Ремонт соленоида своими руками
Самое подробное описание: ремонт соленоида своими руками от профессионального мастера для своих читателей с фотографиями и видео из всех уголков сети на одном ресурсе.
Достаточно часто у автомобилистов возникает вопрос, как проверить, заменить и отремонтировать соленоиды АКПП. Это объясняется достаточно частым выходом из строя. Также довольно часто они просто сбоят. Это известно каждому автовладельцу, имеющему автомобиль с такой коробкой передач. Имея навыки такой работы, можно значительно сэкономить на обслуживании машины. Ведь практически все автосервисы производят ремонтные работы АКПП за солидные деньги, даже в случаях, когда процесс занимает непродолжительное время, и не требует особых навыков. Зная особенности проверки и ремонта этой системы, вы сможете сделать все самостоятельно, не прибегая к услугам автосервиса.Задумываться о проверке и возможном ремонте соленоидов необходимо при появлении следующих признаков:
- Толчки и удары в коробку при движении;
- При загоревшейся лампочке неисправности АКПП;
- Переключение передач с рывками.
В любом из этих случаев следует обязательно проверить работу гидроблока.
Начать проверку необходимо с компьютерной диагностики. Если вы увидите ошибку, означающую поломку соленоидов, то можно работать с ними дальше. Для более точной диагностики снимаем деталь с машины. Для этого, на снятом соленоиде в первую очередь проверяется сопротивление. В зависимости от модели показатель может колебаться от 10 до 25 Ом. Более точные показатели можно посмотреть в технических документах к вашему автомобилю.
Нет видео.
Видео (кликните для воспроизведения). |
Установка новых соленоидов не вызовет у вас трудностей. Главное, при работе делать все крайне аккуратно. Перед проведением замены определите свою разновидность АКПП, по этим данным подберите подходящий тип соленоида.
Сама замена требует минимального объема работы. Гидроблок откручивается от коробки, после чего нужно отжать от фиксаторов с помощью монтировки. Соленоиды извлекаются из блока, и отсоединяются от питания. Далее устанавливаются и подключаются новые элементы. Гидроблок устанавливается на свое место, для этого обязательно используйте новую прокладку. Это поможет избежать утечек смазки.
При наличии проблем с переключением скоростей либо посторонних шумах в коробке передач стоит в первую очередь обратить внимание на исправность соленоидов. Произвести специальную диагностику, которая поможет выявить неисправности можно в любом сервисном центре обслуживания автомобилей. Соленоиды – это электромеханические клапаны-регуляторы, которые служат для управления трансмиссией.
- Забивание нагаром и мелким мусором от изнашивающихся деталей трансмиссии;
- Растяжение возвращающей пружины;
- Трещины на корпусе;
- Падение уровня сопротивления обмотки вследствие обрыва;
- Износ каналов манифольда.
После выявления типа неисправности можно приступать к ремонту. Конструкция автоматической коробки переключения передач достаточно сложна, и автолюбителям, которые не имеют должного опыта и не разбираются в ремонте машин лучше самостоятельно не производить никаких действий. Проще отправиться на станцию технического обслуживания и воспользоваться услугами профессионалов. Что касается автовладельцев со стажем, они могут попробовать произвести ремонт соленоидов АКПП своими силами. Стоит помнить, что далеко не все поломки можно устранить. Соленоид можно почистить от мусора либо спаять разрывы, а в остальных случаях лучше полностью заменить вышедшую из строя деталь.
- Определить тип неисправности и удостовериться в возможности ремонта;
- Снять соленоид;
- Аккуратно извлечь из корпуса катушку;
- Найти место разрыва;
- Отпаять контакты;
- Спаять место разрыва и залить его эпоксидкой;
- Вставить катушку назад в корпус и проверить, чтобы она не болталась;
- Припаять контакты на место;
- Хорошенько продуть соленоид для его очистки;
- Поставить отремонтированную деталь на место.
После ремонта соленоид должен прослужить еще пару лет. В случае невозможности спаять провод в месте разрыва его можно просто перемотать. Чтобы найти сервис, который проводит данный вид работ нужно ввести в интернете конкретный поисковый запрос, например, шиномонтаж 5 колесо Казань.
Всем привет. месяц назад купил форика себе SG5 2002 год, турбовый.
Иногда начала мигать лампочка ECO. Когда мигает, то машина очень медленно трогается. На диагностике сказали что ошибка P0753 есть. Это вроде как – “Повреждение электрической цепи переключателя А соленоида”.
Решили заглянуть внутрь, слили ATF, сняли днище коробки. Визуально проводка, контакты впорядке были. Потом рещили включить зажигание, начал трищать один соленоид и снизу у него (фотка в прикрепленном файле) брызгало масло. Подумали что он и не исправен, так как остальные соленоиды работали нормально. Ктонибудь сталкивался с такой ситуацией, точно ли он неисправен?
Так же замерил сопротивление котушки соленоида, оно равно 7.8 омам. Мне кажется что это очень маленькое сопротивление. Может ктонибудь знает какое оно должно быть там?
Ремонтировать начал так, начал окуратно отгибать края цилиндрика в котором находится катушка. Немного расшатал его и решил замерить сопротивление еще раз, оно стало 3.8 ом. Вроде как 4 ома это тогда когда селеноид целый. Отсюда следует вывод, что плохой контакт от разема до катушки, толи он подгорел, то ли еще что.
Народ, что вы думаете о проделаной работе, можно ли дальше разбирать соленоид? Может кто нибудь уже делал это.
Отправив на пенсию простой говернор – гидравлический клапан с механическим принципом работы, соленоид превратился в сложный компонент гидроблока АКПП. Соответственно, ремонт соленоида АКПП своими руками потребует знаний электрики, механики и устройства коробки передач.
Нам потребуется набор инструментов (для развальцовки соленоида) в составе:
- ремкомплект для АКПП, например, AISIN AW55-50 SN с запасными втулками;
- молоток;
- штангенциркуль;
- очиститель карбюратора;
- инструмент для развальцовки;
- сжатый воздух;
- тиски;
- пресс;
- лоток для мелких деталей.
Ремнабор для развальцовки соленоида АКПП
- Берем гидроблок и отвинчиваем отворотный болт соленоида.
- Снимаем кронштейн крепления и вынимаем интересующий нас соленоид.
- Гидравлический блок отставляем в сторону.
- Замеряем затяжку пружины контровочной гайкой с помощью штангенциркуля.
- Снимаем контр-шпильку с соленоида, кладем в лоток.
- Шестигранным ключом выворачиваем гайку предварительной затяжки пружины. Действуем аккуратно, чтобы не повредить деталь.
- Вытащили пружину. Кладем в лоток.
- Вытаскиваем шток соленоида, он не всегда выходит сразу, надо энергично встряхнуть. Помещаем в лоток.
Видео (кликните для воспроизведения). |
- Завершающие процедуры проводим в обратном порядке: чистим и запрессовываем корпус катушки, помещаем катушку в корпус штока (риска разъема должна совпасть с прорезью), производим завальцовку соленоида с помощью пресса и кольца из ремнабора, устанавливаем шток, пружину и гайку, затягиваем гайку на глубину, предварительно замеренной штангенциркулем, надеваем штопор.
Соленоид готов к установке в гидроблок. Удачных Вам ремонтов!
АКПП любой формации представляет собой достаточно сложный механизм, просто изобилующий разного рода деталями. Одни из них являются лишь вспомогательными в работе устройства, а другие – настоящей основой. Именно к категории последних относятся соленоиды, отвечающие за переключение передач и управление режимами коробки. Более подробно о принципах функционирования и общей концепции данных элементов АКПП поговорим сегодня. Интересно? Тогда обязательно ознакомьтесь с приведённой ниже статьёй.
Соленоид АКПП – это специальное устройство, которое отвечает за движение масла внутри гидроблочного механизма. Управляется оно электронным блоком управления АКПП и, по сути, представляет собой обычный электромеханический клапан. Именно соленоиды стали наиболее распространёнными «управленцами» переключения передач и режимов работы в современных автоматических коробках передач. Если в роботизированных и вариаторных КПП заменить данные узлы чем-то возможно, то вот в гидравлических АКПП они стали основой управления, поэтому вряд ли будут вытеснены в течение ближайших десятилетий.
Стоит отметить, что соленоид в коробке переключения передач далеко не один – их множество, которые зачастую объединены в целые блоки. Ранее функции контроля движения масла по каналам АКПП возлагались на механические клапанные механизмы, однако развитие автомобильной электроники спровоцировало замену таких устройств на более удобные соленоиды. Если быть точнее, то первый соленоид был установлен в конструкцию автомата лишь в середине 80-х годов в США, после чего получил широкое распространение в этой сфере применения.
Повторимся, любой соленоид – это электромеханическое устройство, которое, честно говоря, очень простое по своей конструкции. Основная функция данного механизма заключается в перекрытии подачи масла по тому или иному каналу АКПП посредством его запирания специальным стержнем. Последний, к слову, выполнен из металла и попросту скользит в проводящей ток спирали (электричество в ней течёт постоянно, пока заведён мотор автомобиля). Нарастание тока движет стержень к концу спирали, то есть запирает канал подачи масла, снижение – к его началу, соответственно, усиливая подачу смазки. Движение стержня любого соленоида организовано при помощи специальных механизмов – запирающих и возвратных пружин.
Все соленоиды АКПП собраны в её элементе под названием «гидроблок» (в народе – блок соленоидов). Гидроблок, к слову, представляет собой плиту, разделённую на многочисленные каналы и имеющую в конструкции множество датчиков, клапанов. Такая организация позволяет автомату осуществлять возложенные на него обязанности, которые заключаются в автоматическом переключении передач. Соленоиды в этой системе играют немаловажную роль и находятся под управлением ЭБУ, направляющем им сигналы по открытию или закрытию конкретного канала гидроблока.
Как стало ясно из предыдущего пункта статьи, управление АКПП без соленоидов представить сложно. В зависимости от того, по какому принципу работают данные механизмы, принято выделять несколько поколений установок. На сегодняшний день выделяются три основных вида соленоидов:
С течением времени конструкция автомата становилась всё более и более сложной, поэтому усложнялись и принципы работы соленоидов АКПП, из-за чего они подвергались усиленной модернизации. Основные совершенствования касались того, чтобы переложить на клапан дополнительные функции по типу сброса давления в конкретном блоке сцепления коробки или заблокировать муфту гидротрансформатора.
Идеи автомобильных инженеров позволили достичь подобных задач. Теперь многочисленные типы соленоидов не только отвечают за переключение передач, но и тонко управляют режимами работы АКПП. Сегодня стандартный автомат имеет в конструкции 6 типов соленоидов:
Важно понимать, что для каждой пары сцепления (передачи) имеется не один соленоид, а сразу несколько из отмеченных выше. Стабильная и беспроблемная работа АКПП возможна лишь при нормальной работе всех клапанов гидроблока, поэтому относиться к ним нужно с должным уровнем ответственности.
Неисправный соленоид – это одна из главных причин некорректной работы и перехода АКПП в аварийный режим. Несмотря на высокую надёжность современных клапанов гидроблока, по своей сущности эти устройства являются расходниками, поэтому требуют периодической замены. Если ситуация не слишком запущена, проблему может решить обычная замена масла в АКПП. Поменять соленоид вполне можно собственноручно, однако прежде всего важно диагностировать его неисправность.
Для проверки любого клапана гидроблочной плиты придётся осуществлять его «прозвонку». Необходимо это по одной простой причине: неисправный соленоид теряет нормальное для себя сопротивление, если быть точнее, оно повышается. Как проверить соленоид? Очень просто, процедура диагностики клапанов не представляет собой ничего сложного и заключается в исполнении следующих операций:
- Снимите гидроблок с коробки, который зачастую располагается на днище узла, реже – сбоку;
- Отсоедините контакты каждого соленоида от соответствующих разъёмов блока управления;
- Прозвоните каждый клапан. Норма сопротивления на его конках определяется для каждого типа в индивидуальном порядке. Так, например, для соленоидов EV-1 норма сопротивления находится в пределах 65-66 Ом (при 20 градусах по Цельсию). Для других клапанов нормальные показатели, соответственно, свои.
Примечание! На современных коробках имеются функции самодиагностики, поэтому для определения того, какой именно соленоид неисправен, достаточно подключиться к бортовому компьютеру автомобиля. Если подобная мера не возможна, то придётся проводить диагностику традиционным «прозвоном» своими руками, после чего уже ремонтировать нужный элемент узла.
Допустим, неисправный клапан выявлен – что требуется дальше? Естественно, ремонт соленоида или их группы. К сожалению, разобрать клапан, промыть его и собрать обратно не выйдет, придётся полностью менять элемент гидроблока. Стоимость его не особо высока, поэтому бояться процедуры ремонта не стоит. Зачастую замена соленоидов в АКПП проводится так:
- Гидроблок снимается с коробки;
- От клапана отсоединяются все разъёмы;
- Откручивают крепления соленоида, и он снимается с гидроблока;
- После этого на место старого клапана устанавливается новый, к нему присоединяются все разъёмы;
- Затем гидроблок устанавливается обратно на КПП. Ремонт окончен.
Как видите, особых сложностей в устройстве соленоидов автомата и их ремонте нет. Разобраться и с тем, и с другим вполне поможет представленный сегодня материал. Надеемся, он был для вас полезен и дал ответы на интересующие вопросы. Удачи на дорогах и в ремонте авто!
- Соленоиды в АКПП: что это, проверка и замена
- Для чего нужны соленоиды в АКПП
- Где находятся соленоиды
- Типы соленоидов
- Основные неисправности соленоидов АКПП их ремонт
- Как проверить и заменить соленоиды
Соленоид, или же электроклапан, по общим правилам находится в гидроблоке – гидравлической клапанной плите.
В гидроблоке он вставлен в канал, где скрепляется с ним с помощью болта или специальной прижимной пластины. С другого конца он присоединяется с помощью шлейфа, или штекера электропроводки к блоку управления автоматики.
Соленоид АКПП отвечает за передачу сигналов между гидравлической и электрической системами. Он с помощью своих функций объединяет их. И часто это объединение дает сбои, которые определяет компьютер.
В АКПП располагается не менее 4-х соленоидов. Их количество зависит от сложности схемы и количества ступеней.
Кабель и шлейф ЭБУ часто являются причинами поломки соленоидов, поэтому подвергаются замене так же быстро, как и соленоид.
Первыми соленоидами, предназначенными именно для автоматических коробок, были on-off соленоиды достаточно простой конструкции и с простыми функциями. Такого типа соленоиды работали по принципу: «открыть» и «закрыть». Стержень, с помощью тока, бегущего по обмотке, ходил по каналу и выполнял функцию on/off.
Ещё один прекрасный тип соленоидов – соленоид «электромагнитный клапан» Это совершенное ноу-хау для своего времени. Он, фактически является гидравлическим клапаном. Разработчики подарили ему собственный канал для масла и шариковый клапан, который открывает и закрывает этот масляной канал. Легко отсоединяется от гидравлической системы и электропитания, просто отсоединив штекер.Первые из соленоидов действовали по принципу on/off. Но, в силу развития автоиндустрии, в начале 90-х были созданы 3-way соленоиды – переключатели нового поколения. В положении on шарик-клапан открывает проход для масла с канала 1 на канал 2, а в положении off – проход со 2-го на 3-й. Такая разработка помогла объединить приборы в один – включать и отключать фрикционные муфты.
