РазноеДифференциал устройство: устройство, виды и принцип работы – Дифференциал подробно 2 — Энциклопедия журнала «За рулем»

Дифференциал устройство: устройство, виды и принцип работы – Дифференциал подробно 2 — Энциклопедия журнала «За рулем»

Содержание

Главная передача и дифференциал

Содержание статьи

Главная передача

Главная передача предназначена для увеличения крутящего момента, передаваемого к ведущим колесам. Устройство ее, на первый взгляд, весьма просто — две шестерни. Одна, размером поменьше, является ведущей, вторая, побольше — ведомой. Но от конструкции главной передачи во многом зависят тягово-скоростные характеристики автомобиля и расход топлива.

Гипоидная передачаГипоидная передача

На заднеприводных автомобилях применяется гипоидная главная передача, так как крутящий момент нужно передать на ведущие колеса под углом 90 градусов. Почему применяется более сложная в изготовлении гипоидная передача, а не простая коническая? Да потому что у конической передачи ее простота является единственным преимуществом. А недостатков больше: шумность, низкая несущая способность, высокое расположение карданного вала (а, следовательно, и трансмиссионного туннеля в кузове автомобиля). В гипоидной передаче ось ведущей шестерни смещена относительно оси ведомой на величину гипоидного смещения. Поэтому карданный вал располагается ниже, что позволяет уменьшить высоту трансмиссионного туннеля. При этом снижается центр тяжести автомобиля, тем самым улучшая его устойчивость.

Зубья шестерен выполняются косыми или криволинейными. Благодаря тому, что в гипоидной передаче одновременно находится в зацеплении больше зубьев, чем в конической, обеспечивается ее плавная и бесшумная работа, повышается нагрузочная способность. Однако, из-за более плотного прилегания зубьев увеличивается опасность заклинивания, особенно при изменении направления вращения. Поэтому гипоидные передачи требуют высокой точности регулировки и применения специального трансмиссионного масла. В масла для гипоидных передач добавляются противоизносные и противозадирные присадки.

В переднеприводных автомобилях, где нет необходимости изменять направление передаваемого момента, в главной передаче применяются простые цилиндрические шестерни. Конструктивно главная передача устанавливается в общем картере с коробкой передач. Цилиндрические передачи просты в изготовлении, недороги, опасность задиров низка. Поэтому для их смазки в большинстве случаев применяется не специальное трансмиссионное масло, а моторное.

Как влияет передаточное число главной пары на тягово-динамические характеристики? Чем оно выше, тем быстрее происходит разгон, но максимальная скорость ниже. И, наоборот, с уменьшением передаточного числа автомобиль разгоняется медленнее, но достигает большей максимальной скорости. Значение передаточного числа для конкретной модели автомобиля подбирается с учетом характеристик двигателя, размера колес, возможностей тормозной системы.

Дифференциал

Для тех, кто не изучал английский :-)
STRAIGHT – ПРЯМО
same speed – одинаковая скорость
pinion gears rotate with case – сателлиты вращаются вместе с корпусом

TURN – ПОВОРОТ
fast – быстро, slow – медленно
outer wheel faster – внешнее колесо быстрее
inner wheel slower – внутреннее колесо медленнее
pinion gears rotate on pinion shaft – сателлиты вращаются на своих осях

Дифференциал — это механизм, позволяющий (при необходимости) ведущим колесам автомобиля вращаться с разными скоростями. Для чего это нужно? При движении по прямой колеса проходят одинаковый путь, в повороте же внешнее колесо проходит путь больший, чем внутреннее колесо. Поэтому, чтобы «успеть» за автомобилем, внешнее колесо должно вращаться быстрее.

Устройство дифференциала несложное — корпус, ось сателлитов и два сателлита (шестерни). Корпус крепится к ведомой шестерне главной пары и вращается вместе с ней. Сателлиты входят в зацепление с шестернями полуосей, которые непосредственно вращают колеса.

В такой конструкции сателлиты передают больший крутящий момент на ту полуось, которая оказывает меньшее сопротивление вращению. То есть, с большей скоростью будет вращаться колесо, которое дифференциалу легче раскрутить. При движение по прямой колеса нагружены одинаково, дифференциал делит крутящий момент поровну, сателлиты не вращаются вокруг своей оси. В повороте внутреннее колесо нагружено больше, внешнее — разгружается. Поэтому сателлиты начинают вращаться вокруг оси, подкручивая менее нагруженное колесо, увеличивая тем самым скорость его вращения.

Но такая особенность дифференциала иногда приводит к весьма неприятным последствиям. Если, например, одно из колес попадет на скользкую поверхность, дифференциал будет вращать только его, полностью игнорируя колесо, имеющее нормальный контакт с дорогой. То есть, автомобиль будет «буксовать».

Для борьбы с этим явлением применяются блокировки дифференциала. Способов блокировок придумано множество — от простых механических до изощренных электронных.

Дифференциал с полной блокировкой

Применяется во внедорожниках. В такой конструкции валы полуосей жестко соединяются между собой, вращаясь, таким образом, с равными скоростями. Блокировка включается водителем вручную перед преодолением труднопроходимого участка, после чего ее необходимо выключать во избежание перегрузок трансмиссии, повышенного износа шин и снижения управляемости автомобиля. При движении в обычных дорожных условиях полную блокировку применять, естественно, нельзя.

Дифференциал с частичной блокировкой

В таких дифференциалах блокировка включается автоматически, поэтому их еще называют самоблокирующимися. При этом усилие блокировки нарастает постепенно, пропорционально разнице в скорости вращения или величине крутящего момента. По конструкции самоблокирующиеся дифференциалы можно разделить на четыре вида: вязкостные, дисковые, винтовые, электронноуправляемые.

Вискомуфта
Вискомуфта

Вискомуфта (вязкостная муфта) представляет собой герметичный корпус, в котором размещены два пакета фрикционов. Пространство внутри корпуса заполнено силиконовой жидкостью, вязкость которой зависит от температуры. Один пакет фрикционов соединяется с корпусом дифференциала, второй — с одной из полуосей. В обычных условиях, когда полуоси вращаются с одинаковой скоростью, или с небольшой разницей, вискомуфта себя никак не проявляет. При пробуксовке одного из колес скорость вращения полуоси резко возрастает, жидкость при этом интенсивно нагревается, а ее вязкость повышается. В результате пакеты фрикционов «слипаются» – скорости валов выравниваются. При остывании вязкость снижается — валы снова вращаются независимо. Вискомуфта способна обеспечить лишь небольшой коэффициент блокировки, при длительной пробуксовке перегревается, срабатывает с запаздываниями (пока нагреется жидкость). Поэтому область ее применения — обычные городские автомобили, для преодоления бездорожья она не подходит.

