РазноеДетали кшм: Неподвижные детали КШМ

Детали кшм: Неподвижные детали КШМ

Содержание

Неподвижные детали КШМ

 

Блок картер является остовом двигателя, в котором размещаются и работают подвижные детали, к нему крепятся практически все навесные агрегаты и приборы, обеспечивающие работу двигателя.

Коренные подшипники

Для коренных подшипников применяются подшипники скольжения, выполненные в виде вкладышей, основой которых является стальная лента толщиной 1,9—2,8 мм для карбюраторных двигателей и 3—6 мм для дизелей. В качестве антифрикционного материала вкладышей используют высокооловянистый алюминиевый сплав для карбюраторных двигателей и трехслойные с рабочим слоем из свинцовой бронзы.

Маховик

Маховик служит для уменьшения неравномерности вращения коленчатого вала, накопления энергии во время рабочего хода поршня, необходимой для вращения вала и течение подготовительных тактов, и вывода деталей КШМ из ВМТ и НМТ.

В многоцилиндровых двигателях маховик является, в основном, накопителем кинетической энергии, необходимой для пуска двигателя и обеспечения плавного трогания автомобиля с места.


Маховики отливают из чугуна в виде лиски с массивным ободом и проводят его динамическую балансировку в сборе с коленчатым валом.
На ободе маховика имеется посадочный поясок для напрессовки зубчатого венца для электрического пуска стартером. На цилиндрической поверхности маховика находятся метки или маркировочные штифты и надписи, определяющие момент прохождения ВМТ поршнем первого цилиндра. На торцевую рабочую поверхность опирается фрикционный диск сцепления. Для крепления его кожуха имеются резьбовые отверстия. Маховик центрируют по наружной поверхности фланца с помощью выточки, а положения его относительно коленчатого вала фиксируют установочным штифтом или несимметричным расположением отверстий крепления маховика.

 

а — V- образного карбюраторного двигателя; 6 — V-образного дизельного двигателя; в — соединение головки блока цилиндров, гильзы и блока цилиндров двигателя KaМA3-740; 1- крышка блока распределительных зубчатых колес; 2 — прокладка головки блока цилиндров; 3 — камера сгорания, 4 — головка блока цилиндров, 5 — гильза цилиндра; 6 и 19 — уплотнительные кольца, 7 — блок цилиндров; 8 — резиновая прокладка; 9 — головка блока цилиндров; 10 -прокладка крышки; 11 — крышка головки блоки цилиндров; 12 и 13 — болты крепления крышки и головки блока цилиндров; 14 — патрубок выпускного коллектора; 15 — болт-стяжка; 16 — крышка коренного подшипника: 17 — болт крепления крышки коренного подшипника; 17 — стопорное кольцо: 20 — стальная прокладка головки блока цилиндров.

Блок картер

Блок-картер отливают из легированного чугуна или алюминиевых сплавов.
Блок-картер разделен на дне части горизонтальной перегородкой. В нижней части в вертикальных перегородках имеются разъемные отверстия крепления коленчатого вала, в верхней гильзы цилиндров. Блок-картер может быть отлит вместе с цилиндрами («сухие» гильзы), либо иметь вставные сменные гильзы, непосредственно омываемые охлаждающей жидкостью, так называемые «мокрые» гильзы. Также в блок-картере выполнены гладкие отверстия пол коренные опоры распределительного вала, под толкатели ГРМ, имеются гладкие и резьбовые отверстия и припадочные поверхности крепления деталей и приборов.

Гильзы цилиндров

Гильзы цилиндров являются направляющими для поршня и вместе с головкой образуют полость, в которой осуществляется рабочий ЦИКЛ, Изготовляют гильзы литьем из специального чугуна. На наружной поверхности имеется одна или две посадочные поверхности крепления гильзы в блоке цилиндров.

Внутреннюю поверхность цилиндра подвергают закалке с нагревом ТВЧ и тщательно обрабатывают, получая «зеркальную» поверхность.


Верхняя часть цилиндра наиболее нагружена, так как здесь происходит сгорание рабочей смеси, сопровождаемое резким повышением давления и температуры. Кроме того, в этой зоне происходит перекладка поршня, сопровождаемая ударными нагрузками на стенки цилиндра. Для повышения износостойкости верхней част цилиндров в карбюраторных двигателях (ЗМЗ-53 и ЗИЛ-508.10) применяют пеганки из специального износостойкого чугуна» запрессованные в верхней части цилиндра. Толщина вставки 2—4 мм. высота 40—50 мм. используемый материал — аустенитный чугун.