Стремясь к совершенству, конструкторы в середине 90-х разработали ещё более “умный” тип соленоида. Соленоиды – регуляторы, или «электрорегуляторы», сконструированы по принципу вентиля. В зависимости от типа импульса, который поступает от компьютера, внутреннее кривое сечение соленоида «приоткрывается» или «призакрывается», то есть ток подается определенными перерывами и частотой.
Соленоиды-регуляторы бывают шариковые, золотниковые 3-way, 4-way, и даже 5-way.
Были разработаны соленоиды с шариковым клапаном – PWM-соленоиды. Это первый этап разработки.
Позже появились достаточно редкие соленоиды VBS. Они обладают низкой чувствительностью к вариациям подающего давления и хорошо справляются с высокими давлениями масла в линии. Они называются еще золотниковыми, так как у них клапан – золотник.Линейные (пропорциональные) соленоиды сконструированы так, что самый изнашиваемый элемент плиты гидроблока, муфта с отверстиями, по которой в таком типе соленоида ходит золотник-плунжер, помещен в сам соленоид.
Линейные соленоиды тем и примечательны, что с их помощью можно избежать замены всей гидроплиты при поломке этого элемента, а ограничиться заменой только одного изношенного соленоида. Гидроплита теперь служит дольше, а проблема с износом её каналов – устранена.
Этот тип соленоидов достаточно капризен, и ресурс жизни, по сравнению с линейными соленоидами короче. Так как в силу быстрого износа из-за небольшого веса и повышения давления, клапан соленоида меняет свой уровень открытия, и компьютеру необходима точная связь для правильной реакции на такие изменения.
Различают ещё соленоиды по функциональному назначению:
- Это соленоиды ЕРС или LPC (Line Pressure Control). Он один из первых в гидравлической плите электроклапанов. Этот тип соленоидов – «главарь». Он единолично распределяет масло по остальным соленоидам и каналам. При 4-х ступенчатой ЕРС – первым изнашивается.
- Соленоид ТСС. Выполняет самую “грязную” работу среди всех типов соленоидов. Он влияет на гидротрансформаторную муфту “блокироваться-подключаться”, повышая КПД для «спортивного режима» разгон. Он часто бывает самым слабым звеном во многих гидроблоках, так как через этот соленоид идет нефильтрованное и горячее масло с гидротрансформатора.
- Shift solenoid. Так называемый «шифтовик» – соленоид-переключатель. Самый простой тип соленоидов. Отвечает за переключение скоростей. Таких «шифтовиков» в гидроплите несколько, и переключение вверх и вниз в коробке совершается именно ими. Их обозначают как S1, S2, или А, В, а SL1 – это линейный шифтовик .
Управляющий соленоид – по типу транзистора в электросхеме, соленоиды могут управлять клапанами плиты.
Они направляют и дают небольшое давление на клапан гидроблока, который сам уже подает давление на поршни и фрикционы.
Управляющие соленоиды бывают 2 типов:
- – соленоид качественного переключения передач;
- – соленоид управления охлаждением масла.
Ниже представим самые распространенные «болезни» соленоидов.
- Причиной поломок и «клина» соленоидов является то, что из-за некачественного масла соленоиды забиваются нагаром из бумажной, стальной, бронзовой и алюминиевой пыли, которая получается от изношенных расходников и узлов.
Проявляется такая проблема тем, что клапан соленоида при холодном масле работает нормально, а при горячем – тормозит.
Чтобы устранить эту проблему, рекомендуется полоскать соленоид, промывать в растворителях и очищать с помощью переменного тока и растворителя.
Протечки – следствие износа, поломка деталей, таких как плунжер, манифольд. При наличии PWM соленоидов в управлении, при ослаблении одного из них, компьютер учитывает его износ и перенаправляет часть нагрузки на другие соленоиды.
Это немного продлевает жизнь состарившейся детали. Но горячее масло и интенсивность напряжения быстро изнашивают слабый соленоид, и тогда приходится его менять.
Интенсивность работы, при перенаправлении давления и части обязанностей на другие соленоиды, изнашивает их каналы и плунжеры. Таким образом, получается цепная беспрерывная реакция.
Следующими проблемами и поломками являются снижение упругости пружины, трещины в корпусе, снижение сопротивления обмотки соленоида, поломки конструкции.
Самая распространенная причина выхода из строя соленоидов – износ его деталей: втулок, манифольда, клапана, плунжера или шарика.
Засоряется плунжер крошкой от изношенных деталей и масла, все начинается с проблемой с переключением – его клинит, потом увеличивается количество нагара, и выходят из строя втулки и клапаны.Но, тем не менее, из-за всех этих нововведений, уменьшился расход топлива, повысилась динамика и комфорт автомобиля, вся механика АКПП стала работать точно, слаженно и нагружено. Но такие изменения, в свою очередь, привели к быстрому износу деталей и загрязнению масла их частицами.
Сейчас нужно постоянно менять масло, так как оно приобретает из-за всех этих частиц свойства наждачной бумаги.
Если вы заметили, что вам стало тяжелее переключать скорости на определённые передачи, заметили в поддоне неизвестную стружку, ваш компьютер подает вам сигналы бедствия – в поиске причин обратиться непосредственно к соленоидам.
Достаточно легко определить, какой же именно соленоид «клинит». Каждый соленоид отвечает за группу передач и управление гидротрансформатором. Это зависит от марки вашего авто и АКПП. Например, если в коробке 4 соленоида, то первый отвечает за переключение 1-2 передачи, и, скорее всего, за 3-4 передачу, второй – 2-3 передача, третий за блок гидротрансформатора, четвёртый отвечает за работу тормозной ленты. Если проблема с переключением с 2-3 передачи, то, соответственно, этот соленоид подлежит ремонту или замене.Если вы при движении чувствуете толчки и удары в коробку передач, или компьютер вам сам говорит о проблеме (высвечивается код, лампочка мигает и т.д.), эти случаи говорят о том, что нужно срочно проверить гидроблок.
В этих случаях необходимо сразу проверить деталь. В первую очередь, соленоид проверяется на сопротивление. На контакт клапана подают напряжение 12 В. Если соленоид рабочий, то он издаст щелчок, если же такового нет, то проблема в его засорении. Для прочистки под напряжением продуваем сжатым воздухом – соленоид должен его пропускать. Если нет, необходима его замена.
Ремонт соленоида своими руками возможен, но только в тех случаях, когда сама деталь разборная. Современные детали, в своем большинстве, сейчас выпускаются не разборными. Для таких деталей единственным вариантом ремонта является их продувка или ультразвук. Если же деталь разборная, то можно поменять обмотку, промыть все детали в бензине, высушить и собрать. После этих действий рекомендуем проверить соленоид на работоспособность.
Если у вас не удался ремонт соленоида, то его замена в АКПП нетрудная, главное – все сделать аккуратно и осмотрительно. Перед тем, как приступить к работе, необходимо определить тип своей АКПП, и, исходя из этих данных, подобрать подходящий соленоид. Открепляем гидроблок от коробки, отсоединяем соленоид от питания и извлекаем из блока. Далее устанавливаем новые детали. Устанавливаем гидроблок на его законное место, не забывая про новую прокладку.Подписывайтесь на наши ленты в Facebook, Вконтакте и Instagram: все самые интересные автомобильные события в одном месте.
Как проверить, заменить и отремонтировать соленоиды АКПП? Краткий мануал
Как проверить, заменить и отремонтировать соленоиды АКПП? Чтобы правильно ответить на этот вопрос, необходимо знать особенности строения этого приспособления. Соленоид АКПП представляет собой стрежень в медной обмотке. При подаче на него электроэнергии, стержень сдвигается, открывая клапан. Через который проходит масло, переключающее передачи. Существует 2 вида соленоида по способу работы:
Нормально открытые. Такой соленоид открывается в спокойном состоянии. При подаче тока он закрывается.
Ремонт любых АКПП от 1 дня
Вариаторы, DSG, гидротрансформаторы, новые и восстановленные АКПП, запчасти
#1 Сообщение ЕвгенийЖ » Чт ноя 08, 2012 9:03 am
#2 Сообщение ahor75 » Чт ноя 08, 2012 4:30 pm
#3 Сообщение Dyukanm » Чт ноя 08, 2012 6:42 pm
#4 Сообщение ЕвгенийЖ » Чт ноя 08, 2012 6:52 pm
#5 Сообщение arsas » Пт ноя 09, 2012 11:12 am
#6 Сообщение _s-s_ » Пт ноя 09, 2012 1:37 pm
#7 Сообщение ЕвгенийЖ » Пт ноя 09, 2012 2:02 pm
#8 Сообщение vitalio » Пт ноя 09, 2012 2:03 pm
#9 Сообщение Baberr » Пт ноя 09, 2012 3:09 pm
#10 Сообщение unforgivable503 » Пт ноя 09, 2012 4:09 pm
#11 Сообщение Baberr » Пт ноя 09, 2012 4:45 pm
#12 Сообщение ZAP » Пт ноя 09, 2012 4:46 pm
#13 Сообщение unforgivable503 » Пт ноя 09, 2012 5:06 pm
Процентов 80-90 от цены новой детали)
#14 Сообщение Baberr » Пт ноя 09, 2012 6:17 pm
#15 Сообщение Rinat » Пт ноя 09, 2012 11:29 pm
Сейчас этот форум просматривают: нет зарегистрированных пользователей и 3 гостя
Компания “АГРЕГАТКА” – это Федеральная сеть технических центров, основной специализацией которых является ремонт и обслуживание автоматических трансмиссий всех типов, включая роботизированные трансмиссии с двойным сцеплением, вариаторные трансмиссии и классические гидромеханические автоматические коробки передач
Компания “АГРЕГАТКА” – это Федеральная сеть технических центров, основной специализацией которых является ремонт и обслуживание автоматических трансмиссий всех типов, включая роботизированные трансмиссии с двойным сцеплением, вариаторные трансмиссии и классические гидромеханические автоматические коробки передач
Клуб Toyota Crown/Crown Majesta
NetRino » 22 ноя 2006
Уважаемые все!
может кому то и пригодится мой опыт по ремонту соленоида АКПП.
После этого его надо продуть, хорошенько протереть и можно ставить обратно в коробку.
Из опыта – месяц уже езжу после такого ремонта, уже и новый соленоид пришел по заказу(в запас останется)
расчитывааю, что год или 2 проработает
P.S. если даже провод в катушке обломан совсем или повреждение где то внутри в любой радиомастерской такую катушку Вам смогут перемотать, главное в соленоиде наверняка клапан, который должен держать большой давление, а электричество можно полечить.
Логин_Питерский » 22 ноя 2006
NetRino » 22 ноя 2006
OLEG_55 » 22 ноя 2006
Младец!
Holo » 29 ноя 2006
Блин, супер, жаль нет у меня гаража с ямой (((( где могла бы покиснуть машина пару дней, а то бы так и сделал
хотя у меня есть пара соленоидов, которые мне не подходят по размеру, можно потренироваться на них, если получится, то мона и на своем попробовать,
как раздолбаю тестовые, постараюсь выложить фотки
Изначально коробки передач оснащались так называемым Говернором. Это примитивный гидравлический клапан, который работал по механическому принципу. Сегодня же на современных автоматических коробках передач используется исключительно соленоиды, которые управляются автоматикой. Преимуществом использования соленоида являются повышение надёжности, возможность тонкого управления и настройки работы автоматической коробки передач.
Содержание :
Конструкция соленоидов состоит из специального магнитного стержня, внутри которого располагается медная обмотка. По обмотке подается постоянный ток, который толкает магнитный стержень по направлению движения масла. При изменении напряжения тока магнитный стержень перемещается в противоположную сторону. Несмотря на кажущуюся сложность, данная конструкция отличается простотой и лёгкостью в управлении. В современных автоматических коробках передач соленоиды перемещаются не только под воздействием изменения направления тока, но и за счёт специальной возвратной пружинки. Тем самым обеспечивается повышенная надёжность устройства и возможность правильного функционирования соленоида при проблемах с электроснабжением.
Располагаются соленоиды в специальных каналах гидроблока, по которым движется масляная жидкость. При открытом канале масло свободно циркулирует по каналу и направляется к движущимся частям коробки или же в маслоприемник для последующего охлаждения.
Управление работой соленоидов осуществляется при помощи компьютера, который подключён к электрическим клапанам при помощи специального шлейфа. Необходимо отметить, что шлейфы, по которым передаются управляющие сигналы к электрическим клапанам, является слабым местом конструкции и достаточно часто выходит из строя. Именно поэтому при проблемах в работе соленоидов в первую очередь в ремонтных мастерских проверяют работоспособность шлейфа.
Гидроблоки в большинстве моделей современных коробок передач располагаются в нижней части коробки. Только лишь в отдельных трансмиссиях гидроблок расположен с левой или же с правой стороны. Нижнее расположение электрических клапанов позволяет существенным образом упростить ремонтные работы. Замена соленоидов в акпп может производиться в специализированных сервисных центрах. Отметим, что данная работа производится без снятия автоматической коробки передач с автомобиля.
В современных коробках автоматах используется несколько типов соленоидов. Впервые данные электрические клапаны стали использоваться американскими автопризводителями ещё в восьмидесятых годах прошлого века. По сути, они представляли собой специально открывающий и закрывающей клапан, который стоял в канале, по которому масляный насос гонит рабочую жидкость в систему. По сути, такие соленоиды имели два положения Открытое и Закрытое.
На смену таким электрическим клапанам пришли соленоиды, которые были разработаны шведским автопроизводителем компанией Volvo. Подобные конструкции имели специальный толкающий сердечник и встроенный шариковый металлический клапан. Клапан позволял открывать или же закрывать масляный канал. Несмотря на свою эффективность работы подобная конструкция не получила должного распространения. Проблема заключалась в сложной конструкции, которая достаточно часто выходила из строя.
В скором времени должное распространение получили специальные трёхканальные соленоиды, которые позволяли с лёгкостью регулировать давлений системе и направлять масло к подвижным элементам или же в систему охлаждения. Тщательно продуманная конструкция таких трёхканальных соленоидов отличалась надёжностью и долговечностью.
В середине девяностых годов появились интеллектуальные соленоиды, которые позволяли оптимальным образом управлять работой гидроблока. Большой популярностью стали пользоваться соленоиды-регуляторы, которые использовали принцип вентиля и позволяли не просто перекрывать или же открывать канал для движения масла, но и открываться на определенную величину, что позволяло регулировать объем перекачиваемого масла. Открытие клапана осуществлялось по сечению в штоке, а управление осуществлялось от центрального компьютера, который направлял импульсный ток к магнитному сердечнику соленоида. Одновременно с изменением принципа работы инженеры ведущих мировых автопроизводителей модернизировали конструкцию электрических клапанов, что позволило сделать трех, четырех и пятиканальные соленоиды. Сама конструкция существенно упростилась, что в свою очередь положительно сказалось на надежности. Гидроблок стал служить намного дольше, а выходы его из строя по причине поломок соленоидов стали редкостью. Была фактически полностью решена проблема износа каналов гидроплиты, которая являлась одной из основных причин поломок автоматических коробок передач.