Дифференциал с дисковой блокировкойДифференциал с дисковой блокировкой

Дисковые дифференциалы – это обычные дифференциалы, в которые дополнительно встраиваются один или два пакета фрикционов и распорная пружина, создающая преднатяг (сжатие пакетов). В пакете фрикционов часть дисков крепится к полуоси, вторая — к корпусу дифференциала. Когда колеса вращаются с одинаковыми скоростями, диски в пакете вращаются как одно целое. При разнице в скорости вращения между ними возникают силы трения, стремящиеся выровнять скорости. Таким образом осуществляется частичная блокировка дифференциала. Очевидны недостатки дисковой блокировки — постоянный, пусть даже и небольшой, момент трения, создаваемый преднатягом, ухудшает управляемость, быстрее изнашиваются шины, увеличивается расход топлива. Да и срок службы фрикционов сравнительно небольшой. По мере их износа снижается и степень блокировки, а после полного износа дифференциал работает уже как свободный. Отсюда вывод — чем чаще «буксуешь», тем быстрее «умирает» дифференциал. Дисковые дифференциалы требуют применения специального трансмиссионного масла.

Усилием преднатяга определяется степень блокировки и минимальный крутящий момент, передаваемый на колесо в любых дорожных условиях. Регулируя степень преднатяга подбирают нужный компромисс между проходимостью и управляемостью. Дисковые дифференциалы с малым преднатягом используются на обычных, дорожных автомобилях, с большим — на спортивных.

Более «продвинутой» версией дискового дифференциал является героторный дифференциал. В нем шестеренчатый масляный насос приводит в действие поршень, который сжимает пакет фрикционов. А производительность насоса зависит от разницы в скорости вращения полуосей. Чем больше эта разница — тем сильнее усилие сжатия, а, соответственно, и степень блокировки.

Дифференциалы Торсен и КвайфДифференциалы Торсен и Квайф

Червячные дифференциалы — используют для блокировки свойства червячных передач. Самыми распространенными являются дифференциалы Торсен и Квайф. Червячная передача состоит из червяка и червячного колеса. Червяк (сателлит) является ведущим звеном, колесо (шестерня полуоси) — ведомым. КПД передачи при прямом вращении намного больше, чем при обратном, и зависит от угла наклона витков червяка. Говоря проще, червяк легко вращает колесо, колесо же с трудом вращает червяк. При определенном угле витка червяка обратная передача становится вообще невозможной — то есть, колесо не сможет вращать червяк (происходит самоторможение). Таким образом, подбирая угол наклона витков червяка, регулируют степень блокировки дифференциала Торсен. Блокирующие свойства Торсена зависят также и от величины передаваемого крутящего момента. Существует три типа дифференциала Торсен. Типы Т1 и Т2 отличаются формой сателлитов и используются в качестве межколесных. Торсен Т3 используется в полноприводных автомобилях в качестве межосевого дифференциала.

В дифференциале «Квайф» сателлиты не посажены на оси, а свободно расположены в гнездах корпуса. При возникновении разницы в скорости вращения полуосей сателлиты, блокируясь, сдвигаются в гнездах и прижимаются к корпусу. Возникающая при этом сила трения пропорциональна разнице скоростей вращения. Степень блокировки регулируют, подбирая сателлиты с различным углом наклона витков.

Червячные дифференциалы по сравнению с дисковыми отличаются большей надежностью и коэффициентом блокировки, меньше боятся пробуксовки (но длительные и частые пробуксовки все равно не рекомендуются). Однако такие дифференциалы, в отличие от дисковых и вискомуфты, совершенно беспомощны против диагонального вывешивания.

Электронно управляемые дифференциалы. Электроника, активно внедряемая во все узлы и системы автомобиля, не обошла стороной и дифференциал. Типовая конструкция электронно управляемого дифференциала напоминает устройство обычного дискового дифференциала, но сжатие фрикционов осуществляется гидро- либо электроприводом по команде блока управления. Таким образом можно регулировать степень блокировки в самых широких пределах — от 0 до 100%. Все зависит от заложенной в блок программы.

Казалось бы, идеал достигнут! Но, нет пытливые японцы пошли дальше и сконструировали активный дифференциал — самый совершенный на данный момент. Обычный электронно управляемый дифференциал при пробуксовке только выравнивает скорости вращения полуосей. Активный же дифференциал может вращать полуоси с разными скоростями, в зависимости от дорожной ситуации. Например, в повороте добавить момент на внешнее разгруженное колесо, помогая автомобилю «довернуться».

Что такой дифференциал представляет собой конструктивно? Обычный свободный дифференциал дополнен двумя передачами — повышающей и понижающей. Включает передачи при помощи мокрых сцеплений блок управления. Величина передаваемого крутящего момента регулируется степенью сжатия сцеплений. Таким образом автомобиль с активным дифференциалом может и мастерски проходить крутые виражи, и на бездорожье не спасует. Другой вопрос, стоит ли овчинка выделки: цена дифференциала немаленькая. Поэтому и ограничивается его применение только мощными спортивными автомобилями.

Имитация блокировок. В последнее время большое распространение получили электронные системы, которые при возникновении пробуксовки подтормаживают буксующее колесо с помощью штатной тормозной системы, имитируя блокировку дифференциала. Для обычного городского автомобиля, не выезжающего на бездорожье — самое практичное решение. И на скользкой дороге поможет, и даже диагонального вывешивания не боится.

Преимущества и недостатки. Автомобиль с самоблокирующимся дифференциалом увеличивает тягу на колесах, тем самым повышая проходимость на бездорожье и на скользкой дороге (еще бы, а ради чего тогда было огород городить?). Также улучшается динамика разгона. Широко используются такие дифференциалы на мощных спортивных автомобилях и в тюнинге для более полной реализации мощности, прохождения поворотов в скольжении.

Но то, что хорошо для спортивного автомобиля, не всегда благо для обычного. Ведь самоблокирующийся дифференциал, повышая проходимость, ухудшает управляемость. Например, при разгоне на скользкой дороге автомобиль сложнее удержать на прямой. Если блокировки нет, автомобиль, проскальзывая, просто теряет ускорение. Если же срабатывает блокировка, не буксующее колесо (или колеса) продолжают толкать автомобиль вперед, тем самым уводя его с прямолинейной траектории.