«Мокрые» гильзы могут быть установлены в блок-картер с центровкой по одному или двум поясам. Первый способ применяется для постановки гильзы в алюминиевые, в юрой — в чугунные блоки.
Для уплотнения нижнего центрирующего пояска «мокрых» гильз применяют резиновые кольца гильзы с центровкой по одному нижнему поясу уплотняются одной медной прокладкой под горне нон плоскостью буртика.

Головка блока 

Головка блока цилиндров закрывает цилиндры и образует верхнюю часть рабочей полости двигателя, в ней частично или полностью размещаются камеры сгорания. Головки блока цилиндров отливают из легированного серого чугуна или алюминисвого сплава. Чаще всего они являются общими для всех цилиндров, образующих ряд.

В головках блока цилиндров разметаются гнезда и направляющие втулки клапанов, впускные и выпускные каналы. Их внутренние полости образуют рубашку для охлаждающей жидкости. В верхней части имеются опорные площадки для крепления деталей клапанного механизма, В конструкциях с верхним расположением распределительного вала предусмотрены соответствующих опоры. Для уплотнения стыка головки блока цилиндров и блока цилиндров применяю) сталеасбестовую уплотняющую
прокладку, предотвращающую прорыв газов наружу и исключающую проникновение охлаждающей жидкости и масла в цилиндры. В двигателях послушного охлаждения головки блока цилиндров делают ребренными. Причем ребра располагают по движению потока охлаждающего воздуха. Так, чтобы обеспечивался более эффективный теплоотвод.

Поддон картера


Поддон картера закрывает KШМ снизу и одновременно является резервуаром для масла. Поддоны изготовляют штамповкой из листовой стали или отливают из алюминиевых сплавов. Внутри поддонов могут выполняться лотки и перегородки, препятствующие перемещению и взбалтыванию масла при лвижении автомобиля по неровным дорогам,

Привалочная поверхность, стыкующаяся с блок-картером, имеет от-бортовку металла и усиливается для придания жесткости стальной полосой, приваренной по периметру. В нижней точке поддона приваривается бобышка с резьбовым отверстием, которое закрывают пробкой с магнитом для улавливания металлических продуктов износа, образующихся вследствие изнашивания двигателя.

Назначение и устройство кривошипно-шатунного механизма ДВС

Двигатели внутреннего сгорания, используемые на автомобилях, функционируют за счет преобразования энергии, выделяемой при горении горючей смеси, в механическое действие – вращение.

Это преобразование обеспечивается кривошипно-шатунным механизмом (КШМ), который является одним из ключевых в конструкции двигателя автомобиля.

Устройство КШМ

Кривошипно-шатунный механизм двигателя состоит из трех основных деталей:

  1. Цилиндро-поршневая группа (ЦПГ).
  2. Шатун.
  3. Коленчатый вал.

Все эти компоненты размещаются в блоке цилиндров.

ЦПГ

Назначение ЦПГ — преобразование выделяемой при горении энергии в механическое действие – поступательное движение. Состоит ЦПГ из гильзы – неподвижной детали, посаженной в блок в блок цилиндров, и поршня, который перемещается внутри этой гильзы.

После подачи внутрь гильзы топливовоздушной смеси, она воспламеняется (от внешнего источника в бензиновых моторах и за счет высокого давления в дизелях). Воспламенение сопровождается сильным повышением давления внутри гильзы. А поскольку поршень это подвижный элемент, то возникшее давление приводит к его перемещению (по сути, газы выталкивают его из гильзы).

Получается, что выделяемая при горение энергия преобразуется в поступательное движение поршня.

Для нормального сгорания смеси должны создаваться определенные условия – максимально возможная герметичность пространства перед поршнем, именуемое камерой сгорания (где происходит горение), источник воспламенения (в бензиновых моторах), подача горючей смеси и отвод продуктов горения.

Герметичность пространства обеспечивается головкой блока, которая закрывает один торец гильзы и поршневыми кольцами, посаженными на поршень. Эти кольца тоже относятся к деталям ЦПГ.

Шатун

Следующий компонент КШМ – шатун. Он предназначен для связки поршня ЦПГ и коленчатого вала и передает механических действий между ними.

Шатун представляет собой шток двутавровой формы поперечного сечения, что обеспечивает детали высокую устойчивость на изгиб. На концах штока имеются головки, благодаря которым шатун соединяется с поршнем и коленчатым валом.

По сути, головки шатуна представляют собой проушины, через которые проходят валы обеспечивающие шарнирное (подвижное) соединение всех деталей.