Соленоиды принято классифицировать по их назначению. Наибольшее распространение получили два типа электрических клапанов – EPC и ТСС. Первые отвечают за работу главного подающего канала и канала, по которому масло движется в маслосборник. Соленоид типа ТСС отвечает за блокировку гидротрансформатора и обеспечивает возможность увеличения объема подачи масла в коробку передач.
Используемые в настоящее время в автоматических коробках передач соленоиды отличаются надёжностью и долговечностью. Однако утверждать, что данный элемент полностью лишен каких-либо проблем и поломок было бы неправильно. Как и любой другой механический элемент, соленоид может ломаться и выходить из строя. Опишем наиболее распространенные поломки и их причины.
Так, например, достаточно часто происходит увеличение отложений масла и мельчайшей пыли на металлическом сердечнике. В результате сердечник даже при получении необходимого электрического сигнала не выдвигается в шток. При рабочей температуре масла в коробке передач соленоид может клинить, а автомобиль при этом будет выдавать ошибку в работе коробки передач. Устранить данную проблему можно путём промывки соленоидов в специальных растворителях. Блок соленоидов может очищаться ультразвуком. Последнее проводится без демонтажа соленоидов с коробки передач. Рекомендуем выполнять ультразвуковую чистку соленоидов каждые 50 тысяч километров пробега.
Так выглядит блок соленоидов
При пробеге автомобиля в 250 – 300 тысяч километров или же при максимально активной эксплуатации транспортного средства может отмечаться износ входного отверстия и деталей плунжера. Все это приводит к появлению протечек масла. Появляются проблемы в работе системы охлаждения и смазки коробки передач. В данном случае ремонт износившихся соленоидов заключается в экзамене их на новые запасные части.
Распространённой причиной выхода из строя соленоидов является использование некачественного масла или же отсутствие замены масла в коробке. Рабочая жидкость с продуктами износа постепенно заклинивает магнитный сердечник на горячей или же холодной машине. Необходимо помнить, что диагностировать такую поломку крайне сложно. Именно поэтому рекомендуем проводить замену масла в автоматической коробке передач в соответствии с рекомендациями производителя. Используйте исключительно качественные масла.
В специализированных мастерских вам расскажут, как проверить соленоиды и при необходимости проведут замену. Стоимость этих элементов не слишком высока. Однако вы должны понимать, что в коробке передач может содержать несколько подобных элементов. И при выходе из строя электрических клапанов проводится замена всех соленоидов. Именно поэтому ремонт данного элемента может иметь достаточно высокую стоимость. Помните, что использование качественного масла является залогом долговечного использования соленоидов.
Автор статьи: Антон Кислицын
Я Антон, имею большой стаж домашнего мастера и фрезеровщика. По специальности электрик. Являюсь профессионалом с многолетним стажем в области ремонта. Немного увлекаюсь сваркой. Данный блог был создан с целью структурирования информации по различным вопросам возникающим в процессе ремонта. Перед применением описанного, обязательно проконсультируйтесь с мастером. Сайт не несет ответственности за прямой или косвенный ущерб.
✔ Обо мне ✉ Обратная связь Оцените статью: Оценка 3.5 проголосовавших: 13Ремонт соленоида АКПП своими руками
Оказываемые услугиОтправив на пенсию простой говернор – гидравлический клапан с механическим принципом работы, соленоид превратился в сложный компонент гидроблока АКПП. Соответственно, ремонт соленоида АКПП своими руками потребует знаний электрики, механики и устройства коробки передач.
Этапы ремонта
Нам потребуется набор инструментов (для развальцовки соленоида) в составе:
- ремкомплект для АКПП, например, AISIN AW55-50 SN с запасными втулками;
- молоток;
- штангенциркуль;
- шестигранный ключ;
- очиститель карбюратора;
- инструмент для развальцовки;
- сжатый воздух;
- тиски;
- пресс;
- лоток для мелких деталей.
Ремнабор для развальцовки соленоида АКПП
Ремонт соленоида АКПП своими руками — развальцовка
- Берем гидроблок и отвинчиваем отворотный болт соленоида.
- Снимаем кронштейн крепления и вынимаем интересующий нас соленоид.
- Гидравлический блок отставляем в сторону.
- Замеряем затяжку пружины контровочной гайкой с помощью штангенциркуля.
- Снимаем контр-шпильку с соленоида, кладем в лоток.
- Шестигранным ключом выворачиваем гайку предварительной затяжки пружины. Действуем аккуратно, чтобы не повредить деталь.
- Вытащили пружину. Кладем в лоток.
- Вытаскиваем шток соленоида, он не всегда выходит сразу, надо энергично встряхнуть. Помещаем в лоток.
- Соленоид полностью готов к ремонту. Открываем ремнабор, достаем приспособление для развальцовки и устанавливаем в него соленоид.
- Сначала на дно приспособления устанавливаем шайбу, чтобы потом удобнее было вынимать соленоид.
- Устанавливаем аккуратно, с натягом, электрический разъем должен находиться в прорези.
- Зажимаем приспособление в тиски.
- Берем инструмент для развальцовки, например, стамеску, с помощью молотка бережно по кругу развальцовываем соленоид под углом 60°.
- Снимаем корпус штока и кладем в лоток.
- Вытаскиваем электромагнитную катушку из корпуса.
- Осматриваем корпус (как правило, там много грязи, примесей) и саму катушку на предмет обрывов обмотки и повреждений втулок.
- Аккуратно разбираем катушку, вынимаем клапан, снимаем шайбу, кладем в лоток.
- Протираем катушку и производим осмотр втулок. Если внешних повреждений не видно, их можно прочистить и оставить. Если наблюдаются царапины, заусеницы, то втулки надо заменить.
- Для этого нам понадобятся втулки ремонтных размеров.
- Берем выкладку, вставляем во втулки и вытаскиваем втулки по очереди, стремясь не повредить катушку.
- Промываем катушку очистителем и продуваем сжатым воздухом.
- Все готово к замене втулок, которую производим в обратном порядке с помощью оправки для втулок. Она предохраняет втулки от перекосов при установке.
- Запрессовываем втулку с помощью молотка.
- Готовим заданный размер втулок. Для этого берем развертку, закрепляем в держателе и за один проход вывинчиваем во втулках посадочный размер, вплоть до финальной сборки соленоида в составе гидроблока.
- Промыть катушку очистителем от механических частиц и продуть сжатым воздухом.
- Итак, катушка готова к установке исполнительного элемента, который вставляется легко и свободно ходит в катушке.
АКПП в разрезе
- Завершающие процедуры проводим в обратном порядке: чистим и запрессовываем корпус катушки, помещаем катушку в корпус штока (риска разъема должна совпасть с прорезью), производим завальцовку соленоида с помощью пресса и кольца из ремнабора, устанавливаем шток, пружину и гайку, затягиваем гайку на глубину, предварительно замеренной штангенциркулем, надеваем штопор.
Соленоид готов к установке в гидроблок. Удачных Вам ремонтов!
Назад к списку Поделиться статьёй:Список других статей
Ремонт соленоидов АКПП в Москве
Ремонт соленоидов АКПП – это распространенная услуга по восстановлению рабочего состояния важных подвижных элементов автоматической трансмиссии. Конечно, нередко эти детали меняют новыми или подержанными. Но цена новых весьма высока, а установка подержанных может стать лотереей, поскольку дать полный отчет о состоянии этой детали не сможет даже опытный специалист. Переборка, в этом случае, является компромиссным вариантом. Стоит понимать, что подобные процедуры – это вмешательство в жизненно важные элементы АКПП. Поэтому, неумелые действия способны лишь ухудшить положение дел и, вполне вероятно, полностью вывести из строя агрегат. Поэтому, доверять подобные операции дилетантам не следует. Обращаться нужно только к тем мастерам, которые могут дать гарантию на проведенные мероприятия.
Назначение элементов
Для переключения передачи необходимо кратковременно разъединить коленчатый вал и КПП, а затем выбрать необходимую скорость с помощью рычага селектора. Для автомобилей, оснащенных механикой, такие действия водитель предпринимает самостоятельно, ориентируясь на показания тахометра. Выжимая педаль сцепления, он размыкает механизмы, а с помощью рычага КПП переключает передачу. В автоматической коробке эти процессы выполняются без непосредственного участия человека. Если задан определенный режим работы агрегата, электроника сама определяет нужный момент для смены и с помощью гидравлического давления перемещает нужный пакет фрикционов, осуществляя смену скорости.
Для подачи рабочей жидкости в нужное русло используются специальные каналы, размещающиеся в гидравлической плите. Блок управления подает сигнал электромагнитному клапану (соленоиду), который осуществляет впуск трансмиссионной жидкости. Когда необходимости в подаче нет, канал закрывается этим же регулятором. Количество соленоидов соответствует количеству передач АКПП.
Выполнение операций
Трансмиссионная жидкость является рабочим материалом АКПП. Его состав требует периодической замены, так как, во-первых, он постепенно теряет свои качественные характеристики, а во-вторых, в нем накапливаются продукты износа. Оба этих фактора негативно сказываются на работе подвижных элементов агрегата. Непосредственно касается это и соленоидов. Они засоряются и перестают открываться (или закрываться), когда это необходимо. Следовательно, штатная работа автоматической коробки становится невозможна. В этом случае прибегают к замене или к ремонту соленоидов АКПП.
Рассмотрим процесс более подробно:
- Слив рабочей жидкости
- Демонтаж поддона
- Снятие гидроблока
- Выемка соленоидов
- Дефектовка устройств
- Восстановление работоспособности
- Установка
- Сборка
- Заправка рабочего материала
Оптимальным решением станет совместить эти процедуры с заменой масла и фильтра АКПП. Также стоит провести очистку гидроблока от загрязнений.
Куда обратиться?
Ремонт соленоидов АКПП авто следует поручить грамотным специалистам. Кустарные методики, в этом случае, могут не дать даже кратковременного эффекта. Следовательно, Вы потратите время и денежные средства впустую. Правильным выбором станет техцентр с хорошей репутацией. Например, В Москве Вы можете воспользоваться услугами «Токио Сервис», который, в том числе, занимается и восстановлением АКПП. В штате работают опытные мастера, а на все виды работ будет дана гарантия.
Соленоиды АКПП | Блок | Неисправности | Как проверить
Изначально коробки передач оснащались так называемым Говернором. Это примитивный гидравлический клапан, который работал по механическому принципу. Сегодня же на современных автоматических коробках передач используется исключительно соленоиды, которые управляются автоматикой. Преимуществом использования соленоида являются повышение надёжности, возможность тонкого управления и настройки работы автоматической коробки передач.
Соленоиды АКПП | Общая информация
Конструкция и принцип работы
Конструкция соленоидов состоит из специального магнитного стержня, внутри которого располагается медная обмотка. По обмотке подается постоянный ток, который толкает магнитный стержень по направлению движения масла. При изменении напряжения тока магнитный стержень перемещается в противоположную сторону. Несмотря на кажущуюся сложность, данная конструкция отличается простотой и лёгкостью в управлении. В современных автоматических коробках передач соленоиды перемещаются не только под воздействием изменения направления тока, но и за счёт специальной возвратной пружинки. Тем самым обеспечивается повышенная надёжность устройства и возможность правильного функционирования соленоида при проблемах с электроснабжением.
Располагаются соленоиды в специальных каналах гидроблока, по которым движется масляная жидкость. При открытом канале масло свободно циркулирует по каналу и направляется к движущимся частям коробки или же в маслоприемник для последующего охлаждения.
Управление работой соленоидов осуществляется при помощи компьютера, который подключён к электрическим клапанам при помощи специального шлейфа. Необходимо отметить, что шлейфы, по которым передаются управляющие сигналы к электрическим клапанам, является слабым местом конструкции и достаточно часто выходит из строя. Именно поэтому при проблемах в работе соленоидов в первую очередь в ремонтных мастерских проверяют работоспособность шлейфа.
Гидроблоки в большинстве моделей современных коробок передач располагаются в нижней части коробки. Только лишь в отдельных трансмиссиях гидроблок расположен с левой или же с правой стороны. Нижнее расположение электрических клапанов позволяет существенным образом упростить ремонтные работы. Замена соленоидов в акпп может производиться в специализированных сервисных центрах. Отметим, что данная работа производится без снятия автоматической коробки передач с автомобиля.
Типы соленоидов
Электрические соленоиды
В современных коробках автоматах используется несколько типов соленоидов. Впервые данные электрические клапаны стали использоваться американскими автопризводителями ещё в восьмидесятых годах прошлого века. По сути, они представляли собой специально открывающий и закрывающей клапан, который стоял в канале, по которому масляный насос гонит рабочую жидкость в систему. По сути, такие соленоиды имели два положения Открытое и Закрытое.
Соленоиды Volvo
На смену таким электрическим клапанам пришли соленоиды, которые были разработаны шведским автопроизводителем компанией Volvo. Подобные конструкции имели специальный толкающий сердечник и встроенный шариковый металлический клапан. Клапан позволял открывать или же закрывать масляный канал. Несмотря на свою эффективность работы подобная конструкция не получила должного распространения. Проблема заключалась в сложной конструкции, которая достаточно часто выходила из строя.
Трехканальные соленоиды
В скором времени должное распространение получили специальные трёхканальные соленоиды, которые позволяли с лёгкостью регулировать давлений системе и направлять масло к подвижным элементам или же в систему охлаждения. Тщательно продуманная конструкция таких трёхканальных соленоидов отличалась надёжностью и долговечностью.
Интеллектуальные соленоиды
В середине девяностых годов появились интеллектуальные соленоиды, которые позволяли оптимальным образом управлять работой гидроблока. Большой популярностью стали пользоваться соленоиды-регуляторы, которые использовали принцип вентиля и позволяли не просто перекрывать или же открывать канал для движения масла, но и открываться на определенную величину, что позволяло регулировать объем перекачиваемого масла. Открытие клапана осуществлялось по сечению в штоке, а управление осуществлялось от центрального компьютера, который направлял импульсный ток к магнитному сердечнику соленоида. Одновременно с изменением принципа работы инженеры ведущих мировых автопроизводителей модернизировали конструкцию электрических клапанов, что позволило сделать трех, четырех и пятиканальные соленоиды. Сама конструкция существенно упростилась, что в свою очередь положительно сказалось на надежности. Гидроблок стал служить намного дольше, а выходы его из строя по причине поломок соленоидов стали редкостью. Была фактически полностью решена проблема износа каналов гидроплиты, которая являлась одной из основных причин поломок автоматических коробок передач.
Соленоиды принято классифицировать по их назначению. Наибольшее распространение получили два типа электрических клапанов – EPC и ТСС. Первые отвечают за работу главного подающего канала и канала, по которому масло движется в маслосборник. Соленоид типа ТСС отвечает за блокировку гидротрансформатора и обеспечивает возможность увеличения объема подачи масла в коробку передач.