Блокировки, установленные на передней оси, увеличивают недостаточную поворачиваемость (траектория в повороте стремится распрямиться), установленные в задней оси — повышают избыточную поворачиваемость (в повороте увеличивается склонность к заносу).

Самоблокирующиеся дифференциалы еще называют дифференциалами повышенного трения. А повышенное трение приводит к увеличенному расходу топлива, снижению срока службы шин и деталей трансмиссии.

Главная передача и дифференциал — назначение, устройство и типы

Главная передача

 Назначение главной передачи

Основное назначение главной передачи в трансмиссии — передача тяги двигателя к, так сказать, «конечному потребителю» – колесам. Если автомобиль заднеприводный, то тяга от коробки передач через карданный вал передается на главную передачу, а та, в свою очередь, перенаправляет поток мощности на колеса через полуоси (если задняя подвеска зависимая и имеет мост) или приводные валы с шарнирами равных угловых скоростей (об этом пойдет речь дальше). Если автомобиль переднеприводный, то главная передача через шестерню связана непосредственно с коробкой передач.

Есть такое понятие, как неразрезной мост. Означает оно то, что главная передача вместе с дифференциалом находятся в корпусе, к которому подсоединены или отлиты вместе с ним изначально два кожуха полуосей. Полуоси — это валы, соединяющие дифференциал и главную передачу с колесами. Данная конструкция является частью зависимой подвески автомобиля, так как жестко связывает правое и левое ведущие колеса. Полуось жестко связывает колесо и главную передачу, то есть при преодолении какоголибо препятствия весь мост перемещается вместе с колесами и всем содержимым. Убираем кожух полуосей, корпус главной передачи устанавливаем на кузов или подрамник, колеса с главной передачей соединяем с помощью приводных валов через шарниры равных угловых скоростей и получаем разрезной мост и независимую подвеску колес. Все это подробнее описано ниже в разделе «Устройство главной передачи» и представлено на рисунке 5.32.

Примечание
Главная передача служит для понижения числа оборотов, передаваемых от двигателя к колесам, и увеличения тягового усилия. Она обеспечивает передачу вращения с карданного вала на полуоси под углом 90° при классической компоновке автомобиля (о которой подробно рассказывается в главе 3). В главной передаче применяют шестеренчатые передачи, одинарные или двойные.

 Устройство главной передачи

Главная передача состоит из двух шестерен, а точнее, из конической шестерни (на рисунке 5.33 — ведущая шестерня) и конического колеса (на рисунке 5.33 — ведомое колесо).

Главная передача заднего неразрезного моста
Рисунок 5.33 Главная передача заднего неразрезного моста.

Шестерня является ведущим элементом (к ней подводится тяга от коробки передач и двигателя), а колесо —ведомым (принимает тягу от шестерни и перенаправляет под углом 90 градусов).

Шестерни изготавливают со спиральными зубьями, благодаря чему повышается прочность зубьев, увеличивается число зубьев, одновременно находящихся в зацеплении, и шестерни работают более плавно и бесшумно.

Кроме конической простой шестеренчатой передачи, у которой оси взаимно пересекаются, в легковых автомобилях применяют гипоидную передачу (показана на рисунке 5.34). В этой передаче зубья имеют специальный профиль и ось малой конической шестерни смещена вниз относительно центра большой шестерни на некоторое расстояние «S». Это дает возможность расположить карданный вал ниже и уменьшить высоту выпуклой верхней части туннеля для размещения вала в полу кузова, вследствие чего достигается более удобное размещение пассажиров в кузове. Кроме того, имеется возможность несколько снизить центр тяжести автомобиля и повысить его устойчивость при движении. Гипоидная передача обладает большей плавностью работы, более высокой прочностью зубьев и износоустойчивостью.

Примечание
Однако у гипоидной передачи есть одна неприятная особенность: порог заклинивания при обратном ходе. Расчеты данной передачи, конечно, исключают такую возможность, но всегда стоит помнить, что данную главную передачу может заклинить при превышении расчетных оборотов (при вращении в обратную сторону). Так что будьте осторожны с выбором скорости движения задним ходом.

Для гипоидной передачи необходимо применение смазки специальных сортов из-за большого давления между зубьями при работе и больших скоростей относительного скольжения между зубьями. Кроме того, требуется более высокая точность монтажа передачи.

Элементы главной передачи
Рисунок 5.34 Элементы главной передачи. Гипоидная передача.

Дифференциал

 Назначение дифференциала

Дифференциал позволяет катиться правому и левому ведущим колесам с различным числом оборотов при поворотах автомобиля и при движении по неровностям дороги.

При движении автомобиля на повороте (как показано на рисунке 5.35) внутреннее ведущее колесо его проходит меньший путь, чем наружное, и, для того чтобы обеспечить качение без буксования, оно должно вращаться медленнее, чем наружное колесо. Для того чтобы колеса могли вращаться с разным числом оборотов, их подсоединяют через приводные валы к дифференциалу, а уже дифференциал жестко связан с ведомым колесом главной передачи.

 Принцип работы дифференциала

Дифференциал состоит из (смотрите рисунок 5.33) полуосевых шестерен, сателлитов, оси сателлитов (которая может быть крестовидной, если сателлитов четыре) и корпуса. Полуосевые конические шестерни закреплены на внутренних концах полуосей, на наружных концах которых крепятся ведущие колеса. Сателлиты, представляющие собой малые конические шестерни, посажены свободно на оси.

Схема работы дифференциала
Рисунок 5.x Схема работы дифференциала.

При движении автомобиля на повороте, внутреннее колесо проходит меньший путь и вследствие сцепления с дорогой начинает вращаться медленнее. При этом сателлиты, вращаясь, начинают перекатываться по замедлившей свое вращение полуосевой шестерне внутреннего колеса. В результате сателлиты начинают вращаться около своих осей, увеличивая число оборотов второй полуосевой шестерни и наружного колеса соответственно.

Примечание
При наличии дифференциала между количеством оборотов колес существует определенная зависимость, при которой сумма чисел оборотов колес всегда равна удвоенному числу оборотов коробки дифференциала, т. е. при уменьшении числа оборотов одного из колес число оборотов другого колеса на столько же увеличивается. При неподвижной коробке дифференциала, если вращается одно из колес, другое колесо будет вращаться в обратную сторону.