В месте соединения шатуна с поршнем, в качестве вала выступает поршневой палец (относится к ЦПГ), который проходит через бобышки поршня и головку шатуна. Поскольку поршневой палец извлекается, то верхняя головка шатуна – неразъемная.

В месте соединения шатуна с коленвалом, в качестве вала выступают шатунные шейки последнего. Нижняя головка имеет разъемную конструкцию, что и позволяет закреплять шатун на коленчатом валу (снимаемая часть называется крышкой).

Коленчатый вал

Назначение коленчатого вала — это обеспечение второго этапа преобразования энергии. Коленвал превращает поступательное движение поршня в свое вращение. Этот элемент кривошипно-шатунного механизма имеет сложную геометрию.

Состоит коленвал из шеек – коротких цилиндрических валов, соединенных в единую конструкцию. В коленвале используется два типа шеек – коренные и шатунные. Первые расположены на одной оси, они являются опорными и предназначены для подвижного закрепления коленчатого вала в блоке цилиндров.

В блоке цилиндров коленчатый вал фиксируется специальными крышками. Для снижения трения в местах соединения коренных шеек с блоком цилиндров и шатунных с шатуном, используются подшипники трения.

Шатунные шейки расположены на определенном боковом удалении от коренных и к ним нижней головкой крепится шатун.

Коренные и шатунные шейки между собой соединяются щеками. В коленчатых валах дизелей к щекам дополнительно крепятся противовесы, предназначенные для снижения колебательных движений вала.

Шатунные шейки вместе с щеками образуют так называемый кривошип, имеющий П-образную форму, который и преобразует поступательного движения во вращение коленчатого вала. За счет удаленного расположения шатунных шеек при вращении вала они движутся по кругу, а коренные — вращаются относительно своей оси.

Количество шатунных шеек соответствует количеству цилиндров мотора, коренных же всегда на одну больше, что обеспечивает каждому кривошипу две опорных точки.

На одном из концов коленчатого вала имеется фланец для крепления маховика – массивного элемента в виде диска. Основное его назначение: накапливание кинетической энергии за счет которой осуществляется обратная работа механизма – преобразование вращения в движение поршня. На втором конце вала расположены посадочные места под шестерни привода других систем и механизмов, а также отверстие для фиксации шкива привода навесного оборудования мотора.

Принцип работы механизма

Принцип работы кривошипно-шатунного механизма рассмотрим упрощенно на примере одноцилиндрового мотора. Такой двигатель включает в себя:

  • коленчатый вал с двумя коренными шейками и одним кривошипом;
  • шатун;
  • и комплект деталей ЦПГ, включающий в себя гильзу, поршень, поршневые кольца и палец.

Воспламенение горючей смеси выполняется когда объем камеры сгорания минимальный, а обеспечивается это при максимальном поднятии вверх поршня внутри гильзы (верхняя мертвая точка – ВМТ). При таком положении кривошип тоже «смотрит» вверх. При сгорании выделяемая энергия толкает вниз поршень, это движение передается через шатун на кривошип, и он начинает двигаться по кругу вниз, при этом коренные шейки вращаются вокруг своей оси.

При провороте кривошипа на 180 градусов поршень достигает нижней мертвой точки (НМТ). После ее достижения  выполняется обратная работа механизма. За счет накопленной кинетической энергии маховик продолжает вращать коленвал, поэтому чему кривошип проворачивается и посредством шатуна толкает поршень вверх. Затем цикл полностью повторяется.

Если рассмотреть проще, то один полуоборот коленвала осуществляется за счет выделенной при сгорании энергии, а второй – благодаря кинетической энергии, накопленной маховиком. Затем процесс повторяется вновь.

Ещё кое-что полезное для Вас:

Особенности работы двигателя. Такты

Выше описана упрощенная схема работы КШМ. В действительности чтобы создать необходимые условия для нормального сгорания топливной смеси, требуется выполнение подготовительных этапов – заполнение камеры сгорания компонентами смеси, их сжатие и отвод продуктов горения. Эти этапы получили название «такты мотора» и всего их четыре – впуск, сжатие, рабочий ход, выпуск. Из них только рабочий ход выполняет полезную функцию (именно при нем энергия преобразуется в движение), а остальные такты – подготовительные. При этом выполнение каждого этапа сопровождается проворотом коленвала вокруг оси на 180 градусов.

Конструкторами разработано два типа двигателей – 2-х и 4-тактный. В первом варианте такты совмещены (рабочий ход с выпуском, а впуск – со сжатием), поэтому в таких моторах полный рабочий цикл выполняется за один полный оборот коленвала.