Неисправности соленоидов АКПП — Симптомы и причины
Используемые в настоящее время в автоматических коробках передач соленоиды отличаются надёжностью и долговечностью. Однако утверждать, что данный элемент полностью лишен каких-либо проблем и поломок было бы неправильно. Как и любой другой механический элемент, соленоид может ломаться и выходить из строя. Опишем наиболее распространенные поломки и их причины.
Так, например, достаточно часто происходит увеличение отложений масла и мельчайшей пыли на металлическом сердечнике. В результате сердечник даже при получении необходимого электрического сигнала не выдвигается в шток. При рабочей температуре масла в коробке передач соленоид может клинить, а автомобиль при этом будет выдавать ошибку в работе коробки передач. Устранить данную проблему можно путём промывки соленоидов в специальных растворителях. Блок соленоидов может очищаться ультразвуком. Последнее проводится без демонтажа соленоидов с коробки передач. Рекомендуем выполнять ультразвуковую чистку соленоидов каждые 50 тысяч километров пробега.
Так выглядит блок соленоидов
При пробеге автомобиля в 250 – 300 тысяч километров или же при максимально активной эксплуатации транспортного средства может отмечаться износ входного отверстия и деталей плунжера. Все это приводит к появлению протечек масла. Появляются проблемы в работе системы охлаждения и смазки коробки передач. В данном случае ремонт износившихся соленоидов заключается в экзамене их на новые запасные части.
Распространённой причиной выхода из строя соленоидов является использование некачественного масла или же отсутствие замены масла в коробке. Рабочая жидкость с продуктами износа постепенно заклинивает магнитный сердечник на горячей или же холодной машине. Необходимо помнить, что диагностировать такую поломку крайне сложно. Именно поэтому рекомендуем проводить замену масла в автоматической коробке передач в соответствии с рекомендациями производителя. Используйте исключительно качественные масла.
В специализированных мастерских вам расскажут, как проверить соленоиды и при необходимости проведут замену. Стоимость этих элементов не слишком высока. Однако вы должны понимать, что в коробке передач может содержать несколько подобных элементов. И при выходе из строя электрических клапанов проводится замена всех соленоидов. Именно поэтому ремонт данного элемента может иметь достаточно высокую стоимость. Помните, что использование качественного масла является залогом долговечного использования соленоидов.
Проверка соленоидов АКПП: что нужно знать
Начнем с того, что соленоид АКПП фактически является электромагнитным клапаном-регулятором. Основной задачей является своевременное открытие и закрытие масляного канала, по которому под давлением подается рабочая трансмиссионная жидкость ATF.
При этом важно понимать, что соленоиды коробки автомат, как и любые другие устройства, имеют ограниченный срок службы, могут работать со сбоями или выходит из строя при определенных условиях. Далее мы рассмотрим, какие неисправности соленоидов часто возникают, что делать в данной ситуации и как проверить соленоиды АКПП на работоспособность
Содержание статьи
Соленоид: как проверить и почему данный элемент выходит из строя
Итак, работой соленоидов АКПП управляет ЭБУ коробкой автомат. Блок управления постоянно посылает на клапан сигналы-импульсы определенной частоты. Простыми словами, соленоид фактически контролирует давление масла, которое, в свою очередь, является рабочим телом в устройстве автомата.
Именно через масло происходит передача крутящего момента в ГДТ, осуществляется переключение передач, снимается блокировка гидротрансформатора и т.д. Получается, соленоид АКПП управляет режимами автоматической коробки передач. Первые соленоиды пришли на смену механическим устройствам еще в 80-х и с тех пор активно используются в коробке автомат.
- Если просто, соленоид представляет собой устройство, где металлический стержень обвит спиралью, по которой идет постоянный ток. Стержень в корпусе подвижен, когда ток воздействует на спираль, это заставляет стержень двигаться от конца спирали к ее началу.
Также в устройстве такого соленоида (электроклапана) имеется пружина, которая усилием возвращает стержень в заданное положение. Не вдаваясь в подробности, задачей соленоида является перекрытие или открытие канала для трансмиссионного масла.
Соленоиды стоят в гидроблоке (гидравлическая клапанная плита, блок клапанов АКПП) и вставлены в канал, фиксируются болтом и прижимной пружиной. Также к соленоиду присоединен шлейф или разъем проводки для соединения с блоком управления (ЭБУ АКПП).
Фактически, соленоид соединяет гидравлику и электронику. Современные версии автоматов имеют, как минимум, четыре клапана — соленоида. Общее количество зависит от того, сколько скоростей получила та или иная коробка, насколько она сложна конструктивно и т.д.
- Обратите внимание, часто проблемы в работе АКПП связаны с выходом из строя проводки, то есть ЭБУ попросту теряет связь с клапаном и автомат не может работать нормально. Также не редкость, когда сам соленоид может выйти из строя. При проверке важно учитывать, какой тип устройства используется на той или иной АКПП, так как существуют соленоиды нескольких видов.
Виды соленоидов коробки — автомат
Если первые соленоиды работали по принципу «открытие/закрытие», то в дальнейшем устройство эволюционировало, превратившись в гидравлический клапан. Если коротко, соленоиды-регуляторы могут быть шариковыми и золотниковыми (имеют клапан – золотник).
Соленоид получил отдельный канал для масла и шариковый клапан для открытия и закрытия этого дополнительного канала. Последующее совершенствование конструкции позволило создать несколько каналов, которые отдельно перекрываются шариковыми клапанами.
Позже появились и соленоиды – регуляторы (электрорегулятор), напоминающие по устройству вентиль. В таком устройстве все зависит от частоты импульса ЭБУ, в результате чего внутреннее кривое сечение соленоида частично открывается или закрывается.
Еще можно выделить различие соленоидов как по конструкции, так и назначению. Например, линейные (пропорциональные), которые позволяют менять отдельные соленоиды без замены всего гидроблока. Тип VFS (Variable Force Solenoid) прост конструктивно, однако более сложен в управлении, имеет меньший ресурс, чем линейные аналоги.
По функциональному назначению выделяют соленоиды ЕРС (LPC, Line Pressure Control, клапан линейного давления). Это «основной» клапан, которые распределяет жидкость на остальные каналы. Еще существует клапан ТСС, так как отвечает за блокировки муфты гидротрансформатора.
Кстати, это соленоид первым выходит из строя на многих АКПП, так как через него поступает разогретое и загрязненное масло из ГДТ. Еще можно отметить shift solenoid (переключатель). Элемент отвечает за включение передач «вверх» и «вниз» и т.д.
Частые неисправности соленоидов АКПП: проверка и ремонт
Прежде всего, на ресурс соленоидов напрямую влияет состояние и качество масла ATF. Частой проблемой является их заклинивание в результате того, что вместе с грязным маслом внутрь устройства попадает металлическая стружка, пыль от фрикционных наладок, в каналах скапливаются масляные отложения и т.д.
Часто клапан «на холодную» работает в штатном режиме, однако «на горячую» начинает зависать. Чтобы избавиться от проблемы, соленоид следует промывать в очистителях или менять.
Еще соленоид может не держать давление, возникают утечки масла. Если используется тип клапанов PWM, ЭБУ способен частично перераспределить нагрузку на другие клапана. Однако это временная мера, то есть через небольшой промежуток потребуется ремонт.
Также страдают и другие элементы, так как рост нагрузок приводит к износу их плунжеров и каналов. Результат – трещины в корпусе, ослабление пружин, снижается сопротивление обмотки соленоида и т.д.
Так или иначе, чаще всего соленоид приходит в негодность по причине износа:
- втулки;
- манифольда;
- клапана;
- плунжера;
- шарика;
Плунжер загрязняется все теми же металлическими частицами и отложениями в масле, затем происходит подклинивание, после разрушаются втулки и клапаны. С учетом того, что срок службы соленоидов обычно не больше 400 тыс. км., а средний ресурс ограничен отметкой в 150-200 тыс., следует заранее быть готовым к замене элементов на данных пробегах.
Более того, сегодня клапана гидроплиты стали более сложными и требовательными к качеству масла. Это значит, что жидкость АКПП и масляные фильтры в автомате нужно менять регулярно, не допуская создания эффекта абразива.
Как проверить соленоиды АКПП и выполнить их замену
Появление рывков, пинков, пробуксовок АКПП, задержки при переключениях, отсутствие каких-либо передач или более жесткая работа автомата может указывать на то, что соленоиды работают со сбоями или частично/полностью вышли из строя.
Наличие на щупе или в поддоне стружки, сильное загрязнение масла АТФ, его помутнение также является дополнительным признаком проблем с клапанами гидроблока.
Чтобы понять, какой соленоид не работает, нужно учесть особенности устройства конкретной АКПП. Если соленоиды отвечают за скорости и управление гидротрансформатором, тогда, например, в 4-х скоростной коробке 4 соленоида.
Один отвечает за 1 и 2 скорость, второй за 3 и 4, третий за работу гидротрансформатора, тогда как четвёртый за срабатывание тормозной ленты. Вполне очевидно, что если имеются неполадки и сбои с включением передач 2 и 3, это говорит о проблемах данного соленоида.
Также при появлении ударов АКПП и рывков коробки автомат часто на панели загорается лампочка A/T, что говорит о проблемах в трансмиссии. В подобной ситуации нужно проверять гидроблок.
Сами соленоиды проверяются на сопротивление. Для этого на клапан следует подать 12В напряжение. В том случае, если соленоид сохранил работоспособность, клапан издает характерный щелчок.
Рекомендуем также прочитать статью о том, что делать, если пропала задняя передача в АКПП. Из этой статьи вы узнаете о том, почему не включается задняя скорость в коробке автомат, а также как обнаружить и устранить данную неисправность.Если щелчка нет, это значит, что произошло загрязнение или поломка. Для начала можно продуть клапан воздухом под давлением, одновременно подавая на него напряжение. В норме воздух должен проходить через элемент.
Если же воздух не проходит, тогда выполняется замена соленоида или ремонт. Ремонт соленоидов возможен только в том случае, если конструкция разборная. В этом случае имеется возможность заменить обмотку, по отдельности промыть детали очистителем, после чего заново собрать устройство.
Затем нужно проверить соленоид и при удовлетворительном результате установить на место. Однако проблема зачастую заключается в том, что многие АКПП имеют сегодня неразборные клапана.
Получается, если воздух и очистители не помогают, а также не дает результатов ультразвуковая ванна, устройство нужно только менять. Сама замена соленоида АКПП достаточно проста. Главное, снять гидроблок, отсоединить соленоид и извлечь его из клапанной плиты. После новый элемент устанавливается на место и сборка осуществляется в обратном порядке.
Подведем итоги
Как видно, соленоид является важным элементом в устройстве АКПП. При этом выход из строя указанных клапанов гидроблока нарушает работу всей автоматической коробки передач. Зачастую, основной проблемой является естественный износ соленоидов или их загрязнение.
Рекомендуем также прочитать статью о том, что такое тормозная лента АКПП. Из этой статьи вы узнаете о том, для чего нужна и какие функции выполняет тормозная лента коробки автомат.Также в ряде случаев рекомендуется промывка гидроблока и/или АКПП перед заменой масла в том случае, если уже заметны признаки и симптомы появления стойких загрязнений и отложений.
Читайте также
Как можно правильно отремонтировать соленоиды АКПП?
При наличии проблем с переключением скоростей либо посторонних шумах в коробке передач стоит в первую очередь обратить внимание на исправность соленоидов. Произвести специальную диагностику, которая поможет выявить неисправности можно в любом сервисном центре обслуживания автомобилей. Соленоиды – это электромеханические клапаны-регуляторы, которые служат для управления трансмиссией. От их функционирования напрямую зависит возможность переключения передач в автомобиле. Возможные неисправности соленоидов:
- Забивание нагаром и мелким мусором от изнашивающихся деталей трансмиссии;
- Растяжение возвращающей пружины;
- Трещины на корпусе;
- Падение уровня сопротивления обмотки вследствие обрыва;
- Износ каналов манифольда.
Устранение неполадок
После выявления типа неисправности можно приступать к ремонту. Конструкция автоматической коробки переключения передач достаточно сложна, и автолюбителям, которые не имеют должного опыта и не разбираются в ремонте машин лучше самостоятельно не производить никаких действий. Проще отправиться на станцию технического обслуживания и воспользоваться услугами профессионалов. Что касается автовладельцев со стажем, они могут попробовать произвести ремонт соленоидов АКПП своими силами. Стоит помнить, что далеко не все поломки можно устранить. Соленоид можно почистить от мусора либо спаять разрывы, а в остальных случаях лучше полностью заменить вышедшую из строя деталь. Для устранения неполадок необходимо осуществить следующие операции:
- Определить тип неисправности и удостовериться в возможности ремонта;
- Снять соленоид;
- Аккуратно извлечь из корпуса катушку;
- Найти место разрыва;
- Отпаять контакты;
- Спаять место разрыва и залить его эпоксидкой;
- Вставить катушку назад в корпус и проверить, чтобы она не болталась;
- Припаять контакты на место;
- Хорошенько продуть соленоид для его очистки;
- Поставить отремонтированную деталь на место.
После ремонта соленоид должен прослужить еще пару лет. В случае невозможности спаять провод в месте разрыва его можно просто перемотать. Чтобы найти сервис, который проводит данный вид работ нужно ввести в интернете конкретный поисковый запрос, например, шиномонтаж 5 колесо Казань.
Оцените статью: Поделитесь с друзьями!Что такое соленоиды в АКПП, как их проверить и заменить?
Для чего нужны соленоиды в АКПП
Соленоид АКПП – это электромагнитный клапан-регулятор, выполняющий работу по закрытию и открытию масляного канала. Его работа управляется ЭБУ, который посылает непрерывные электрические импульсы с определённой частотой. Соленоид осуществляет контроль над давлением масла на конкретные связки сцепления, быстро переключая передачи, или снимает блокировку гидравлического трансформатора. Соленоид АКПП отвечает за управление режимами коробки передач.
Интересный факт! Первые соленоиды для АКПП были разработаны в США в 80-х и устанавливались на автомобили Крайслер – их внешний вид остался до сегодняшнего дня неизменным, устанавливаются на джипы и пикапы.
Соленоид по своей конструкции достаточно прост. Металлический стержень, который обвит спиралью с постоянным током. Он внутри подвижен и под влиянием тока движется от конца спирали к началу, с помощью пружины, перекрывая или открывая поток масла. Эта конструкция характерна для современных АКПП и удобна тем, что в случае сбоев с электроснабжением пружина автоматически срабатывает и перекрывает масло.Где находятся соленоиды
Соленоид, или же электроклапан, по общим правилам находится в гидроблоке — гидравлической клапанной плите.
В гидроблоке он вставлен в канал, где скрепляется с ним с помощью болта или специальной прижимной пластины. С другого конца он присоединяется с помощью шлейфа, или штекера электропроводки к блоку управления автоматики.
Соленоид АКПП отвечает за передачу сигналов между гидравлической и электрической системами. Он с помощью своих функций объединяет их. И часто это объединение дает сбои, которые определяет компьютер.
В АКПП располагается не менее 4-х соленоидов. Их количество зависит от сложности схемы и количества ступеней.