Однако работа дифференциала и результат положителен только в случае сухой дороги. В определенных условиях дифференциал может отрицательно повлиять на движение автомобиля.

Так, при попадании одного из колес на скользкое место (лед, грязь) колесо из-за недостаточного сцепления с дорогой начинает буксовать. При значительном ухудшении сцепления буксующего колеса с дорогой тяговое усилие на нем становится очень низким. При этом второе колесо, имеющее достаточное сцепление с дорогой, останавливается, так как вследствие свойства дифференциала распределять усилие между колесами поровну тяговое усилие на втором колесе также становится очень малым и недостаточным для движения автомобиля. Буксующее колесо вращается при этом с удвоенным числом оборотов, и автомобиль полностью останавливается.

Разновидности дифференциалов

Дифференциалы могут быть симметричными и не симметричными, а так же свободными или с возможностью блокировки.

Примечание
Дифференциал, распределяющий тягу от двигателя поровну между колесами или между осями, называется симметричным. Если же дифференциал межосевой (делит тягу от двигателя в полноприводном автомобиле между передней и задней осью), он может быть несимметричным, то есть на одну из осей передавать меньше тяги, чем на другую.

Если симметричное распределение не всегда играет на руку управляемости или проходимости автомобиля, значит эту проблему необходимо решить. Есть два пути:

1. Установить в главную передачу дифференциал с возможностью его блокировки.

Так появились дифференциалы с блокировкой. Процесс блокировки может быть отдан на откуп механическому приводу с выведением рычага управления в салон автомобиля или же передан в ведение электроники и может быть автоматическим полностью или же с управлением при помощи контроллеров в салоне автомобиля.

2. Установить дифференциал повышенного трения, который при усложнившихся дорожных ситуациях просто-напросто не позволит всей тяге «уйти» на колесо, потерявшее сцепление с поверхностью.

Межколесный дифференциал: виды, устройство, принцип работы

Межколесный дифференциал относится к трансмиссионному механизму, который распределяет крутящий момент между валами привода. Кроме того, указанный механизм позволяет вращаться колесам с разными угловыми скоростями. Данный момент особо заметен при проходе поворотов. Кроме того, такая конструкция дает возможность безопасно и комфортно перемещаться по сухому твердому покрытию. В некоторых случаях, при выезде на скользкую трассу или бездорожье, рассматриваемое приспособление может сыграть как стопор для автомобиля. Рассмотрим особенности строения и эксплуатации межколесных дифференциалов.

Межколесный дифференциал в трансмиссии

Описание

Дифференциал предназначен для распределения крутящего момента от карданного вала к ведущим колесным мостам спереди или сзади, в зависимости от разновидности привода. В результате межколесный дифференциал дает возможность проворачиваться каждому колесу без пробуксовки. В этом и заключается прямое назначение механизма.

При прямолинейном перемещении транспорта, когда нагрузка на колеса равномерная с идентичными угловыми скоростями, рассматриваемый агрегат функционирует в роли передаточного отсека. В случае изменения условий движения (буксование, разворот, поворот) нагрузочный показатель изменяется. Полуоси стремятся вращаться с разными скоростными параметрами, возникает необходимость распределение крутящего момента между ними в определенном соотношении. На этом этапе межколесный дифференциал начинает выполнять свою основную функцию – гарантирование безопасности маневров транспортного средства.

Особенности

Схема размещения рассматриваемых автомобильных приспособлений зависит от рабочего ведущего моста:

  1. На картере коробки переключения передач (передний привод).
  2. На корпусе ведущего заднего моста.
  3. Машины с полным приводом оснащаются межколесным дифференциалом на остовах обоих мостов или раздаточных коробках (осуществляют передачу рабочего момента между колесами или мостами, соответственно).

Стоит отметить, что дифференциал на машинах появился не так давно. На первых моделях «самодвижущиеся» экипажи имели плохую маневренность. Проворачивание колес с идентичным угловым параметром скорости приводило к пробуксовке одного из элементов либо потере сцепления с дорожным покрытием. Вскоре инженеры разработали усовершенствованную модификацию устройства, позволяющего нивелировать потерю управляемости.

Устройство межколесного дифференциала

Предпосылки для создания

Межколесные дифференциалы автомобилей изобрел французский конструктор О. Пеккер. В механизме, предназначенном для распределения вращающегося момента, присутствовали шестерни и рабочие валы. Они служили для трансформации момента кручения от двигателя к ведущим колесам. Несмотря на все преимущества, данная конструкция полностью не решала проблемы с пробуксовкой колес на поворотах. Выражалось это в потере сцепления одного из элементов с покрытием. Особенно выражено момент проявлялся на обледенелых участках.

Буксование в подобных условиях приводило к неприятным происшествиям, что послужило дополнительным стимулом для разработки усовершенствованного приспособления, способного предотвратить занос транспортного средства. Техническое решение указанной проблемы разработал Ф. Порше, придумавший кулачковую конструкцию, ограничивающую проскальзывание колес. Первыми автомобилями, на которых применялась имитация межколесного дифференциала, стали «Фольксвагены».

Устройство

Ограничивающий узел работает по принципу планетарного редуктора. В стандартную конструкцию механизма входят следующие элементы:

  • полуосевые шестеренки;
  • сопутствующие сателлиты;
  • рабочий корпус в виде чаши;
  • основная передача.

Остов жестким способом соединен с ведомым зубчатым колесом, которое принимает момент кручения от аналога главной передачи. Чаша через сателлиты трансформирует вращение на ведущие колеса. Разность в скоростных режимах угловых параметров обеспечивается также при помощи сопровождающих шестерен. При этом величина рабочего момента остается стабильной. Задний межколесный дифференциал ориентирован на передачу оборотов на ведущие колеса. Транспортные полноприводные средства оснащаются альтернативными механизмами, воздействующими на мосты.

Монтаж межколесного дифференциала

Разновидности

Указанные виды механизмов разделяются по конструкционным признакам, а именно:

  • конические версии;
  • цилиндрические варианты;
  • червячные приспособления.

Кроме того, дифференциалы разделяются по числу зубьев шестеренок полуосей на симметричные и несимметричные версии. По причине оптимальной возможности рассредоточения момента кручения, вторые модификации с цилиндрами монтируются на мосты автомобилей с полным приводом.