В 4-тактном двигателе каждый такт выполняется по отдельности, поэтому в таких моторах полный рабочий цикл выполняется за два оборота коленчатого вала, и только один полуоборот (на такте «рабочий ход») выполняется за счет выделенной при горении энергии, а остальные 1,5 оборота – благодаря энергии маховика.

Основные неисправности и обслуживание КШМ

Несмотря на то, что кривошипно-шатунный механизм работает в жестких условиях, эта составляющая двигателя  достаточно надежная. При правильном проведении технического обслуживания, механизм работает долгий срок.

При правильной эксплуатации двигателя ремонт кривошипно-шатунный механизма потребуется только из-за износа ряда составных деталей – поршневых колец, шеек коленчатого вала, подшипников скольжения.

Поломки составных компонентов КШМ происходят в основном из-за нарушения правил эксплуатации силовой установки (постоянная работа на повышенных оборотах, чрезмерные нагрузки), невыполнения ТО, использования неподходящих горюче-смазочных материалов. Последствиями такого использования мотора могут быть:

  • залегание и разрушение колец;
  • прогорание поршня;
  • трещины стенок гильзы цилиндра;
  • изгиб шатуна;
  • разрыв коленчатого вала;
  • «наматывание» подшипников скольжения на шейки.

Такие поломки КШМ очень серьезны, зачастую поврежденные элементы ремонту не подлежат их нужно только менять. В некоторых случаях поломки КШМ сопровождаются разрушениями иных элементов мотора, что приводит мотор в полную негодность без возможности восстановления.

Чтобы кривошипно-шатунный механизм двигателя не стал причиной выхода из строя мотора, достаточно выполнять ряд правил:

  1. Не допускать длительной работы двигателя на повышенных оборотах и под большой нагрузкой.
  2. Своевременно менять моторное масло и использовать смазку, рекомендованную автопроизводителем.
  3. Использовать только качественное топливо.
  4. Проводить согласно регламенту замену воздушных фильтров.

Не стоит забывать, что нормальное функционирование мотора зависит не только от КШМ, но и от  смазки, охлаждения, питания, зажигания, ГРМ, которым также требуется своевременное обслуживание.

детали и запчасти КШМ двигателя

Подобрать запчасти в каталоге «Кривошипношатунный механизм»

Основные компоненты и принцип работы КШМ

Состоит кривошипно-шатунный механизм из таких подвижных деталей и элементов крепежа, как:

  • Коленвал
  • Поршни с поршневыми кольцами и пальцами
  • Шатуны
  • Вкладыши, втулки
  • Стопорное кольцо
  • Крышки

Недвижимыми составляющими данного устройства считаются цилиндры, ГБЦ, блок цилиндров, картер, поддон, прокладка ГБЦ.

В процессе загорания топливно-горючей смеси, оказавшиеся в цилиндрах газы, перемещают поршень в нижнее положение. Благодаря поршневому кольцу шатун может прокручиваться, компенсируя момент прокручивания коленвала при нахождении поршня вверху.

Противовесы не позволяют коленвалу повернуться, поэтому крутящий момент на него подают газы, проходящие сквозь шатун и поршень. Вращают колено латунные подшипники скольжения или шатунные вкладыши. В результате коленвал передает усилие на коробку передач и колеса.

Компрессионные кольца предназначены для обеспечения герметичного состояния и необходимой компрессии в камере сгорания. Для предотвращения проникновения внутрь смазки установлено маслосъемное кольцо, которое снимает остатки масел со стенок цилиндра.
 

Неисправности кривошипно-шатунного механизма

Так как данный механизм эксплуатируется в чрезвычайно тяжелых условиях при повышенной температуре на высоких скоростных режимах, именно он повреждается первым в системе двигателя. Если возникают неисправности в этом узле, они часто приводят к дорогостоящему ремонту мотора.

Причиной неполадок обычно является естественный износ компонентов силового агрегата или нарушение правил его эксплуатации. При несвоевременном проведении техобслуживания, применении низкосортных смазочных материалов, топлива, фильтров, продолжительной эксплуатации перегруженного транспортного средства преждевременно могут возникнуть проблемы в работе кривошипно-шатунного механизма.

