также пыталось это сделать, а также потерпело неудачу. Однако мы глубоко убеждены в том, что

Совсем другое дело, что каждое поколение инженеров начинает свою деятельность почти с самого начала, на практике имея очень сложный доступ к документации ранее выполненных работ… но это снова тема для совершенно другого случая.

C:UsersdomЧто случилось с двигателями Стирлинга - Technique.pl_files400px-STM_Stirling_Generator_set.jpg

Модель двигателя Стирлинга в бета-системе, разработанной и сделанной г-ном Рафалом Ходорковским в рамках инженерных работ на факультете SiMR в Варшавском технологическом университете (руководитель: Мачей Тулодзекский, PhD). Длина двигателя: около 35 см.

izobreteniya.net

Двигатель Стирлинга, принцип работы

В этом двигателе основным нововведением является наличие промежуточного контура, выполняющего роль буферной емкости для отработанного газа и временного замедлителя, дающего возможность нагреть газ за  время движении кулачка по промежуточному контуру. Размеры контуров можно менять, газовые магистрали также можно изменять, можно отказаться от клапанов, внутри ротора можно разместить электродвигатель, тем самым конструкция будет полностью герметичной, или заменить рекуператор регенератором, и т.п. Достоинство конструкции в относительной простоте, аналогичные схемы давно используются в гидронасосах высокого давления. Современные достижения трибологии позволяют обойтись без смазки и без «компрессионных» устройств. Роторный принцип имеет значительные положительные качества, которые недоступны поршневым двигателям, и первое из них — это миниатюрность, позволяющая сделать не только миниатюрным сам двигатель, но и разместить внутри него электрогенератор без существенного увеличения размеров. Другое важное преимущество — постоянство крутящего момента, т.к. плечо ротора постоянно. Еще одно преимущество — это строгая очередность протекания тактов — ротор переходит в следующий сегмент только после того, как полностью отработал в предыдущем, в поршневом же двигателе движение поршней подчинено синусоидальному закону, что снижает усилие газа на величину противодавления. К тому же, многие конструкции содержат газовый демпфер, т.е. картер под давлением, что также снижает мощность на величину противодавления в картере. Немаловажным качеством является и то, что отсутствуют возвратные движения, ротор движется только поступательно, нет необходимости демпфирования, что также увеличивает эффективный кпд. Еще одним положительным качеством является то, что в теплопереносе участвует весь объем рабочего тела, а не часть его, как в поршневых двигателях.

РОТОРНЫЙ ДВИГАТЕЛЬ СТИРЛИНГА
(принцип работы)

                fig1.jpg

На фигуре 1 изображена   секция   роторного  двигателя внешнего сгорания с кулачковым ротором.

                    fig2.jpg

На фигуре 2 изображены такты  рабочего цикла  роторного  двигателя   внешнего сгорания.

                     fig3(1).jpg

На фигуре 3 изображена   секция   роторного двигателя внешнего сгорания с роликовым ротором.

Роторный двигатель внешнего сгорания состоит из преобразователей энергии механической и тепловой. Секция двигателя внешнего сгорания содержит один статор 16 (фиг.1), оборудованный тремя подвижными пластинами 6, 12, 17, прижимаемыми к  поверхности ротора 13 посредством пружин 28, 11, 19.  Статор 16 с торцов закрыт торцевыми крышками (не показаны). Внутри статора 16 на силовом вале 15 вращается  по стрелке «а» ротор 13, оборудованный кулачками 14 и, возможно, 9. Внутренний объем статора посредством подвижных пластин 6, 12, 17 разделен на силовой («с»), промежуточный  («п») и   вытеснительный («в»)  контуры, а сами пластины герметично прижимаются под действием пружин 28, 11, 19  к ротору 13 и    к  торцевым крышкам и тем самым противодействуют  проникновению рабочей среды  из одного контура в другой,  минуя    каналы, соединяющие эти контуры. При прохождении через подвижные пластины   кулачка  14 ротора 13 подвижные пластины отжимаются в тело  статора 16. Каналы  разделяются на выходной 24, оборудованный обратным или  выпускным клапаном   18, перепускной 29, оборудованный обратным клапаном 20, и, при наличии на роторе 13 кулачков 9, 14, входные – 3, 2, оборудованные   впускными клапанами 7, 8 и обратными клапанами 1, 30. Каналы проходит, как правило, через преобразователь тепловой энергии, состоящий из нагревателя («н») 5, регенератора  («р») 26 и холодильника («х») 4 (или в обратной последовательности), но, для уменьшения  динамического сопротивления и удобства компоновки, возможна схема проводки каналов как на фигурах 1, 2, которые  проходят через регенератор  и/или через какой-либо из конечных преобразователей тепловой энергии. Внутренний объем статора и каналов заполнен рабочей средой, которой может быть, например, газ — пар, водород, гелий или другой подходящий для этого наполнитель.