Машины с передним или задним ведущим мостом оборудуются симметричными коническими модификациями. Червячная передача универсальна и может агрегировать со всеми типами устройств. Конические агрегаты способны работать в трех конфигурациях: прямолинейным, поворотным и пробуксовочным способом.

Межколесный дифференциал

Схема работы

При прямолинейном перемещении, электронная имитация блокировки межколесного дифференциала характеризуется равным рассредоточением нагрузки между колесами транспортного средства. При этом наблюдается идентичная угловая скорость, а корпусные сателлиты не вращаются вокруг собственных осей. Они трансформируют момент кручения на полуоси при помощи статичного зубчатого зацепа и ведомой шестеренки основной передачи.

На поворотах автомобиль испытывает переменчивое воздействие усилий сопротивления и нагрузки. Параметры распределяются следующим образом:

  1. Внутреннее колесо меньшего радиуса получает увеличенное сопротивление, по сравнению с наружным аналогом. Повышенный показатель нагрузки обуславливает снижение скорости вращения.
  2. Внешнее колесо перемещается по большей траектории. При этом увеличение угловой скорости способствует плавному повороту машины, без буксования.
  3. С учетом указанных факторов, колеса должны обладать различными угловыми скоростями. Сателлиты внутреннего элемента замедляют вращение полуосей. Те же, в свою очередь, через конический зубчатый элемент, повышают интенсивность работы внешнего аналога. При этом момент кручения от основной передачи остается стабильным.
Принцип работы межколесного дифференциала

Пробуксовка и курсовая устойчивость

Автомобильные колеса могут получать разный параметр нагрузки, буксуя и теряя сцепление с дорожным покрытием. При этом на один элемент подается чрезмерное усилие, а второй работает «вхолостую». Из-за такой разницы движение автомобиля становится хаотичным или вообще прекращается. Чтобы устранить эти недостатки, используют систему курсовой устойчивости либо ручную блокировку.

Для того, чтобы момент кручения полуосей выровнялся, следует стопорить действие сателлитов и обеспечить трансформацию оборотов от чаши на нагруженную полуось. Это особенно актуально для межколесных дифференциалов МАЗа и прочих машин повышенной грузоподъемности с полным приводом. Подобная особенность связана с тем, что стоит потерять сцепление в одной из четырех точек, величина крутящего момента устремится к нулю, даже если машина оснащена двумя межколесными и одним межосевым дифференциалом.

Муфта межколесного дифференциала

Электронный самоблок

Избежать неприятностей, указанных выше, позволяет частичная или полная блокировка. Для этого и применяются самоблокирующиеся аналоги. Они распределяют кручение с учетом разности на полуосях и соответствующих скоростных режимов. Оптимальным способом решения проблемы является оборудование машины электронной блокировкой межколесного дифференциала. Система оснащается датчиками, которые контролируют требуемые показатели во время движения транспортного средства. После обработки полученных данных, процессор выбирает оптимальный режим корректировки нагрузочных и прочих воздействий на колеса и мосты.

Принцип работы данного узла состоит из трех основных стадий:

  1. В начале проскальзывания ведущего колеса, контрольный блок получает импульсы от индикаторов скорости вращения, после их анализа автоматически принимается решение о способе функционирования. Далее происходит замыкание клапана-переключателя и открывание аналога высокого давления. Помпа узла АБС создает давление в рабочем контуре тормозного цилиндра буксующего элемента. Торможение ведущего проскальзывающего колеса осуществляется за счет повышения давления тормозной жидкости.
  2. На втором этапе система имитации самоблока удерживает тормозное усилие за счет сохранения давления. Действие насоса и пробуксовка колеса прекращается.
  3. К третьей стадии работы указанного механизма относится завершение проскальзывания колеса с одновременным сбросом давления. Переключатель открывается, а клапан высокого давления закупоривается.

Межколесный дифференциал КамАЗа

Ниже приведена схема указанного механизма с описанием элементов:

Схема межколесного дифференциала КамАЗ

1 — Основной вал.

2 — Уплотнитель.

3 — Картер.

4, 7 — Шайбы опорного типа.

5, 17 — Корпусные чаши.

6 — Сателлит.

8 — Индикатор блокировки.

9 — Заливная пробка.

10 — Пневмокамера.

11 — Вилка.

12 — Кольцо-стопор.

13 — Муфта зубчатая.

14 — Блокировочная муфта.

15 — Сливная крышка.

16 — Шестеренка привода среднего моста.

18- Крестовина.

19 — Зубчатая шестерня заднего моста.

20 — Крепежный болт.

21, 22 — Крышка и подшипник.

Безопасность

Межколесный дифференциал предназначен для обеспечения безопасной и комфортной езды на дорогах различного предназначения. Некоторые недостатки рассматриваемого механизма, указанные выше, проявляются при опасном и агрессивном маневрировании по бездорожью. Следовательно, если на машине предусмотрен привод ручного блокиратора, эксплуатировать ее необходимо исключительно в соответствующих условиях. Скоростные машины использовать без указанного механизма весьма затруднительно и небезопасно, особенно на высоких скоростях по шоссе.

Дифференциалы полноприводных автомобилей — Энциклопедия журнала «За рулем»