Типичными неполадками данного узла считаются:
  • Изнашивание коренных и шатунных подшипников. Такое повреждение сопровождается приглушенным стуком в блоке цилиндров, который отчетливо слышен при повышении оборотов, также падает давление масла в системе. В подобном случае эксплуатация автотранспортного средства запрещена
  • Изнашивание поршней и цилиндров, которое сопровождается звонким гулом при работе непрогретого мотора и возникновением синеватого дыма из выхлопной трубы
  • Изнашивание поршневых пальцев. Для данной проблемы характерен звонкий стук вверху блока цилиндров при работающем моторе
  • Повреждение и залегание поршневых колец. Оно проявляется перебоями в работе силового агрегата, падением компрессии, повышением расхода масла и появлением синего дыма из выхлопа

Кроме этого со временем на поршнях и на стенках камеры сгорания может появляться нагар, который приводит к сильному нагреванию двигателя, увеличенному расходу топлива и понижению мощности авто.

Чтобы максимально продлить срок службы кривошипно-шатунного механизма следует постоянно контролировать крепления, при необходимости подтягивать болты на картере и ГБЦ, а также содержать мотор в чистоте и периодически удалять нагар, который образуется в камере сгорания.

Применение антифрикционных покрытий для деталей кривошипно-шатунного механизма автомобильных двигателей

Рассмотрено применение антифрикционных покрытий MODENGY для деталей кривошипно-шатунного механизма автомобильных двигателей: поршней и поршневых колец, шеек коленчатого вала, прокладок головки блока цилиндров.

Содержание: Особенности работы кривошипно-шатунного механизма автомобильных двигателей
Потери на трение в кривошипно-шатунном механизме автомобильных двигателей
Неисправности кривошипно-шатунного механизма автомобильных двигателей, связанные с износом узлов трения и неисправностями системы смазки
Применение антифрикционных покрытий для деталей кривошипно-шатунного механизма автомобильных двигателей
Опыт применения антифрикционных покрытий для деталей кривошипно-шатунного механизма автомобильных двигателей

Особенности работы кривошипно-шатунного механизма автомобильных двигателей

Автомобильные поршневые двигатели внутреннего сгорания (ДВС) преобразуют энергию сгорания топлива в механическую энергию путем совершения работы расширения газов. ДВС включает в себя ряд механизмов и систем, условия функционирования которых существенно различаются. Кривошипно-шатунный механизм (КШМ) непосредственно воспринимает давление образующихся при сгорании топлива газов и преобразует возвратно-поступательное движение поршня во вращательное движение коленчатого вала.
КШМ является самым энергоемким механизмом двигателя. Он состоит из деталей, традиционно подразделяемых на две группы.
  • Подвижные детали КШМ: поршень с поршневыми кольцами, поршневой палец, шатун, коленчатый вал с подшипниками, маховик
  • Неподвижные детали КШМ: блок цилиндров, гильзы цилиндров, головка блока цилиндров, картер, картер маховика и сцепления, поддон, крышка блока, прокладки крышки блока и головки блока цилиндров, полукольца коленчатого вала

Детали КШМ подвержены действию знакопеременных нагрузок и работают в условиях реверсирования движения, повышенного нагрева и недостатка смазочного материала в зоне трения. Указанные факторы обусловливают высокий уровень механических потерь в КШМ и повышенную интенсивность изнашивания его деталей.

Потери на трение в кривошипно-шатунном механизме автомобильных двигателей

Особенности движения подвижных деталей КШМ для ряда его основных сопряжений определяют существование сразу нескольких режимов трения: граничного, гидродинамического и смешанного. Для сопряжений «кольцо поршня – цилиндр» и «поршень – цилиндр» доминирующим является граничный режим трения. Для подшипниковых узлов КШМ вследствие однонаправленного вращательного характера движения шеек коленчатого вала – гидродинамическое трение, отклонения от которого являются либо следствием недостатка смазочного материала (при запуске двигателя или нарушениях в работе системы смазки) либо перегрева двигателя в связи с превышением допустимых значений нагрузок.

В общем случае механические потери на трение между поршневой группой и цилиндром составляют 45…55 %, а потери в подшипниковых узлах – до 20 % от всех механических потерь двигателя. Рост механических потерь в КШМ сопровождается снижением КПД и мощности двигателя, увеличением удельного расхода топлива, повышением теплонапряженности работы и всегда является причиной снижения долговечности соответствующих деталей и узлов.

Поскольку в тепло превращается наибольшая часть (до 99 %) энергии трения в сопряжениях, для оценки механических потерь часто используют величину температуры трения. Поэтому для более детального исследования и оценки механических потерь в КШМ автомобильных двигателей применяется метод снятия температурных полей трения при прокрутке двигателя без сжатия, сгорания и охлаждения. По относительной величине температуры трения в этих условиях можно судить об изменении мощности трения в соответствующих сопряжениях КШМ, причем измерение температуры трения (особенно неподвижного тела) в рассматриваемом случае является наиболее простой процедурой.