Кабель и шлейф ЭБУ часто являются причинами поломки соленоидов, поэтому подвергаются замене так же быстро, как и соленоид.
Типы соленоидов
Первыми соленоидами, предназначенными именно для автоматических коробок, были on-off соленоиды достаточно простой конструкции и с простыми функциями. Такого типа соленоиды работали по принципу: «открыть» и «закрыть». Стержень, с помощью тока, бегущего по обмотке, ходил по каналу и выполнял функцию on/off.
Ещё один прекрасный тип соленоидов – соленоид «электромагнитный клапан» Это совершенное ноу-хау для своего времени. Он, фактически является гидравлическим клапаном. Разработчики подарили ему собственный канал для масла и шариковый клапан, который открывает и закрывает этот масляной канал. Легко отсоединяется от гидравлической системы и электропитания, просто отсоединив штекер.
Интересный факт! Такой тип соленоидов возник в середине 80-х и до сих пор устанавливается на разные представительские машины – Бьюик, Олдсмобил, Шевроле, Понтиак и др.
Первые из соленоидов действовали по принципу on/off. Но, в силу развития автоиндустрии, в начале 90-х были созданы 3-way соленоиды – переключатели нового поколения. В положении on шарик-клапан открывает проход для масла с канала 1 на канал 2, а в положении off – проход со 2-го на 3-й. Такая разработка помогла объединить приборы в один – включать и отключать фрикционные муфты.
Стремясь к совершенству, конструкторы в середине 90-х разработали ещё более «умный» тип соленоида. Соленоиды – регуляторы, или «электрорегуляторы», сконструированы по принципу вентиля. В зависимости от типа импульса, который поступает от компьютера, внутреннее кривое сечение соленоида «приоткрывается» или «призакрывается», то есть ток подается определенными перерывами и частотой.
Соленоиды-регуляторы бывают шариковые, золотниковые 3-way, 4-way, и даже 5-way.
Были разработаны соленоиды с шариковым клапаном – PWM-соленоиды. Это первый этап разработки.
Позже появились достаточно редкие соленоиды VBS. Они обладают низкой чувствительностью к вариациям подающего давления и хорошо справляются с высокими давлениями масла в линии. Они называются еще золотниковыми, так как у них клапан – золотник.
Линейные (пропорциональные) соленоиды сконструированы так, что самый изнашиваемый элемент плиты гидроблока, муфта с отверстиями, по которой в таком типе соленоида ходит золотник-плунжер, помещен в сам соленоид.
Линейные соленоиды тем и примечательны, что с их помощью можно избежать замены всей гидроплиты при поломке этого элемента, а ограничиться заменой только одного изношенного соленоида. Гидроплита теперь служит дольше, а проблема с износом её каналов – устранена.
Интересный факт! Линейные соленоиды выбраны поставщиком автоматов для Тойоты-VAG-Volvo, японским АТ — Aisin Co.
Последующими были разработаны VFS (Variable Force Solenoid) соленоиды. Имея дешёвую и простую конструкцию, они достаточно сложны в управлении.Этот тип соленоидов достаточно капризен, и ресурс жизни, по сравнению с линейными соленоидами короче. Так как в силу быстрого износа из-за небольшого веса и повышения давления, клапан соленоида меняет свой уровень открытия, и компьютеру необходима точная связь для правильной реакции на такие изменения.
Различают ещё соленоиды по функциональному назначению:
- Это соленоиды ЕРС или LPC (Line Pressure Control). Он один из первых в гидравлической плите электроклапанов. Этот тип соленоидов – «главарь». Он единолично распределяет масло по остальным соленоидам и каналам. При 4-х ступенчатой ЕРС – первым изнашивается.
- Соленоид ТСС. Выполняет самую «грязную» работу среди всех типов соленоидов. Он влияет на гидротрансформаторную муфту «блокироваться-подключаться», повышая КПД для «спортивного режима» разгон. Он часто бывает самым слабым звеном во многих гидроблоках, так как через этот соленоид идет нефильтрованное и горячее масло с гидротрансформатора.
- Shift solenoid. Так называемый «шифтовик» – соленоид-переключатель. Самый простой тип соленоидов. Отвечает за переключение скоростей. Таких «шифтовиков» в гидроплите несколько, и переключение вверх и вниз в коробке совершается именно ими. Их обозначают как S1, S2, или А, В, а SL1 – это линейный шифтовик .
Управляющий соленоид — по типу транзистора в электросхеме, соленоиды могут управлять клапанами плиты.
Они направляют и дают небольшое давление на клапан гидроблока, который сам уже подает давление на поршни и фрикционы.
Управляющие соленоиды бывают 2 типов:
- — соленоид качественного переключения передач;
- — соленоид управления охлаждением масла.
Основные неисправности соленоидов АКПП их ремонт
Ниже представим самые распространенные «болезни» соленоидов.
Важно! Для долговременной службы соленоидов важно не производство, а качество масла.
- Причиной поломок и «клина» соленоидов является то, что из-за некачественного масла соленоиды забиваются нагаром из бумажной, стальной, бронзовой и алюминиевой пыли, которая получается от изношенных расходников и узлов.
Проявляется такая проблема тем, что клапан соленоида при холодном масле работает нормально, а при горячем – тормозит.
Чтобы устранить эту проблему, рекомендуется полоскать соленоид, промывать в растворителях и очищать с помощью переменного тока и растворителя.
- Протечки – следствие износа, поломка деталей, таких как плунжер, манифольд. При наличии PWM соленоидов в управлении, при ослаблении одного из них, компьютер учитывает его износ и перенаправляет часть нагрузки на другие соленоиды.
Это немного продлевает жизнь состарившейся детали. Но горячее масло и интенсивность напряжения быстро изнашивают слабый соленоид, и тогда приходится его менять.
Интенсивность работы, при перенаправлении давления и части обязанностей на другие соленоиды, изнашивает их каналы и плунжеры. Таким образом, получается цепная беспрерывная реакция.
- Следующими проблемами и поломками являются снижение упругости пружины, трещины в корпусе, снижение сопротивления обмотки соленоида, поломки конструкции.
Самая распространенная причина выхода из строя соленоидов – износ его деталей: втулок, манифольда, клапана, плунжера или шарика.
Засоряется плунжер крошкой от изношенных деталей и масла, все начинается с проблемой с переключением – его клинит, потом увеличивается количество нагара, и выходят из строя втулки и клапаны.
Интересно знать! Ресурс самых надежных соленоидов не превышает 400 тысяч км.
Современные конструкции соленоидов значительно проще своих предшественников. Гидроблоки изготавливались из чугунной стали, а сейчас – из алюминия. Раньше можно было залить подобие масла, а сейчас соленоиды стали намного нежнее.Но, тем не менее, из-за всех этих нововведений, уменьшился расход топлива, повысилась динамика и комфорт автомобиля, вся механика АКПП стала работать точно, слаженно и нагружено. Но такие изменения, в свою очередь, привели к быстрому износу деталей и загрязнению масла их частицами.
Сейчас нужно постоянно менять масло, так как оно приобретает из-за всех этих частиц свойства наждачной бумаги.
Как проверить и заменить соленоиды
Если вы заметили, что вам стало тяжелее переключать скорости на определённые передачи, заметили в поддоне неизвестную стружку, ваш компьютер подает вам сигналы бедствия – в поиске причин обратиться непосредственно к соленоидам.
Достаточно легко определить, какой же именно соленоид «клинит». Каждый соленоид отвечает за группу передач и управление гидротрансформатором. Это зависит от марки вашего авто и АКПП. Например, если в коробке 4 соленоида, то первый отвечает за переключение 1-2 передачи, и, скорее всего, за 3-4 передачу, второй – 2-3 передача, третий за блок гидротрансформатора, четвёртый отвечает за работу тормозной ленты. Если проблема с переключением с 2-3 передачи, то, соответственно, этот соленоид подлежит ремонту или замене.
Если вы при движении чувствуете толчки и удары в коробку передач, или компьютер вам сам говорит о проблеме (высвечивается код, лампочка мигает и т.д.), эти случаи говорят о том, что нужно срочно проверить гидроблок.
В этих случаях необходимо сразу проверить деталь. В первую очередь, соленоид проверяется на сопротивление. На контакт клапана подают напряжение 12 В. Если соленоид рабочий, то он издаст щелчок, если же такового нет, то проблема в его засорении. Для прочистки под напряжением продуваем сжатым воздухом – соленоид должен его пропускать. Если нет, необходима его замена.
Ремонт соленоида своими руками возможен, но только в тех случаях, когда сама деталь разборная. Современные детали, в своем большинстве, сейчас выпускаются не разборными. Для таких деталей единственным вариантом ремонта является их продувка или ультразвук. Если же деталь разборная, то можно поменять обмотку, промыть все детали в бензине, высушить и собрать. После этих действий рекомендуем проверить соленоид на работоспособность.
Если у вас не удался ремонт соленоида, то его замена в АКПП нетрудная, главное – все сделать аккуратно и осмотрительно. Перед тем, как приступить к работе, необходимо определить тип своей АКПП, и, исходя из этих данных, подобрать подходящий соленоид. Открепляем гидроблок от коробки, отсоединяем соленоид от питания и извлекаем из блока. Далее устанавливаем новые детали. Устанавливаем гидроблок на его законное место, не забывая про новую прокладку.
Подписывайтесь на наши ленты в таких социальных сетях как, Facebook, Вконтакте, Instagram, Pinterest, Yandex Zen, Twitter и Telegram: все самые интересные автомобильные события собранные в одном месте.
Навигация по неисправному соленоиду: 3 возможных проблемы и советы по поиску и устранению неисправностей
Как может подтвердить любой начальник технического обслуживания или член бригады, часто самый маленький и простой компонент в машине вызывает больше всего проблем при выходе из строя. Показательный пример: соленоиды. Нет ничего проще, чем эти базовые части! Они открываются и закрываются, почти ничего не делая. Однако, когда кто-то перестает работать, он может погрузить в нос весь ваш механизм.
Проблема с неисправностью соленоида в том, что не всегда ясно, чем она вызвана.Соленоиды маленькие и простые по своей функции, и, когда они не имеют повреждений, бывает трудно определить, что именно вышло из строя. Часто требуется зоркий глаз специалиста по ремонту, чтобы выяснить, почему соленоид застрял в открытом, закрытом или где-то посередине.
Три проблемы соленоида
Вот несколько советов, которые могут подсказать вам, что может мешать соленоиду работать должным образом:
1. Проблема: клапан застрял в открытом или закрытом положении.
Как правило, наиболее частой причиной «заклинивания» соленоида в открытом или закрытом состоянии является потеря мощности.Если на катушку не подается питание или если питание прервано, соленоид перестанет функционировать и останется в том положении, в котором он был последним. Часто прерывания питания в цепи могут вызвать заедание клапана, и он останется таким даже после вы восстанавливаете питание, требуя перезагрузки.
Еще один потенциальный катализатор разомкнутого или замкнутого соленоида — отказ катушки или перегорание. Слишком высокое напряжение может поджечь катушку, что приведет к неработоспособности клапана.
2. Проблема: Клапан постоянно открывается без подсказок.
Если ваш соленоид постоянно открывается без подсказок, проблема, вероятно, будет иметь разветвления для работы всей вашей системы. Эту проблему сложно диагностировать, потому что она зависит от переменных, находящихся рядом с ней. К ним относятся, например, гидравлическое давление на клапан или скачки в электрической цепи, в которой работает соленоид. Решение состоит в том, чтобы выполнить серию проверок и тестов, чтобы определить, что вызывает открытие клапана, и отрегулировать на основании полученных данных.
3. Проблема: клапан не закрывается.
Если у вас возникли проблемы с соленоидом, который просто не закрывается, первое, что нужно проверить, — это сам клапан. Часто его неспособность закрываться из-за препятствия посторонним предметом или мусором, попавшим в шток. После снятия соленоид должен снова заработать.
Если мусора нет, причиной может быть сбой в подаче электроэнергии. Убедитесь, что на цепь соленоида подается достаточное питание.Если нет, восстановление и сброс соленоида может решить проблему. Если проблема не в питании, проверьте выравнивание клапана. Если клапан ранее открывался принудительно или вышел из строя, перекос может помешать его повторному закрытию. Осмотрите седло и шток на предмет повреждений, которые могут указывать на принудительное открывание.
Проверить все переменные
Как и в случае с любым промышленным компонентом, отказы не могут ограничиваться самими частями. Убедитесь, что вы смотрите на периферийные компоненты и дополнительные детали, чтобы убедиться, что они не являются причиной отказа, а также чтобы убедиться, что они не неисправны.
Неисправный соленоид может ослабить ваше оборудование или производственный процесс, но, к счастью, это часть, которую вы часто можете легко отремонтировать или заменить, как только вы выявите корень проблемы.
Как отремонтировать электромагнитный клапан ирригации
Источник бесплатной информации по ирригации в Интернете!Когда соленоидный клапан (также называемый электрическим клапаном или автоматическим спринклерным клапаном) не закрывается, это почти всегда происходит из-за того, что внутри него что-то застряло.Это может быть песчинка, веточка, насекомое или даже крошечная улитка. Для фиксации клапана нужно его разобрать и почистить. Когда клапан не открывается, это обычно происходит из-за плохого соленоида или плохой проводки, хотя в редких случаях внутри клапана застревает песчинка или порвана диафрагма внутри клапана. В следующей инструкции рассказывается, как разобрать, очистить и осмотреть автоматический клапан.
Чтобы очистить клапан:
При разборке клапана обратите внимание на то, как все детали подходят друг к другу, чтобы вы могли правильно собрать его! Я настоятельно рекомендую вам сделать набросок и делать заметки.Каждая марка и модель клапана немного отличаются. Клапан, показанный на фотографиях, представляет собой клапан антисифонного типа, который обычно используется в домашних спринклерных системах. Конструкция крышки с правой стороны этого клапана представляет собой антисифонное устройство.
Типовой электромагнитный клапан антисифонного типа
Снимите соленоид с клапана. Большинство соленоидов для снятия откручивают против часовой стрелки. При снятии соленоида следите за тем, чтобы подпружиненный поршень внутри него не выскочил и не упал в грязевую лужу.На большинстве новых клапанов плунжер удерживается «взаперти», поэтому он не выпадет при снятии соленоида, но иногда даже эти клапаны выходят из строя. После снятия соленоида нажмите на конец подпружиненного плунжера соленоида. При отпускании он должен плавно отскакивать назад и плавно входить и выдвигаться при нажатии несколько раз подряд. Если поршень не перемещается легко и плавно, замените соленоид; он поврежден и не подлежит ремонту. Не наносите масло или смазку на плунжер соленоида, если он заедает, ремонт не подлежит замене.
Соленоид снят, виден плунжер
Снимите крышку клапана, большинство из них удерживается на месте несколькими металлическими винтами. Некоторые модели клапанов имеют крышки, которые отвинчиваются, как верхняя часть банки, и поворачиваются против часовой стрелки (влево) для снятия крышки этого типа. Возможно, вам понадобится ремешок для снятия крышек в виде крышек банок. У всех клапанов под крышкой есть пружина, не дайте ей упасть в грязь! Снимите пружину и отложите ее в сторону.