Межосевой дифференциал может быть сконструирован так, чтобы распределять крутящий момент несимметрично. Если распределение момента по осям неравное, то большая часть момента обычно передается к задним колесам. Это объясняется тем, что при разгоне автомобиля или движении на подъем большая часть массы автомобиля перераспределяется на задние колеса и они могут реализовать больший крутящий момент, чем передние, и, кроме того, уменьшение доли крутящего момента, поступающего к передним колесам, улучшает управляемость автомобиля и меньше подвергает ее влиянию изменения крутящего момента.
Для любого автомобиля с четырьмя ведущими колесами важно обеспечить движение автомобиля в случае, если одно из колес теряет сцепление с дорогой.
Если одно из колес на оси буксует, то дифференциал передает на другое крутящий момент, недостаточный для движения. Если автомобиль имеет привод на четыре колеса и три дифференциала, то достаточно попасть одним колесом на скользкую поверхность, чтобы лишить автомобиль способности тронуться с места. Существуют различные способы борьбы с этим нежелательным свойством.
Один из таких способов—это блокировка дифференциала. При заблокированном дифференциале крутящий момент, подводимый к колесам с лучшим сцеплением, увеличивается. Необходимо учитывать, что, если вся величина крутящего момента передается в одном направлении, карданный вал и полуоси должны быть сделаны более прочными, чтобы исключить возможность их поломки. Внедорожные автомобили, работающие в сложных условиях, могут иметь устройства, блокирующие как межосевой, так и задний межколесный дифференциалы. Блокировка дифференциала передней оси обычно не предусматривается из-за негативного воздействия на управляемость автомобиля.
Другим распространенным способом улучшения характеристик трансмиссий современных полноприводных автомобилей является применение различных устройств повышенного трения, применяющихся в качестве межосевых и задних дифференциалов. Самый простой способ заключается в создании дополнительного трения при проскальзывании деталей в дифференциале. Здесь, однако, требуется ограничить величину проскальзывания таким образом, чтобы оно не оказывало чрезмерного влияния на возможность движения колес автомобиля с небольшой разницей в угловых скоростях при обычном повороте. Таким образом, дифференциалы повышенного трения должны быть такими, чтобы передавать только часть крутящего момента на колесо с хорошим сцеплением.
Следует помнить, что любой дифференциал повышенного трения, независимо от места его расположения (в раздаточной коробке или ведущих мостах) отнимает часть механической энергии переводя ее в тепло, а, значит, увеличивает расход топлива. Повышается также изнашивание шин и трансмиссии в целом. Поэтому простые устройства с фрикционными шайбами или кулачковые дифференциалы устанавливались главным образом на грузовиках повышенной проходимости, то есть там, где обеспечение преодоления бездорожья считается более важной задачей, чем обеспечение экономичности. В раздаточных коробках таких автомобилей часто дифференциал вообще отсутствовал (ГАЗ-66, УАЗ) и оба моста имели жесткую связь между собой. При движении по сухому асфальту во избежание чрезмерного изнашивания шин передний мост отключался, так что полноприводными эти автомобили могли быть только вне дорог или в зимнее время года.
Гораздо лучше, если дифференциал сможет «почувствовать» момент начала проскальзывания колеса и сумеет перераспределить крутящий момент на отстающее колесо. Другими словами, желательно использовать самоблокирующийся дифференциал. В ранее выпускавшихся моделях использовались вязкостные муфты (вискомуфты) и дифференциалы типа Torsen. Иногда применялось их сочетание: вязкостные муфты в качестве межосевых дифференциалов, а Torsen в качестве заднего дифференциала. В настоящее время все большее распространение получают фрикционные муфты с контролируемой степенью блокировки, когда фрикционные диски сжимаются с определенным усилием. Такие муфты могут применяться для управления распределением крутящего момента между передними и задними колесами под электронным контролем. Конструкторы современных полноприводных легковых автомобилей предлагают использовать такие чувствительные устройства, управляющие сцеплением колес с дорогой и поведением автомобиля вместо простой блокировки дифференциалов.

Устройство вязкостной муфты (вискомуфты):
1 — корпус;
2 — вал корпуса;
3, 6 — ведущий и ведомый валы;
4 — диски;
5 — уплотнения

Вязкостная муфта (патент Фергюссона) является наиболее простым и дешевым устройством повышенного трения, и поэтому ее часто применяют в трансмиссиях автомобилей.
Вязкостная муфта состоит из набора близко расположенных друг к другу перфорированных дисков, одна половина которых соединяется с помощью выступов с внутренней ступицей муфты, а вторая наружными выступами с корпусом.
Между дисками находится силиконовая (кремнийорганическая) жидкость высокой вязкости. Валы муфты могут свободно вращаться с небольшой разницей в угловых скоростях, но, если разница в скоростях увеличивается, жидкость внутри муфты начинает действовать как твердое тело и предотвращает чрезмерное проскальзывание дисков. Возникающий блокирующий момент обусловлен свойствами вязкой жидкости. Если в качестве дифференциала использовать такую муфту, она будет перераспределять крутящий момент так, что большая его часть будет поступать на колеса, вращающиеся с меньшей скоростью.
К недостаткам вязкостной муфты следует отнести экспоненциальный закон ее блокировки. Муфта срабатывает с запаздыванием. Неизбежный нагрев жидкости в муфте, который происходит при проскальзывании дисков, приводит к изменению ее характеристик. Существенным недостатком таких устройств является их влияние на процесс торможения, поскольку при резком торможении может произойти одновременное блокирование всех колес автомобиля. При использовании вязкостных муфт в трансмиссиях автомобилей с антиблокировочными тормозными системами приходится применять дополнительные устройства для разблокирования муфт при торможении.

Межосевой дифференциал Torsen:
1, 3 — правая и левая полуосевые шестерни;
2 — корпус дифференциала;
4 — сателлит, связанный с правой полуосевой шестерней;
5, 7 — выходные валы дифференциала;
6 — сателлит, связанный с левой полуосевой шестерней

Дифференциал Torsen (TORque SENsing — чувствующий крутящий момент) представляет собой механический самоблокирующийся дифференциал, в котором используется сложный набор червячных шестерен.
Набор шестерен внутри дифференциала состоит из ведомых (полуосевых) червячных колес и ведущих (сателлитов) червячных шестерен. Основной особенностью такой конструкции является то, что червячные шестерни могут приводить во вращение другие шестерни, но сами не могут приводиться во вращение. Такая особенность приводит к появлению некоторой степени блокирования дифференциала. В зависимости от величины передаточного числа и конструкции дифференциала, крутящий момент может распределяться по осям автомобиля в соотношении от 2,5:1 (70 % : 30 %) до 6:1 (86 % : 14 %) или даже до 7:1 (87.5 % : 12.5 %), а также распределяться в любых промежуточных значениях. При низких значениях входного крутящего момента шестерни дифференциала вращаются свободно и его действие напоминает работу обычного симметричного дифференциала. Когда входной крутящий момент увеличивается, набор червячных шестерен нагружается и в определенный момент два выходных вала блокируются.

Межосевой дифференциал Torsen Audi Quattro:
1 — корпус дифференциала;
2,4 — передняя и задняя шестерни;
3 — червячные сателлиты;
5 — фланец карданной передачи;
6 — ось сателлитов;
7 — прямозубые шестерни;
8 — ведомый вал;
9 — полый ведущий вал;
А — к передней оси;
В — к задней оси

Дифференциал Torsen имеет линейную характеристику, перераспределение крутящего момента происходит практически мгновенно и он не оказывает влияния на процесс торможения. Эти свойства механизма обусловили его широкое использование в качестве межколесных и межосевых дифференциалов автомобилей. Основным недостатком является сложность его изготовления и сборки и, как следствие, высокая стоимость.