Исследования показывают, что наиболее эффективным методом снижения потерь на трение в ДВС современных автомобилей является применение антифрикционных покрытий на основе твердых смазочных материалов (дисульфид молибдена, графит и др.). Широкий ассортимент таких материалов выпускает компания «Моденжи» — под брендом MODENGY. Многие из АТСП успешно применяются автомобильными производителями в узлах трения ДВС с целью обеспечения энергосбережения силовых установок и повышения их долговечности.

Неисправности кривошипно-шатунного механизма автомобильных двигателей, связанные с износом узлов трения и неисправностями системы смазки

Износ основных деталей КШМ вызывает увеличение зазоров в сопряжениях, что приводит к возникновению стуков и шумов при работе двигателя. Это позволяет диагностировать большинство неисправностей КШМ по внешним признакам или с помощью простейших приборов. Так при износе поршня и цилиндра работа двигателя (в особенности непрогретого) сопровождается звонким металлическим стуком. Увеличение зазора между поршневыми пальцами и втулкой верхней головки шатуна вызывает резкий металлический стук на всех режимах работы двигателя. Износ поршневых колец приводит к перерасходу масла, потере компрессии и снижению мощности двигателя. Большой износ вкладышей подшипников коренных и шатунных шеек коленчатого вала сопровождается резким снижением давления масла в системе смазки двигателя, при котором его дальнейшая эксплуатация невозможна.

Поскольку около 70 % износа двигателя приходится на режим пуска, характеризующийся недостатком смазочного материала в сопряжениях и доминированием граничного режима трения, для повышения долговечности деталей КШМ и двигателя в целом необходимо применение антифрикционных покрытий, сохраняющих эффективность после продолжительных простоев и обеспечивающих эффективное снижение трения при запуске двигателя в холодное время года.

При эксплуатации автомобильных двигателей нередко возникают аварийные ситуации работы цилиндропоршневой группы КШМ без наличия жидкой смазки в зоне трения. 

Местный перегрев рабочей поверхности цилиндра вызывает разрыв масляной пленки, а неисправности системы смазки двигателя сопровождаются общим уменьшением слоя масла между рабочей поверхностью цилиндра и поршня. В этих случаях возможно заклинивание поршней в цилиндрах, причем схватывания происходят, как правило, в направляющей части поршня (юбке) и реже распространяются в область кольцевого пояса.

Износ поршневых колец характеризуется уменьшением наружного диаметра и увеличением зазора в замке. Интенсивнее остальных изнашивается первое компрессионное кольцо, что обусловлено большей работой трения о стенку цилиндра и о стенку канавки поршня вследствие большего давления газов. Износ поршневых колец негативно сказывается на их уплотняющих и теплопередающих свойствах, что приводит к перегреву поршня и повреждению его рабочих поверхностей, снижению мощности двигателя, перерасходу топлива, появлению дыма в отработавших газах (при нормальном уровне масла в картере). Повышенный износ поршневых колец наблюдается в процессе приработки двигателя.

Сильный износ и задиры на поверхностях коренных и шатунных шеек коленчатого вала возникают вследствие неисправностей системы смазки двигателя, недостаточного уровня или низких эксплуатационных свойств применяемого моторного масла. Задиры всегда сопровождаются увеличением зазора в подшипниках, износом рабочих поверхностей с глубокими кольцевыми рисками, местным перегревом поверхности шейки. 

Опасность эксплуатации коленчатого вала с задирами и износом шеек связана с перегревом и возможностью изгиба коленчатого вала, нарушением соосности шеек и возникновением биения. В результате, как правило, требуется капитальный ремонт двигателя, шлифовка шеек коленчатого вала и установка утолщенных вкладышей, а в некоторых случаях – дорогостоящая замена вала.

Небольшое давление масла в системе смазки двигателя или его абсолютное отсутствие приводит к разогреву подшипников скольжения. Разрыв масляной пленки между вкладышами и шейками коленчатого вала влечет за собой приваривание вкладыша к шейке и его проворачиванию в опорах коленчатого вала (подшипники коренных шеек) или же нижней головке шатуна (подшипники шатунных шеек) с образованием глубоких задиров и катастрофического износа отверстий.

Прокладки головки блока цилиндров с металлическими поверхностями обладают устойчивостью при действии высоких температур и применяются для уплотнения соединений, подверженных высокому нагреву и давлению. При нагреве и охлаждении деталей КШМ в процессе работы двигателя происходят смещения блока относительно прокладки.