Роторный двигатель внешнего сгорания работает следующим образом. Запуск   двигателя   производится после разогрева нагревателя («н») 5 и охлаждения холодильника («х») 4 и  принудительного проворота силового вала 15 по стрелке «а»   на один-два оборота. При этом  замкнутый цикл  Стирлинга осуществляется за три такта при постоянно протекающем выпуске (фиг.2): положение I –   сжатие-впуск;  положение  II – перепуск-охлаждение,нагрев; положение III – рабочий ход. Стрелками показано движение газа: волнистой – горячего, пунктирной – теплого, ровной – холодного.

Такт I  — сжатие-впуск – вытеснение в регенератор холодного газа и после его предварительного подогрева проталкивание его в нагреватель. Кулачек 14 ротора 13 движется по стрелке «а» в    вытеснительном контуре  «в»  и,  сжимая холодный газ (рабочую среду) в этой области   статора 16,  вытесняет его в канал 27, проходящий через регенератор 26 и, по каналу 3, в нагреватель 5. В увеличивающуюся нижнюю область контура «в» при продвижении в ней кулачка 14 втягивается из канала 29 холодный газ, выходящий из промежуточного контура «п» через холодильник 4.  При этом после выхода кулачка 14 из контура «в» в контур «п» обратные клапаны 25,30,1 не позволят газу после увеличения объема вследствие нагрева переместиться в контур «в».

Такт II —  перепуск-охлаждение,нагрев. При продвижении кулачка по контуру «п» происходит вытеснение  теплого газа  через холодильник 4 (где происходит его охлаждение)  в контур «в». При этом в контур «п» газ поступает под давлением  или засасывается из силового контура «с», пройдя предварительно через регенератор «р» и оставив там часть тепла. За время продвижения кулачка 14 по контуру «п» происходит достаточный нагрев газа в нагревателе 5, при этом газ концентрируется  в нагревателе, где его удерживают обратный клапан 30 и впускной клапан 8.

Такт III –   рабочий ход. При вхождении кулачка 14 в силовой контур «с» после прохождения им   подвижной пластины 12 принудительно открывается впускной клапан 8, при этом горячий  газ под большим давлением толкает кулачек 14 (т. к. пластину 12 сдвинуть невозможно) по стрелке «а», тем самым осуществляется вращение силового вала 15. . Одновременно кулачком 14 вытесняется  горячий газ из силового контура «с», оставшийся  там после предыдущего рабочего хода, в регенератор 26, ранее охлажденный проходом холодного газа, где отдает часть теплоты, и   затем поступает в    промежуточный контур «п». В момент перехода кулачка 14 через подвижные пластины (6, 12 или 17, фиг.1) – последние отжимаются кулачком за внутреннюю поверхность статора 16 и беспрепятственно пропускают кулачек 14 (подвижные пластины всегда  прижаты пружинами  11, 19, 28 к  поверхности кулачка 14 и ротора 13), при этом происходит отсекание газа и обеспечивается герметичность контуров. Далее процесс повторяется.

Выпуск горячего газа из контура «с» в канал 24 открыт постоянно.


Для осуществления двукратного действия (т.е. количества рабочих  ходов за один оборот силового вала)  требуется  дооборудование ротора 13 дополнительным  кулачком  9 (что улучшит балансировку ротора), и  нагревателя 5 дополнительным входным каналом 2 с обратным клапаном 1 и впускным клапаном 7. При этом теплый газ из регенератора 26 под действием кулачков 14, 9 будет поочередно вталкиваться в каналы 2 или 3, т. к. если в одном из них будет происходить нагрев, то высокое давление не позволит втолкнуть в него порцию газа, поэтому газ войдет в канал, в котором  уже упало давление.  Каналы 2 и 3 соединены с впускным каналом 10, впуск горячего газа в который регулируется впускными клапанами 7, 8.  Таким образом, увеличивая количество кулачков ротора и входных каналов кратность можно увеличить до разумной достаточности.

В описанном двигателе отсутствует осаждение продуктов сгорания или реакций на внутренней поверхности статора от рабочей среды, что позволит применить в нем роликовый ротор  13 (фиг.3), посаженный  на кривошип  31  силового вала 15   и катящийся по внутренней поверхности статора 16.


autodata.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о