Принцип действия активной гидравлической муфты:
1 — выходной вал;
2 — рабочий поршень;
3 — диски;
4 — поршневой насос;
5 — управляющий клапан;
6 — входной вал

Вязкостные муфты и дифференциалы Torsen являются пассивными системами. В последние годы в конструкции трансмиссий современных автомобилей все чаще начинают применять активные устройства, представляющие собой муфты, в которых для блокирования валов используются многодисковые мокрые сцепления.
Для управления многодисковым сцеплением используется давление масла, которое воздействует на поршень, сжимающий диски. Давление масла регулируется с помощью контрольного клапана. Крутящий момент с помощью таких муфт может распределяться как между передней и задней осями автомобиля, так и между колесами одной оси.

Муфта Haldex
Шведская фирма Haldex по своему патенту выпускает муфту с многодисковым мокрым сцеплением, электрическим гидронасосом и гидроаккумулятором.
Электрический насос работает только при движении автомобиля и создает небольшое давление масла, для того чтобы не происходило задержки в срабатывании муфты. Давление на поршень, сжимающий диски сцепления, поступает от гидравлического поршневого насоса, который создает давление, как только возникает различие в угловых скоростях соединенных муфтой валов. Давление, создаваемое насосом, пропорционально разнице в частоте вращения валов. Управляет работой муфты Haldex встроенный в нее электронный блок управления, который связан с другими электронными системами управления автомобилем. Муфта может работать при любых скоростях движения автомобиля как при движении вперед, так и при заднем ходе. Она не влияет на работу антиблокировочной системы (АБС) вследствие очень быстрой активации и деактивации и обеспечивает полностью контролируемое распределение крутящего момента по осям. В настоящее время муфты Haldex устанавливаются в трансмиссиях полноприводных версий автомобилей.

Дифференциал — Энциклопедия журнала «За рулем»

При повороте автомобиля, все его колеса проходят разный по длине путь, и если между двумя ведущими колесами существует жесткая связь, они начнут проскальзывать. Скольжение колес при повороте приводит к повышенному расходу топлива, износу шин, нарушению устойчивости и т. п.
Дифференциал позволяет ведомым валам вращаться с разными угловыми скоростями и выполняет функции распределения подводимого к нему крутящего момента между колесами или ведущими мостами. Дифференциалы бывают межколесными и межосевыми (в случае установки между несколькими ведущими мостами).

Схема работы (а) и детали (б) конического симметричного дифференциала:
1 — коробка сателлитов дифференциала правая;
2 — болт коробки сателлитов;
3 — опорная шайба шестерни;
4, 8 — полуосевые шестерни;
5 — опорная шайба сателлита;
6 — сателлиты;
7 — ось сателлитов;
9 — левая коробка сателлитов дифференциала

Впервые дифференциал был применен в 1897г. на паровом автомобиле. В настоящее время все автомобили имеют межколесные дифференциалы на ведущих мостах. Наиболее распространенным является конический симметричный дифференциал (рис. 3. 32), включающий в себя: корпус, сателлиты, ось сателлитов (или крестовину) и полуосевые шестерни. Обычно число сателлитов в дифференциалах легковых автомобилей — два, грузовых и внедорожных — четыре.
Симметричный дифференциал получил свое название за способность распределять подводимый момент поровну при любом соотношении угловых скоростей, соединенных с ним валов. Применение такого дифференциала в качестве межколесного, обеспечивает устойчивость при прямолинейном движении, а также при торможении двигателем на скользкой дороге.
Существенным недостатком обычного дифференциала является снижение проходимости автомобиля, если одно из его колес попадает в условия малого сцепления с опорной поверхностью. При этом на колесо, находящееся в нормальных сцепных условиях, нельзя подвести крутящий момент, превышающий тот, который может быть реализован на колесе, находящемся в условиях малого сцепления (это приводит к пробуксовке колеса). Для преодоления этого недостатка в некоторых конструкциях используются Дифференциалы полноприводных автомобилей различных конструкций.

Более подробно о дифференциале — в главе Дифференциал подробно
Смотри также Дифференциал Красикова

Кулачковый дифференциал повышенного трения.


Кулачковый дифференциал




Кулачковый дифференциал, в отличие от конического, обладает повышенным внутренним трением. Это позволяет рациональнее распределять тяговые силы между ведущими колесами, имеющими разные силы сцепления с дорогой, и практически исключить их раздельное буксование. При этом распределение сил тяги на ведущих колесах дифференцируется автоматически, без участия водителя и характеризуется коэффициентом блокировки:

Кб = Мотобг,

где Мот – момент на отстающем валу; Мобг – момент на обгоняющем валу.

Кулачковые дифференциалы могут выполняться с горизонтально или радиально расположенными сухарями. Сухари могут размещаться в один или два ряда, выполняя функции сателлитов обычных конических дифференциалов. При однорядном размещении сухарей число кулачков на полуосевых звездочках должно быть разным для того, чтобы при этом хотя бы один сухарь передавал усилие.

При двухрядном размещении сухарей число кулачков на звездочках одинаковое, но один ряд сухарей смещен относительно другого на половину шага кулачков, чтобы исключить пульсацию передаваемого крутящего момента.

Двухрядный кулачковый дифференциал применяется на автомобиле ГАЗ-66-11 (рис. 1, а). Он устанавливается на двух конических подшипниках в картере главой передачи и состоит из чашки 4, сепаратора 2, внутренней звездочки 1, наружной звездочки 3, двадцати четырех сухарей 5.

Сепаратор 2 имеет два ряда отверстий, в которых размещаются сухари 5. От выпадения из сепаратора и проворачивания вокруг своих осей сухари удерживаются кольцами. Сепаратор 2 вместе с чашкой 4 крепится к ведомому зубчатому колесу главной передачи и образует корпус дифференциала.
Наружная звездочка 3 имеет на внутренней поверхности шесть равномерно распложенных кулачков. Она устанавливается свободно внутри чашки и соединяется шлицами с полуосью.

Внутренняя звездочка 1 имеет на внешней поверхности два ряда по шесть кулачков, расположенных в шахматном порядке. Эта звездочка находится в отверстии сепаратора и соединяется шлицами со второй полуосью.