Винты крышки клапана
Удаление винтов крышки клапана
Следите за тем, чтобы пружина не выпадала при снятии крышки
Найдите крошечные проходы, называемые «портами», внутри крышки клапана.Эти порты ведут от нижней части крышки к месту, где был прикреплен соленоид. Точное расположение портов зависит от марки и модели клапана. Убедитесь, что эти проходы не забиты песчинкой или чем-то еще. Будьте осторожны, не поцарапайте и не увеличьте эти проходы, пытаясь удалить песок! Не пытайтесь высверлить эти порты, чтобы очистить их или сделать их больше.
Порты в крышке
Снимите резиновую диафрагму с клапана. Убедитесь, что он не треснут и не сломан, если он есть, замените его.Некоторые модели клапанов также имеют порт в диафрагме, проверьте, есть ли он, если да, убедитесь, что он чистый. На некоторых клапанах порт в диафрагме имеет металлический штифт, который проходит через него, его назначение — поддерживать порт в чистоте. Штифт должен свободно входить в порт. Диафрагма на фото ниже имеет отдельную съемную прокладку седла, прикрепленную к нижней части с помощью винта. На многих клапанах резиновая прокладка седла и диафрагма представляют собой одно целое, и прокладка седла не снимается.Убедитесь, что на прокладке седла или седле диафрагмы ничего не прилипло, например песчинка или ветка. Если поверхность прокладки поцарапана или порвана, замените прокладку или диафрагму.
Осмотрите седло клапана в нижней части корпуса клапана. Седло — это часть корпуса клапана, на которую прижимается прокладка, чтобы остановить поток воды через клапан. Убедитесь, что на седле нет царапин и ямок, иначе клапан будет протекать при закрытии. На некоторых клапанах седло можно заменить.На некоторых латунных клапанах седло можно отшлифовать с помощью специального инструмента для удаления ямок и царапин. Однако для большинства клапанов, если на седле имеются царапины или изъязвления, клапан не подлежит ремонту и подлежит замене.
Резиновая диафрагма и прокладка
При разобранном клапане включите воду, чтобы смыть оставшийся песок и грязь из труб перед клапаном. Включите его на полную мощность и дайте ему поработать пару минут, вам нужно вытащить все из этой трубы. Выключите воду и высушитесь.Я знаю, что вы не хотите промокнуть, но не пропускайте промывку труб и корпуса клапана, это важный шаг!
Тщательно очистите все, затем снова соберите клапан. Некоторые клапаны имеют отдельную прокладку крышки или уплотнительное кольцо, которые необходимо очистить или заменить перед повторной сборкой. Если есть какие-либо уплотнительные кольца, я настоятельно рекомендую вам смазать их перед повторной сборкой с помощью K-Y Jelly или аналогичного продукта. Смазка уплотнительных колец необязательна, но рекомендуется, так как это предотвращает их обжатие во время сборки.Если уплотнительное кольцо сожмется, оно выйдет из строя и потечет. K-Y Jelly — это смазка на водной основе, которую вы покупаете в отделе женской гигиены супермаркета или аптеки. (Не просите об этом в хозяйственном магазине, если только не хотите развлечь сотрудников за ваш счет. Да, я признаю, что попался на это еще, когда только начинал заниматься этим бизнесом, это любимый кляп для пошлите нового парня купить KY Jelly!) Не используйте вазелин, силикон, масло или какие-либо продукты на нефтяной основе для клапана, они могут повредить уплотнения, а также могут забить порты в клапане.
Используйте K-Y Jelly для смазки резиновых деталей клапана
Не используйте продукты на нефтяной основе!
При установке крышки избегайте срезания резьбы крышки и деформации крышки следующим образом: Вставляя винты, удерживающие крышку, начните с одного из винтов рядом с соленоидом. Вставьте винт в отверстие, затем поверните его против часовой стрелки (влево), пока не почувствуете легкий щелчок, когда винт находит резьбу. Затем поменяйте направление движения (прямо плотно) и слегка затяните.Затем вставьте второй винт с противоположной стороны крышки клапана. Как и в первом случае, найдите резьбу и слегка затяните винт. Продолжайте закручивать один винт с одной стороны, а другой — с другой, пока они все не войдут. Теперь вернитесь и затяните их все в том же порядке, в котором вы их вставляли. Не затягивайте винты на пластиковых клапанах слишком сильно, иначе вы сорвете резьбу.
Если вам повезло, и вы ничего не испортили, клапан теперь должен работать правильно.
Предложение: Ваш клапан уже однажды вышел из строя, скорее всего, это означает, что что-то в воде застряло в нем, а это значит, что в водопроводе есть песок или что-то еще.Рассмотрите возможность установки фильтра перед клапаном, чтобы предотвратить попадание песка и грязи в будущем. Обычно стоимость ремонта клапана превышает стоимость установки фильтра. См. Учебное пособие по фильтрации поливной воды.
Текст и изображения Джесс Страйкер, если не указано иное. Авторские права © Джесс Страйкер, 1997-2018. Все права защищены.
U1000 | Не удается установить связь с TCM / Class 2 Ошибка связи |
U0101 | Нарушена связь с TCM |
U0402 | Получены неверные данные от модуля управления коробкой передач |
P0218 | Перегрев трансмиссии |
P0700 | Система управления трансмиссией (запрос MIL) |
P0701 | Диапазон / рабочие характеристики системы управления коробкой передач |
P0702 | Система управления коробкой передач, электрическая |
P0703 | Цепь выключателя B / преобразователя крутящего момента / тормоза |
P0704 | Выключатель сцепления Неисправность в цепи включения |
P0705 | Неисправность цепи датчика диапазона передачи (вход PRNDL) |
P0706 | Диапазон / рабочие характеристики цепи датчика диапазона передачи данных |
P0707 | Низкий входной сигнал цепи датчика диапазона передачи данных |
P0708 | Высокий входной сигнал цепи датчика диапазона трансмиссии |
P0709 | Прерывистый контур датчика диапазона передачи |
P0710 | Цепь датчика температуры трансмиссионной жидкости |
P0711 | Цепь датчика температуры трансмиссионной жидкости вне диапазона рабочих характеристик |
P0712 | Низкий входной сигнал цепи датчика температуры трансмиссионной жидкости |
P0713 | Высокий входной сигнал цепи датчика температуры трансмиссионной жидкости |
P0714 | Неустойчивая цепь датчика температуры трансмиссионной жидкости P0715 |
P0715 | Вход / цепь датчика скорости турбины |
P0716 | Входной сигнал / цепь датчика скорости вращения турбины вне диапазона / рабочих характеристик |
P0717 | Нет сигнала входной цепи датчика скорости вращения турбины / турбины |
P0718 | Неустойчивая цепь датчика скорости входного сигнала / турбины |
P0719 | Преобразователь крутящего момента / выключатель тормоза B, низкий уровень сигнала |
P0720 | Цепь датчика выходной скорости |
P0721 | Цепь датчика выходной скорости вне диапазона / рабочих характеристик |
P0722 | Нет сигнала в цепи датчика выходной скорости вращения |
P0723 | Прерывистый сигнал цепи датчика выходной скорости |
P0724 | Преобразователь крутящего момента / выключатель тормоза B, высокий уровень сигнала |
P0725 | Входная цепь частоты вращения двигателя |
P0726 | Диапазон / рабочие характеристики входной цепи скорости двигателя |
P0727 | Нет сигнала входной цепи скорости двигателя |
P0728 | Неустойчивый входной сигнал цепи оборотов двигателя |
P0729 | Неправильное передаточное число 6 шестерни |
P0730 | Неправильное передаточное число |
P0731 | Неправильное передаточное число 1 передачи |
P0732 | Неправильное передаточное число 2 передачи |
P0733 | Неправильное передаточное число 3 шестерни |
P0734 | Неправильное передаточное число 4 шестерни |
P0735 | Неправильное передаточное число 5 шестерни |
P0736 | Обратное неправильное передаточное число |
P0738 | TCM Выходная цепь частоты вращения двигателя |
P0739 | TCM Низкий выходной сигнал цепи оборотов двигателя |
P0740 | Неисправность цепи муфты гидротрансформатора |
P0741 | Цепь сцепления гидротрансформатора |
P0742 | Цепь муфты гидротрансформатора застряла на |
P0743 | Электрическая цепь муфты гидротрансформатора |
P0744 | Неисправность цепи муфты гидротрансформатора |
P0745 | Электромагнитный клапан контроля давления ‘A’ |
P0746 | Электромагнитный клапан регулирования давления A работает или заедает в выключенном состоянии |
P0747 | Электромагнитный клапан управления давлением « А » застрял на |
P0748 | Электромагнитный клапан управления давлением A, электрический |
P0749 | Электромагнитный клапан управления давлением ‘A’ Прерывистый |
P0750 | Соленоид переключения передач ‘A’ |
P0751 | Электромагнит переключения передач A работает или заедает в выключенном состоянии |
P0752 | Электромагнитный клапан переключения передач ‘A’ заедал на |
P0753 | Электромагнитный клапан переключения передач A, электрический |
P0754 | Электромагнитный клапан переключения передач ‘A’ Прерывистый |
P0755 | Электромагнитный клапан переключения передач B |
P0756 | Электромагнит переключения передач B работает или заедает в выключенном состоянии |
P0757 | Электромагнитный клапан переключения передач «B» заедал на |
P0758 | Электромагнитный клапан переключения передач B, электрический |
P0759 | Электромагнитный клапан переключения передач B, прерывистый сигнал |
P0760 | Соленоид переключения передач ‘C’ |
P0761 | Электромагнит переключения передач «C» работает или заедает в выключенном состоянии |
P0762 | Электромагнитный клапан переключения передач ‘C’ заедал на |
P0763 | Электромагнитный клапан переключения передач ‘C’, электрический |
P0764 | Электромагнитный клапан переключения передач ‘C’ Прерывистый |
P0765 | Соленоид переключения передач ‘D’ |
P0766 | Электромагнит переключения передач D работает или заедает |
P0767 | Электромагнитный клапан переключения передач D застрял на |
P0768 | Электромагнитный клапан переключения передач D, электрический |
P0769 | Электромагнитный клапан переключения передач ‘D’ Прерывистый |
P0770 | Соленоид переключения передач ‘E’ |
P0771 | Электромагнит переключения передач E работает или заедает в выключенном состоянии |
P0772 | Электромагнитный клапан переключения передач ‘E’ заедал на |
P0773 | Электромагнитный клапан переключения передач E, электрический |
P0774 | Электромагнитный клапан переключения передач ‘E’ Прерывистый |
P0775 | Электромагнитный клапан контроля давления ‘B’ |
P0776 | Электромагнитный клапан регулирования давления B работает или заедает в выключенном состоянии |
P0777 | Электромагнитный клапан управления давлением «B» заедал на |
P0778 | Электромагнитный клапан управления давлением B, электрический |
P0779 | Электромагнитный клапан управления давлением ‘B’ Прерывистый |
P0780 | Неисправность переключения передач |
P0781 | 1-2 смены |
P0782 | 2-3 смена |
P0783 | 3-4 Shift |
P0784 | Смена 4-5 |
P0785 | Соленоид переключения / синхронизации |
P0786 | Электромагнит переключения передач / синхронизации, диапазон / производительность |
P0787 | Низкий уровень электромагнитного клапана переключения / синхронизации |
P0788 | Высокий уровень соленоида переключения / синхронизации |
P0789 | Электромагнит переключения передач / синхронизации, прерывистый |
P0790 | Цепь переключателя нормальных / рабочих характеристик |
P0791 | Цепь датчика скорости промежуточного вала |
P0792 | Цепь датчика скорости промежуточного вала вне диапазона рабочих характеристик |
P0793 | Отсутствует сигнал в цепи датчика скорости промежуточного вала |
P0794 | Неустойчивая цепь датчика скорости промежуточного вала |
P0795 | Электромагнитный клапан регулирования давления ‘C’ |
P0796 | Электромагнитный клапан регулирования давления «C» Работает или заедает в выключенном состоянии |
P0797 | Электромагнитный клапан контроля давления ‘C’ заедал на |
P0798 | Электромагнитный клапан регулирования давления C, электрический |
P0799 | Электромагнитный клапан контроля давления ‘C’ Прерывистый |
P0810 | Переключатель положения ручного клапана давления трансмиссионной жидкости |
P0811 | Максимальное адаптивное и долгосрочное время переключения |
P0812 | Перегрев трансмиссионной жидкости |
P0813 | Неисправность соленоида управления крутящим моментом |
P0814 | Перенапряжение гидротрансформатора |
P0816 | Переключатель положения ручного клапана давления трансмиссионной жидкости Парковка / Нейтраль с передаточным числом |
P0817 | Переключатель положения ручного клапана давления трансмиссионной жидкости реверсивный с передаточным числом |
P0818 | Привод переключателя положения ручного клапана давления трансмиссионной жидкости без передаточного числа |
P0819 | Переключатель внутреннего режима Нет запуска / неправильный диапазон |
P0820 | Низкий уровень сигнала внутренней цепи переключателя режима «A» |
P0802 | Обрыв цепи запроса системы управления трансмиссией |
P0812 | Обратный входной контур |
P0813 | Цепь обратного выхода |
P0814 | Цепь отображения диапазона передачи |
P0816 | Цепь переключателя понижающей передачи |
P0817 | Цепь отключения стартера |
P0819 | Переключатель переключения передач вверх и вниз для корреляции диапазонов передачи |
P0820 | Цепь датчика положения X-Y рычага переключения передач |
P0821 | Цепь положения X рычага переключения передач |
P0822 | Цепь положения рычага переключения передач по оси Y |
P0823 | Перемежающийся контур положения рычага переключения передач по оси X |
P0824 | Неустойчивая цепь положения рычага переключения передач по оси Y |
P0825 | Двухтактный переключатель рычага переключения передач (с ожиданием переключения) |
P0826 | Цепь переключателя передач вверх и вниз |
P0827 | Низкий сигнал цепи переключателя переключения передач вверх и вниз |
P0829 | 5-6 Shift |
P0840 | Датчик / переключатель давления трансмиссионной жидкости «A» |
P0841 | Датчик давления трансмиссионной жидкости / переключатель «A» Диапазон / рабочие характеристики цепи |
P0842 | Датчик / выключатель давления трансмиссионной жидкости Низкий уровень цепи |
P0843 | Датчик давления трансмиссионной жидкости / переключатель «A», высокий уровень сигнала |
P0844 | Датчик давления трансмиссионной жидкости / переключатель «A» Неустойчивая цепь |
P0845 | Датчик / выключатель давления трансмиссионной жидкости Цепь |
P0846 | Датчик давления трансмиссионной жидкости / переключатель «B» Диапазон / рабочие характеристики цепи |
P0847 | Датчик давления трансмиссионной жидкости / выключатель «B», низкий уровень сигнала |
P0848 | Датчик давления трансмиссионной жидкости / переключатель «B», высокий уровень сигнала |
P0849 | Датчик давления трансмиссионной жидкости / переключатель «B» Неустойчивый сигнал цепи |
P0850 | Входная цепь переключателя парковочного / нейтрального положения |