Это обусловливает ее постепенный износ. Кроме того, при длительной работе может происходить прикипание прокладки к поверхности блока или головки блока цилиндров и ее тепловое разрушение, вследствие чего ухудшается герметизация соединения указанных деталей и затрудняется демонтаж прокладки при ремонте автомобильного двигателя.

Таким образом, при повышенном износе деталей КШМ и неисправностях системы смазки эксплуатация автомобиля категорически запрещена и зачастую приводит к его заклиниванию и дорогостоящему ремонту.

Антифрикционные твердосмазочные покрытия MODENGY обеспечивают снижение интенсивности изнашивания узлов трения КШМ и уплотнительных прокладок при работе ДВС в экстремальных температурных условиях, под высокой нагрузкой и в случае возникновения неполадок системы смазки.

Снизить износ деталей КШМ автомобильного двигателя и повысить надежность его работы в аварийных режимах возможно путем нанесения антифрикционных покрытий на участки сопряжений подвижных деталей КШМ (направляющую часть рабочей поверхности поршней, поршневые кольца, шейки коленчатого вала) и рабочие поверхности уплотнительных элементов.

Применение антифрикционных покрытий для деталей кривошипно-шатунного механизма автомобильных двигателей

Антифрикционные твердосмазочные покрытия (АТСП) представляют собой дисперсии твердых смазочных веществ с очень малым размером частиц (дисульфид молибдена, графит и др. ) в неорганических или органических связующих агентах. Твердые смазочные материалы при нанесении связываются между собой и с поверхностью детали с помощью полимерной связующей матрицы и образуют после испарения растворителя сухую пленку со смазочными защитными функциями толщиной 5…20 мкм.
Типичный состав АТСП включает в себя:
  • Твердые смазочные материалы – 30 %
  • Связующие агенты – 12 %
  • Присадки – 3 %
  • Растворители – 55 %

Твердые смазки (пигменты) обеспечивают требуемое смазывание деталей сопряжения и выбираются в зависимости от требований к несущей способности и контактным нагрузкам в узлах. При высоких нагрузках (до 1000 Н/мм2 и более) в качестве смазочного материала применяется дисульфид молибдена MoS2 и/или графит. Связующие агенты (смолы) обеспечивают адгезию твердых смазок к поверхности металлов, обеспечивают химическую стойкость образованной антифрикционной пленки и защиту от коррозии. При  рабочих температурах сопряжения до 250 °С используются органические связующие, а при более высоких (до 600 °С) – неорганические. Присадки удаляют нежелательные, улучшают существующие либо придают покрытию новые свойства. Растворители (органические либо водные) удерживают АТСП в жидкой форме до нанесения на материал, регулируют вязкость в процессе нанесения и непосредственно процесс создания антифрикционной пленки, а также улучшают смачиваемость пигментов смолами.

При нанесении АТСП большое внимание уделяется предварительной обработке поверхности детали, призванной обеспечить условия для хорошей адгезии твердых смазочных материалов с основой.

В ассортименте компании Моденжи имеются специальные очистители на основе органических растворителей с добавлением функциональных компонентов. Очиститель&nbspметалла&nbspMODENGY используется для удаления любых загрязнений, включая нефтепродукты, адсорбированные пленки газа. Специальный&nbspочиститель&nbsp-&nbspактиватор&nbspMODENGY применяется для финишной подготовки поверхностей, обеспечивая наносимому следом АТСП лучшую адгезию и долговечность.

Хорошее сцепление с поверхностью обеспечивается механическим закреплением за ее микронеровности (увеличение шероховатости поверхности перед нанесением покрытия при этом приводит к увеличению площади контакта детали и твердых смазочных веществ). Улучшению адгезии также способствует поляризация частиц твердых смазочных материалов и образование между ними и материалом детали химических связей.

Способность к пленкообразованию АТСП ограничивается загрязнениями поверхности:
  • Пыль, мелкие частицы и частицы износа на поверхности детали приводят к образованию дефектов в образующемся антифрикционном слое
  • Органические загрязнители (масла, жировые следы от пальцев рук и т.п.) и частицы с низким поверхностным натяжением приводят к ухудшению адгезии
  • Неорганические загрязнители (например, соли, образующиеся на поверхности в результате процесса очистки) также приводят к ухудшению адгезии и образованию пузырьков в образующейся после отвердения АТСП антифрикционной пленке

Основными методами подготовки поверхности детали к нанесению АТСП являются обезжиривание, пескоструйная очистка (для очистки от следов коррозии и образования равномерной шероховатости поверхности), фосфатирование (для улучшения коррозионной защиты, адгезии и смазывания), травление, активирование, пассивирование, полоскание и сушка. При этом необходимо учитывать, что различные материалы деталей требуют применения различных методов предварительной обработки.