В рабочем положении детали дифференциала устанавливаются таким образом, что сухари соприкасаются с кулачками наружной и внутренней звездочек.

Дифференциал работает следующим образом (рис. 1, б).
При движении автомобиля по ровной дороге все детали дифференциала вращаются вокруг обшей оси как одно целое, при этом угловые скорости колесных валов и корпуса дифференциала равны между собой. Сухари относительно сепаратора не перемещаются.



Крутящий момент передается от ведомого зубчатого колеса главной передачи на сепаратор 2, с него на сухари 5, которые давят на кулачки звездочек 1 и 3, приводя их во вращение. Сила нормального давления сухарей на кулачки наружной и внутренней звездочек одинакова, но окружные силы Р, вращающие звездочки, вследствие разных углов наклона профилей кулачков на звездочках разные.

На внутренней звездочке, имеющей больший угол наклона кулачков, окружная сила больше, чем на наружной. Бóльшая окружная сила, приложенная на меньшем радиусе наружной звездочки, дает такой же крутящий момент, как и меньшая окружная сила, действующая на бóльшем радиусе наружной звездочки.
Таким образом, крутящий момент при движении прямо по твердой дороге распределяется между колесами поровну.

При движении на повороте или по неровной дороге одно из колес начинает вращаться быстрее другого. Звездочка, соединенная с отстающим колесом, вращается медленнее. Своими кулачками она толкает сухари в сторону второй звездочки, ускоряя ее вращение, тем самым дифференциал позволяет колесам вращаться с разными угловыми скоростями.

При скольжении сухарей по кулачкам на их поверхности возникают силы трения Ртр. На звездочке, имеющей бóльшую скорость, сила трения направлена против вращения, притормаживая ее, а на отстающей звездочке – в сторону вращения, увеличивая тем самым окружную силу, в результате чего передаваемый на колесо крутящий момент возрастает в три-четыре раза.

К недостаткам кулачкового дифференциала по сравнению с коническим можно отнести:

  • сложность изготовления;
  • меньшие значения КПД из-за повышенного трения между деталями;
  • повышенное изнашивание из-за больших сил трения и контактных напряжений в деталях.

***

Самоблокирующиеся или автоматические дифференциалы



Дифференциал (математика) — Википедия

Материал из Википедии — свободной энциклопедии

Дифференциа́л (от лат. differentia «разность, различие») — линейная часть приращения функции.

Обычно дифференциал функции f{\displaystyle f} обозначается df{\displaystyle df}. Некоторые авторы предпочитают обозначать df{\displaystyle {\rm {d}}f} шрифтом прямого начертания, желая подчеркнуть, что дифференциал является оператором.

Дифференциал в точке x0{\displaystyle x_{0}} обозначается dx0f{\displaystyle d_{x_{0}}f}, а иногда dfx0{\displaystyle df_{x_{0}}} или df[x0]{\displaystyle df[x_{0}]}, а также df{\displaystyle df}, если значение x0{\displaystyle x_{0}} ясно из контекста.

Соответственно, значение дифференциала в точке x0{\displaystyle x_{0}} от h{\displaystyle h} может обозначаться как dx0f(h){\displaystyle d_{x_{0}}f(h)}, а иногда dfx0(h){\displaystyle df_{x_{0}}(h)} или df[x0](h){\displaystyle df[x_{0}](h)}, а также df(h){\displaystyle df(h)}, если значение x0{\displaystyle x_{0}} ясно из контекста.

Для функций[править | править код]

Дифференциал функции f:R→R{\displaystyle f\colon \mathbb {R} \to \mathbb {R} } в точке x0∈R{\displaystyle x_{0}\in \mathbb {R} } может быть определён как линейная функция

dx0f(h)=f′(x0)h,{\displaystyle d_{x_{0}}f(h)=f'(x_{0})h,}

где f′(x0){\displaystyle f'(x_{0})} обозначает производную f{\displaystyle f} в точке x0{\displaystyle x_{0}}, а h{\displaystyle h} — приращение аргумента при переходе от x0{\displaystyle x_{0}} к x0+h{\displaystyle x_{0}+h}.

Таким образом df{\displaystyle df} есть функция двух аргументов df:(x0,h)↦dx0f(h){\displaystyle df\colon (x_{0},h)\mapsto d_{x_{0}}f(h)}.

Дифференциал может быть определён напрямую, то есть, без привлечения определения производной, как функция dx0f(h){\displaystyle d_{x_{0}}f(h)}, линейно зависящая от h{\displaystyle h}, и для которой верно следующее соотношение

dx0f(h)=f(x0+h)−f(x0)+o(h).{\displaystyle d_{x_{0}}f(h)=f(x_{0}+h)-f(x_{0})+o(h).}

Для отображений[править | править код]

Дифференциалом отображения f:Rn→Rm{\displaystyle f\colon \mathbb {R} ^{n}\to \mathbb {R} ^{m}} в точке x0∈Rn{\displaystyle x_{0}\in \mathbb {R} ^{n}} называют линейный оператор dx0f:Rn→Rm{\displaystyle d_{x_{0}}f\colon \mathbb {R} ^{n}\to \mathbb {R} ^{m}} такой, что выполняется условие

dx0f(h)=f(x0+h)−f(x0)+o(h).{\displaystyle d_{x_{0}}f(h)=f(x_{0}+h)-f(x_{0})+o(h).}
  • Отображение f:Rn→Rm{\displaystyle f\colon \mathbb {R} ^{n}\to \mathbb {R} ^{m}} называется дифференцируемым в точке x0∈Rn{\displaystyle x_{0}\in \mathbb {R} ^{n}}, если определён дифференциал dx0f:Rn→Rm{\displaystyle d_{x_{0}}f\colon \mathbb {R} ^{n}\to \mathbb {R} ^{m}}.

Термин «дифференциал» введён Лейбницем. Изначально dx{\displaystyle dx} применялось для обозначения «бесконечно малой» — величины, которая меньше всякой конечной величины и всё же не равна нулю. Подобный взгляд оказался неудобным в большинстве разделов математики за исключением нестандартного анализа.

Понятие дифференциала содержит в себе больше, чем просто дифференциал функции или отображения. Его можно обобщать, получая различные важные объекты в функциональном анализе, дифференциальной геометрии, теории меры, нестандартном анализе, алгебраической геометрии и так далее.

Добавить комментарий

Ваш адрес email не будет опубликован.