P0851 | Низкий сигнал входной цепи переключателя парковочного / нейтрального положения |
P0852 | Высокий сигнал входной цепи переключателя парковочного / нейтрального положения |
P0853 | Входная цепь переключателя привода |
P0854 | Низкий сигнал входной цепи переключателя привода |
P0856 | Входной сигнал системы контроля тяги |
P0857 | Диапазон / рабочие характеристики входного сигнала системы контроля тяги |
P0858 | Низкий уровень входного сигнала системы контроля тяги |
P0859 | Высокий уровень входного сигнала системы контроля тяги |
P0860 | Цепь связи модуля переключения передач |
P0861 | Низкий сигнал цепи связи модуля переключения передач |
P0862 | Высокий сигнал цепи связи модуля переключения передач |
P0863 | Цепь связи TCM |
P0864 | Диапазон / рабочие характеристики цепи связи TCM |
P0865 | Низкий сигнал цепи связи TCM |
P0866 | Высокий уровень сигнала в цепи связи TCM |
P0867 | Давление трансмиссионной жидкости |
P0868 | Низкое давление трансмиссионной жидкости |
P0869 | Высокое давление трансмиссионной жидкости |
P0870 | Датчик / выключатель давления трансмиссионной жидкости Цепь |
P0871 | Датчик давления трансмиссионной жидкости / переключатель «C» Диапазон / рабочие характеристики цепи |
P0872 | Датчик / переключатель давления трансмиссионной жидкости «C», низкий уровень сигнала |
P0873 | Датчик / переключатель давления трансмиссионной жидкости «C», высокий уровень сигнала |
P0874 | Датчик / выключатель давления трансмиссионной жидкости «C» Неустойчивая цепь |
P0875 | Датчик / выключатель давления трансмиссионной жидкости Цепь |
P0876 | Датчик давления трансмиссионной жидкости / переключатель D Диапазон / рабочие характеристики цепи |
P0877 | Датчик / переключатель давления трансмиссионной жидкости «D», низкий уровень сигнала |
P0878 | Датчик / переключатель давления трансмиссионной жидкости «D», высокий уровень сигнала |
P0879 | Датчик давления трансмиссионной жидкости / переключатель «D» Неустойчивый сигнал цепи |
P0880 | TCM Входной сигнал питания |
P0881 | TCM Диапазон входного сигнала питания / рабочие характеристики |
P0882 | TCM Низкий уровень входного сигнала питания |
P0883 | TCM Высокий уровень входного сигнала питания |
P0884 | Прерывистый входной сигнал питания TCM |
P0885 | Обрыв цепи управления силовым реле TCM |
P0886 | TCM Низкий сигнал цепи управления реле мощности |
P0887 | Высокий уровень сигнала цепи управления реле мощности TCM |
P0888 | Цепь датчика реле мощности TCM |
P0889 | Цепь контроля реле мощности TCM вне диапазона рабочих характеристик |
P0890 | Низкий сигнал цепи реле мощности TCM |
P0891 | Высокий уровень сигнала цепи реле мощности TCM |
P0892 | Неустойчивая цепь датчика реле мощности TCM |
P0893 | Включено несколько передач |
P0894 | Пробуксовка узла трансмиссии |
P0895 | Слишком короткое время переключения |
P0896 | Слишком долгое время переключения |
P0897 | Изношенность трансмиссионной жидкости |
P0898 | Низкий уровень сигнала контрольной лампы неисправности системы управления трансмиссией |
P0899 | Высокий уровень сигнала контрольной лампы неисправности системы управления трансмиссией |
P0900 | Обрыв цепи привода сцепления |
P0901 | Цепь привода сцепления вне диапазона рабочих характеристик |
P0902 | Низкий сигнал цепи привода сцепления |
P0903 | Высокий сигнал цепи привода сцепления |
P0904 | Цепь выбора положения ворот |
P0905 | Диапазон / рабочие характеристики цепи выбора положения ворот |
P0906 | Низкий сигнал цепи выбора положения ворот |
P0907 | Высокий сигнал цепи выбора положения ворот |
P0908 | Цепь выбора положения ворот прерывистая |
P0909 | Ошибка управления выбором ворот |
P0910 | Цепь привода выбора ворот / обрыв |
P0911 | Диапазон / рабочие характеристики цепи привода выбора ворот |
P0912 | Низкий сигнал цепи исполнительного механизма выбора ворот |
P0913 | Высокий сигнал цепи привода выбора ворот |
P0914 | Цепь положения переключения передач |
P0915 | Цепь положения переключения передач вне диапазона / рабочих характеристик |
P0916 | Цепь положения переключения передач, низкая |
P0917 | Высокий уровень сигнала цепи переключения передач |
P0918 | Неустойчивая цепь положения переключения передач |
P0919 | Ошибка управления положением переключения передач |
P0920 | Привод переключения передач переднего хода |
P0921 | Цепь исполнительного механизма переключения передач переднего хода вне диапазона рабочих характеристик |
P0922 | Цепь привода прямого переключения передач, низкая |
P0923 | Высокий сигнал цепи привода переднего переключения передач |
P0924 | Обрыв цепи привода заднего хода переключения передач |
P0925 | Цепь исполнительного механизма переключения передач заднего хода вне диапазона рабочих характеристик |
P0926 | Цепь исполнительного механизма переключения передач заднего хода, низкая |
P0927 | Цепь исполнительного механизма переключения передач заднего хода, высокий сигнал |
P0928 | Цепь управления соленоидом блокировки переключения передач / обрыв |
P0929 | Цепь управления соленоидом блокировки переключения передач вне диапазона рабочих характеристик |
P0930 | Цепь управления соленоидом блокировки переключения передач, низкая |
P0931 | Цепь управления соленоидом блокировки переключения передач, высокий сигнал |
P0932 | Цепь датчика давления в гидросистеме|
P0933 | Датчик давления в гидросистеме вне диапазона рабочих характеристик |
P0934 | Низкий сигнал цепи датчика давления в гидросистеме |
P0935 | Высокий сигнал цепи датчика давления в гидросистеме |
P0936 | Неустойчивая цепь датчика давления в гидросистеме |
P0937 | Цепь датчика температуры гидравлического масла |
P0938 | Диапазон рабочих характеристик датчика температуры гидравлического масла |
P0939 | Низкий сигнал цепи датчика температуры гидравлического масла |
P0940 | Высокий сигнал цепи датчика температуры гидравлического масла |
P0941 | Неустойчивая цепь датчика температуры гидравлического масла |
P0942 | Блок гидравлического давления |
P0943 | Слишком короткий период цикла блока гидравлического давления |
P0944 | Гидравлический блок давления Потеря давления |
P0945 | Цепь реле гидравлического насоса / обрыв |
P0946 | Цепь реле гидравлического насоса вне диапазона рабочих характеристик |
P0947 | Низкий сигнал цепи реле гидравлического насоса |
P0948 | Высокий показатель цепи реле гидронасоса |
P0949 | Адаптивное обучение при автоматическом переключении вручную не завершено |
P0950 | Цепь ручного управления автоматическим переключением передач |
P0951 | Цепь ручного управления автоматическим переключением передач вне диапазона / рабочих характеристик |
P0952 | Низкий уровень сигнала цепи ручного управления автоматическим переключением передач |
P0953 | Высокое напряжение цепи ручного управления автоматическим переключением передач |
Неустойчивая цепь ручного управления автоматическим переключением передач | |
P0955 | Цепь ручного режима автоматического переключения передач |
P0956 | Автоматический режим переключения передач в ручном режиме Диапазон / рабочие характеристики цепи |
P0957 | Низкий уровень сигнала цепи ручного режима автоматического переключения передач |
P0958 | Высокое напряжение цепи ручного режима автоматического переключения передач |
P0959 | Неустойчивая цепь ручного режима автоматического переключения передач |
P0960 | Электромагнитный клапан контроля давления «A» Обрыв / цепь управления |
P0961 | Электромагнитный клапан управления давлением «A» Диапазон / рабочие характеристики цепи управления |
P0962 | Электромагнитный клапан управления давлением «А», низкий уровень сигнала |
P0963 | Электромагнитный клапан контроля давления «A», высокий уровень сигнала в цепи управления |
P0964 | Электромагнитный клапан управления давлением «B» Обрыв / цепь управления |
P0965 | Электромагнитный клапан управления давлением «B» Диапазон / рабочие характеристики цепи управления |
P0966 | Электромагнитный клапан управления давлением «B», низкий уровень сигнала |
P0967 | Электромагнитный клапан управления давлением «B», высокий уровень сигнала |
P0968 | Электромагнитный клапан управления давлением «C» Обрыв / цепь управления |
P0969 | Электромагнитный клапан регулирования давления «C» Диапазон / рабочие характеристики цепи управления |
P0970 | Электромагнитный клапан управления давлением «C» Низкое напряжение цепи управления |
P0971 | Электромагнитный клапан управления давлением «C», высокий уровень сигнала |
P0972 | Электромагнитный клапан переключения передач «A» Диапазон / рабочие характеристики цепи управления |
P0973 | Электромагнитный клапан переключения передач «А», низкий уровень сигнала |
P0974 | Электромагнит переключения передач «A», высокий уровень сигнала |
P0975 | Электромагнитный клапан переключения передач «B» Диапазон / рабочие характеристики цепи управления |
P0976 | Электромагнит переключения передач «B», низкий уровень сигнала |
P0977 | Электромагнит переключения передач «B», высокий уровень сигнала |
P0978 | Электромагнитный клапан переключения передач «C» Диапазон / рабочие характеристики цепи управления |
P0979 | Электромагнитный клапан переключения передач «C», низкий уровень сигнала |
P0980 | Электромагнит переключения передач «C», высокий уровень сигнала |
P0981 | Электромагнитный клапан переключения передач «D» Диапазон / рабочие характеристики цепи управления |
P0982 | Электромагнитный клапан переключения передач «D», низкий уровень сигнала |
P0983 | Электромагнит переключения передач «D», высокий уровень сигнала |
P0984 | Электромагнитный клапан переключения передач «E» Диапазон / рабочие характеристики цепи управления |
P0985 | Электромагнит переключения передач «E», низкий уровень сигнала |
P0986 | Электромагнит переключения передач «E», высокий уровень сигнала |
P0987 | Датчик / выключатель давления трансмиссионной жидкости Цепь |
P0988 | Датчик давления трансмиссионной жидкости / переключатель «E» Диапазон / рабочие характеристики цепи |
P0989 | Датчик давления трансмиссионной жидкости / выключатель «E», низкий уровень сигнала |
P0990 | Датчик / переключатель давления трансмиссионной жидкости «E», высокий уровень сигнала |
P0991 | Датчик / переключатель давления трансмиссионной жидкости «E» Неустойчивая цепь |
P0992 | Датчик / выключатель давления трансмиссионной жидкости Цепь «F» |
P0993 | Датчик / переключатель давления трансмиссионной жидкости «F» Диапазон / рабочие характеристики цепи |
P0994 | Датчик / выключатель давления трансмиссионной жидкости Низкий уровень сигнала в цепи |
P0995 | Датчик / переключатель давления трансмиссионной жидкости «F», высокий уровень сигнала |
P0996 | Датчик / выключатель давления трансмиссионной жидкости «F» Неустойчивая цепь |
P0997 | Электромагнитный клапан переключения передач «F» Диапазон / рабочие характеристики цепи управления |
P0998 | Электромагнит переключения передач «F», низкий уровень сигнала |
P0999 | Электромагнит переключения передач «F», высокий уровень сигнала |
P1702 | Диагностический код неисправности Nissan: модуль управления трансмиссией не может получить доступ к оперативной памяти |
P1703 | Nissan DTC: Модуль управления трансмиссией не может получить доступ к ПЗУ |
P1705 | Nissan DTC: Неисправность цепи датчика положения дроссельной заслонки |
P1706 | Диагностический код неисправности Nissan: Неисправность цепи переключателя нейтрального положения парковки |
P1710 | Nissan DTC: Цепь датчика температуры трансмиссионной жидкости |
P1716 | Nissan DTC: Цепь датчика частоты вращения турбины |
P1721 | Nissan DTC: Датчик скорости автомобиля MTR |
P1730 | Nissan DTC: Блокировка АКП |
P1731 | Код неисправности Nissan: A / T 1st Engine Braking / 1-2 Shift Malfunction | Код неисправности Nissan
P1752 | : Электромагнитный клапан входной муфты |
P1754 | Nissan DTC: Работа электромагнитного клапана входной муфты |
P1757 | Nissan DTC: Электромагнитный клапан переднего тормоза |
P1759 | Диагностический код неисправности Nissan: работа электромагнитного клапана переднего тормоза |
P1762 | Nissan DTC: Электромагнитный клапан прямого сцепления |
P1764 | Nissan DTC: Работа электромагнитного клапана прямого сцепления |
P1767 | Nissan DTC: Электромагнитный клапан муфты высокого и низкого уровня передачи заднего хода |
P1769 | Nissan DTC: Работа электромагнитного клапана муфты заднего хода высокого и низкого уровня |
P1772 | Диагностический код неисправности Nissan: Электромагнитный клапан аварийного тормоза низкого уровня |
P1774 | Диагностический код неисправности Nissan: работа электромагнитного клапана аварийного торможения низкого уровня |
P1821 | Низкий уровень внутренней цепи переключателя режима «B» |
P1822 | Внутренняя цепь переключателя режима «B», высокий уровень |
P1822 | Внутренняя цепь переключателя режима «B», высокий уровень |
P1823 | Низкий уровень внутренней цепи переключателя режима «P» |
P1824 | Внутренняя цепь переключателя режима «P», высокий уровень |
P1825 | Недопустимый диапазон внутреннего переключателя режима |
P1826 | Внутренняя цепь переключателя режима «C», высокий уровень |
P1831 | Низкое напряжение цепи питания соленоида управления давлением |
P1832 | Высокое напряжение цепи питания соленоида управления давлением |
P1833 | GM — Низкое напряжение цепи управления мощностью соленоида TCC |
P1834 | GM — Цепь управления мощностью соленоида TCC, высокое напряжение |
P1835 | Цепь выключателя Kick-Down |
P1836 | Отказ выключателя Kick-Down в открытом состоянии |
P1837 | Отказ переключателя Kick-Down: короткое замыкание |
P1842 | Низкое напряжение электромагнитного клапана переключения передач 1-2 передач |
P1843 | Высокое напряжение соленоида переключения 1-2 передач |
P1844 | Subaru — Датчик давления трансмиссионной жидкости «A» Прерывистый сигнал цепи |
P1845 | Низкое напряжение соленоида 2-3 переключения передач |
P1847 | Высокое напряжение соленоида переключения 2-3 передач |
P1850 | Тормозная лента применяет цепь соленоида |
P1851 | Лента тормоза применяет работу соленоида |
P1852 | Тормозная лента применяет низкое напряжение соленоида |
P1853 | Тормозная лента подает высокое напряжение соленоида |
P1860 | TCC PWM Электромагнитная цепь, электрическая |
P1864 | Неисправность электромагнитного клапана включения преобразователя крутящего момента |
P1866 | Цепь соленоида TCC PWM, низкое напряжение |
P1870 | Пробуксовка трансмиссии: трансмиссия GM |
P1871 | Неопределенное передаточное число |
P1873 | Низкое напряжение цепи переключателя температуры статора муфты гидротрансформатора |
P1874 | Высокое напряжение цепи переключателя температуры статора муфты гидротрансформатора |
P1886 | Работоспособность соленоида синхронизации переключения передач с главной передачей в сборе |
P1887 | Выключатель муфты гидротрансформатора |
P1890 | Система контроля скорости вариатора |
P1891 | Проблема в системе управления стартовой муфтой |
P2700 | Фрикционный элемент трансмиссии A Применить временной диапазон / рабочие характеристики |
P2701 | Фрикционный элемент трансмиссии B Применить временной диапазон / рабочие характеристики |
P2702 | Фрикционный элемент трансмиссии C Применение временного диапазона / рабочих характеристик |
P2703 | Фрикционный элемент трансмиссии D Применить временной диапазон / рабочие характеристики |
P2704 | Фрикционный элемент трансмиссии E Применить временной диапазон / рабочие характеристики |
P2705 | Фрикционный элемент трансмиссии F Применить временной диапазон / рабочие характеристики |
P2706 | Фрикционный элемент трансмиссии F Неисправность |
P2707 | Электромагнит переключения передач F работает / заедает |
P2708 | Электромагнитный клапан переключения передач F застрял на |
P2709 | Электромагнит переключения передач F, электрический |
P2710 | Электромагнит переключения передач F Прерывистый |
P2711 | Unexpected Mechanical Gear Disengagement |
P2712 | Hydraulic Power Unit Leakage Intermittent |
P2713 | Pressure Control Solenoid D |
P2714 | Pressure Control Solenoid D Performance or Stuck Off |
P2715 | Pressure Control Solenoid D Stuck On |
P2716 | Pressure Control Solenoid D Electrical |
P2717 | Pressure Control Solenoid D Intermittent |
P2718 | Pressure Control Solenoid D Circuit Open |
P2719 | Pressure Control Solenoid D Circuit Range/Performance |
P2720 | Pressure Control Solenoid D Control Circuit Low Voltage |
P2721 | Pressure Control Solenoid D Control Circuit High Voltage |
P2722 | Pressure Control Solenoid E Malfunction |
P2723 | Pressure Control Solenoid E Stuck Off |
P2724 | Pressure Control Solenoid E Stuck On |
P2725 | Pressure Control Solenoid E Electrical |
P2726 | Pressure Control Solenoid E Intermittent |
P2727 | Pressure Control Solenoid E Ctrl Circ / Open |
P2728 | Pressure Control Solenoid E Ctrl Circ Range/Perf |
P2729 | Pressure Control Solenoid E Ctrl Circ Low Voltage |
P2730 | Pressure Control Solenoid E Ctrl Circ High Voltage |
P2731 | Pressure Control Solenoid F |
P2732 | Pressure Control Solenoid F Performance or Stuck Off |
P2733 | Pressure Control Solenoid F Stuck On |
P2734 | Pressure Control Solenoid F Electrical |
P2735 | Pressure Control Solenoid F Intermittent |
P2736 | Pressure Control Solenoid F Ctrl Circ/Open |
P2737 | Pressure Control Solenoid F Ctrl Circuit Range/Performance |
P2738 | Pressure Control Solenoid F Ctrl Circuit Low Voltage |
P2739 | Pressure Control Solenoid E Ctrl Circuit High Voltage |
P2740 | Transmission Fluid Temperature Sensor B Circuit |
P2741 | Transmission Fluid Temperature Sensor B Circuit Range Performance |
P2742 | Transmission Fluid Temperature Sensor B Circuit Low |
P2743 | Transmission Fluid Temperature Sensor B Circuit High |
P2744 | Transmission Fluid Temperature Sensor B Circuit Intermittent |
P2745 | Intermediate Shaft Speed Sensor B Circuit |
P2746 | Intermediate Shaft Speed Sensor B Circuit Range/Performance |
P2747 | Intermediate Shaft Speed Sensor B Circuit No Signal |
P2748 | Intermediate Shaft Speed Sensor B Circuit Intermittent |
P2749 | Intermediate Shaft Speed Sensor C Circuit |
P2750 | Intermediate Shaft Speed Sensor C Circuit Range/Perf |
P2751 | Intermediate Shaft Speed Sensor C Circuit No Signal |
P2752 | Intermediate Shaft Speed Sensor C Circuit Intermittent |
P2753 | Transmission Cooler Ctrl Circuit Open |
P2754 | Transmission Cooler Ctrl Circuit Low |
P2755 | Transmission Cooler Ctrl Circuit High |
P2756 | Torque Converter Clutch Press Ctrl Solenoid |
P2757 | Torque Converter Clutch Pressure Control Solenoid Ctrl Circuit Performance or Stuck Off |
P2758 | Torque Converter Clutch Pressure Control Solenoid Ctrl Circuit Stuck On |
P2759 | Torque Converter Clutch Pressure Control Solenoid Ctrl Circuit Electrical |
P2760 | Torque Converter Clutch Pressure Control Solenoid Ctrl Circuit Intermittent |
P2761 | Torque Converter Clutch Pressure Control Solenoid Ctrl Circuit Open |
P2762 | Torque Converter Clutch Pressure Control Solenoid Ctrl Circuit Range/Performance |
P2763 | Torque Converter Clutch Pressure Control Solenoid Ctrl Circuit High |
P2764 | Torque Converter Clutch Pressure Control Solenoid Ctrl Circuit Low |
P2765 | Input/Turbine Speed Sensor B Circuit |
P2766 | Input/Turbine Speed Sensor B Circuit Range/Performance |
P2767 | Input/Turbine Speed Sensor B Circuit No Signal |
P2768 | Input/Turbine Speed Sensor B Circuit Intermittent |
P2769 | Torque Converter Clutch Circuit Low |
P2770 | Torque Converter Clutch Circuit High |
P2775 | Upshift Switch Circuit Range/Performance |
P2776 | Upshift Switch Circuit Low |
P2777 | Upshift Switch Circuit High |
P2778 | Upshift Switch Circuit Intermittent |
P2779 | Downshift Switch Circuit Range/Performance |
P2780 | Downshift Switch Circuit Low |
P2781 | Downshift Switch Circuit High |
P2782 | Downshift Switch Circuit Intermittent |
P2783 | Torque Converter Temp Too High |
P2784 | Input/Turbine Speed Sensor A/B Correlation |
P2786 | Gear Shift Actuator Temp Too High |
P2787 | Clutch Temp Too High |
P2788 | Auto Shift Manual Adaptive Learning at Limit |
P2789 | Clutch Adaptive Learning at Limit |
P2790 | Gate Select Direction Circuit |
P2791 | Gate Select Direction Circuit Low |
P2792 | Gate Select Direction Circuit High |
P2793 | Gear Shift Direction Circuit |
P2794 | Gear Shift Direction Circuit Low |
P2795 | Gear Shift Direction Circuit High |
|
Ремонт соленоидов VCT Бруклин, Нью-Йорк
Диагностика отсека— Ремонт соленоидов VCT
Получение максимальной отдачи от двигателя имеет решающее значение для получения удовольствия от всего, что вы можете получить от вашего роскошного автомобиля, и, кроме того, поддержания высокого уровня Эффективность использования топлива стала обязательной для водителей, поскольку цены на газ все выше и выше.Основная причина, по которой оба варианта возможны, заключалась в разработке и усовершенствовании соленоида VCT или соленоида изменения фаз газораспределения. Это снизит выбросы, позволит двигателю работать лучше, а также повысит топливную экономичность по сравнению с обычными фиксированными распределительными валами в других стандартных автомобилях.
Если ваш автомобиль работает не на оптимальном уровне или вы заметили, что эффективность использования топлива снижается, часто упускается из виду, что решение проблемы может заключаться в ремонте соленоида VCT и вместо того, чтобы идти в автосалон, где требуется 3-4 дорогостоящих визита, чтобы наконец найти правильный вопрос, вместо этого выберите опытную механику в Bay Diagnostic.В течение многих лет мы были выбором Бруклина для всего, начиная от ремонта соленоидов VCT в таких автомобилях, как Range Rover, Land Rover, BMW и Mercedes Benz, но мы также обеспечиваем исключительно высокий уровень дополнительного обслуживания и ремонта для этих люксовых брендов и других.
Предлагая более высокий уровень обслуживания клиентов, чем в дилерских центрах, наши механики ставят ваши потребности на первое место, и после всестороннего осмотра всех точек для выявления любых проблем мы будем работать с вами, чтобы определить лучшее и наиболее доступное решение, которое соответствует вашим потребностям. и ваш бюджет.Таким образом, не будет никаких сюрпризов, и еще до того, как работа будет выполнена, вы точно знаете, какую услугу вы получите. Хотя ремонт соленоидов VCT является важной частью поддержания производительности двигателя и топливной экономичности вашего автомобиля, Bay Diagnostic предоставляет полный спектр услуг для водителей в Бруклине и его окрестностях, поэтому независимо от того, в чем нуждается ваш автомобиль, вы получите работу опытных профессионалов. кто поставил вашу машину первым.
Чтобы назначить встречу для ремонта соленоида VCT для вашего автомобиля, полного осмотра или дополнительных услуг для вашего роскошного автомобиля, позвоните в Bay Diagnostic и поговорите с одним из наших экспертов сегодня.
Мы с гордостью предоставляем услуги по ремонту соленоидов VCT для всех автомобилей Audi, BMW, Land Rover, Mercedes, Mini, Porsche, Smart Car и Volkswagen.
Как определить, неисправен ли соленоид клапана спринклера
Спринклерные системывеликолепны, когда они работают. Они значительно упрощают уход за газоном и, скорее всего, оставят вам гораздо более зеленый и здоровый газон. Но когда они перестают работать, они могут стать источником неограниченного разочарования. Лучший способ предотвратить это разочарование — это научиться распознавать признаки проблемы на ранней стадии.Тогда вы узнаете, как мы устраняем проблемы в Andy’s Sprinkler, Drainage и Lighting. Сегодня мы поговорим о соленоидах.
Признаки проблемы
Соленоид — это то, что регулирует давление воды. Он получает электрический ток от контроллера, чтобы определить, какие настройки необходимо сделать. Он использует поршень для регулировки клапана, и в смеси есть еще несколько движущихся частей. Все это позволяет автоматической спринклерной системе работать за вас и обеспечивать большое удобство.Но когда соленоид неисправен, у вас могут возникнуть странные проблемы с разбрызгивателем.
Вода не отключится
Если у вас есть эта проблема, скорее всего, это соленоид. Проблема с плунжером может помешать соленоиду закрыть клапан, когда придет время. Это означает, что ваши дождеватели будут продолжать работать после того, как они должны были остановиться.
Если вы столкнулись с этой проблемой, первым делом отключите воду. Если у вас не получается отключить его на местном источнике, вы можете отключить его на главном.Это проблема, которую нужно сразу исправить. Слейте воду и позовите помощь. Это ваш лучший выход.
Низкое или неравномерное давление воды
Соленоид регулирует давление воды. Зная это, неудивительно, что плохой соленоид может привести к проблемам с давлением воды. Если ваша система не подает воду во все уголки газона, как раньше, соленоид является одним из наиболее вероятных виновников. Это не является чрезвычайной ситуацией, но вы можете позвонить нам, и мы попросим кого-нибудь исправить это, как только вам будет удобно.
Утечки воды
В спринклерной системе есть много точек, которые могут протекать. Независимо от причины, нельзя игнорировать утечки. Они могут потратить чудовищный счет за воду. Они также могут нанести дополнительный ущерб. Итак, если вы видите утечку, устраните ее как можно скорее.
Что касается соленоида, то это главный клапан для автоматической спринклерной системы. Это определенно обычное место для утечек.
Диагностика соленоида
Когда мы приедем в ремонт вашей спринклерной системы, мы проведем полную диагностику.Это часть сделки. Предполагая, что проблема в соленоиде, мы можем предпринять следующие действия, чтобы выявить и решить проблему.
Текущее тестирование
Иногда проблема возникает из-за электрического сигнала. Мы проверим ток и сопротивление, чтобы убедиться, что схема работает должным образом. Когда проблемы относятся к схемотехнике, мы можем найти и заменить неисправную деталь. Часто виновата небольшая часть целого, и ремонт не вызывает особых проблем.Тем не менее, более серьезные проблемы с электричеством могут быть проблемой. Мы можем решить и эти более серьезные проблемы.
Проверка клапана
Если проблема не в электрической части, то она механическая. Лучший способ быстро диагностировать механические проблемы в соленоиде — это внимательно посмотреть на клапан. Иногда проблема очевидна, и мы можем сразу перейти к ней. В других случаях нам может потребоваться разобрать, очистить и осмотреть внутренние компоненты соленоида. Это позволит нам внимательно изучить все детали и найти неисправную деталь.
Замена деталей
Когда мы разбираем электромагнитный клапан, мы собираемся осмотреть каждый отдельный компонент. Это поможет нам определить первопричину. Как только мы узнаем причину неисправности, мы сможем заменить компонент и вернуть вашу спринклерную систему в рабочее состояние. В худшем случае это может быть незаменимая часть соленоида, такая как корпус, а это означает, что нам, возможно, придется заменить весь соленоид вместо более мелкого компонента. Более подробная информация о соленоиде может помочь вам оправдать ожидания и избежать разочарований, прежде чем он будет установлен.Если у вас возникла проблема с соленоидом, знайте, что спринклер, дренаж и освещение Энди здесь, чтобы вам помочь. Даже если ваша проблема не в соленоиде, вы можете позвонить нам. Мы позаботимся о том, чтобы ваша система была в надлежащем рабочем состоянии и на вашем газоне было все необходимое, чтобы оставаться пышным и здоровым.
TransGo | 4L6-SOL-KIT | GM 4L60E Ремонтный комплект соленоида
1993–2003 Транспортные средства General Motors, оснащенные автоматической коробкой передач 4L60E, часто бывают с загрязненными соленоидами регулировки давления, что приводит к жалобам на плохое качество переключения, обгоревшему трению, а также к пробуксовке TCC.
Компьютер корректирует рост давления в линии в соответствии с расчетной нагрузкой. Это достигается путем изменения тока соленоида регулирования давления, который, в свою очередь, изменяет выходное давление соленоида EPC. Для обеспечения достаточного усилия зажима при любых условиях нагрузки для предотвращения проскальзывания, а также для достижения надлежащего качества переключения передач требуется соответствующий рост давления в магистрали. Следовательно, неисправный соленоид управления давлением вызовет жалобы на плавное переключение передач, факельное переключение, может возникнуть перегоревшее трение и сгоревшая муфта блокировки.Они также могут сопровождаться широким спектром кодов передаточных чисел, переключений и характеристик соленоидов.
Характеристики и преимущества:Этот ремонтный комплект соленоида регулирования давления TransGo содержит все необходимое для разборки соленоида регулирования давления, восстановления отверстия клапана, а затем замены золотникового клапана, пружины и крышки на новые. Это дает вам экономичную возможность восстановить эти соленоиды вместо того, чтобы покупать новые, при условии, что ваш существующий соленоид имеет правильное значение считывания в омах.