После нанесения жидкого АТСП на поверхность, оно подвергается отверждению и превращается в сухую пленку. В зависимости от состава покрытия отверждение происходит либо при комнатной температуре, либо при нагревании до +250 °С. Основными методами нанесения АТСП являются распыление, погружение, окунание с вращением (центрифугирование), нанесение покрытия валиком, трафаретная печать. Выбор метода нанесения является важным фактором образования прочного и стабильного антифрикционного слоя.

В узлах трения кривошипно-шатунного механизма АТСП MODENGY применяются для обеспечения высоких антифрикционных свойств пар трения и обеспечивают надежную работу сопряжений в режиме граничной смазки при высоких контактных давлениях, знакопеременном движении, запусках после продолжительного простоя. Дополнительным преимуществом применяемых антифрикционных твердосмазочных покрытий является обеспечение ими антиаварийной смазки, позволяющей избежать заклинивания двигателя при его работе в критических условиях перегрева, разрыва масляной пленки или при отсутствии жидкого смазочного материала в зоне трения.

Для защиты деталей цилиндропоршневой группы от задиров и износа при тяжелых условиях работы широко применяются антифрикционные покрытия MODENGY&nbspдля&nbspдеталей&nbspДВС, MODENGY&nbsp1006, MODENGY&nbsp1007. Покрытия поршней обладают высокой несущей способностью, длительной устойчивостью к бензину, моторным маслам и растворителям, обеспечивают защиту деталей от задиров и коррозии. 

Материалы пригодны к эксплуатации в широком диапазоне рабочих температур, являются идеальными средствами для получения долгосрочной смазочной пленки, уменьшающей износ поршней и стенок цилиндров ДВС. Антифрикционные твердосмазочные покрытия MODENGY поставляются в виде вязкой жидкости для нанесения способом трафаретной печати, погружением и другими способами. Аэрозольное АТСП MODENGY для деталей ДВС наносится методом распыления. Рекомендуемая толщина пленки составляет 10…20 мкм.

Покрытие MODENGY для деталей ДВС с высокодисперсным дисульфидом молибдена высокой степени очистки и графитом используется в юбках поршней дизельных и бензиновых двигателей, подшипниках скольжения (коренных подшипниках коленвала, втулках пальцев, распредвалов) в ДВС, дроссельной заслонке (для восстановления зазора), а также в других узлах трения цилиндро-поршневой группы с парами трения металл-металл. Оно обладает высокой адгезией, эффективно снижает потери на трения, препятствует износу и возникновению задиров на деталях. Покрытие устойчиво к длительному воздействию моторного масла, обладает свойствами антиаварийной смазки. Это АТСП является единственным покрытием для поршней, которое отверждается без нагрева, при комнатной температуре.

MODENGY&nbsp1006 представляет собой антифрикционное твердосмазочное покрытие с дисульфидом молибдена и поляризованным графитом на полимерном связующем, отверждаемое при нагреве. Используется в поршнях, подшипниках, кулачках и других деталях ДВС, эксплуатируемых в экстремальных условиях. АТСП обладает высокой износостойкостью при динамических нагрузках, низким коэффициентом трения и антикоррозионными свойствами. Покрытие устойчиво к воздействию моторных масел и других технических жидкостей.

Антифрикционное покрытие MODENGY&nbsp1007 на основе поляризованного графита и полимерного связующего отверждается при нагреве. Оно применяется для защиты поршней двигателя от скачкообразного движения, износа, задиров. Нанесение покрытия на юбки поршней способствует снижению шума и повышению плавности работы деталей.

Рекомендации по применению антифрикционных покрытий MODENGY  для деталей кривошипно-шатунного механизма автомобильных двигателей

Сервисные материалы для применения на юбках поршней должны соответствовать следующим требованиям:
  • Защита поршня и цилиндра от задиров и износа при тяжелых условиях работы (пуск при пониженных температурах, недостаток смазки, перегрев и т. п.)
  • Высокая несущая способность поверхности, износостойкость и термостойкость
  • Ускорение приработки
  • Долговременное смазывание
  •  Устойчивость к воздействию моторных масел
Для этого применения подойдут АТСП MODENGY для деталей ДВС на основе мелкодисперсного дисульфида молибдена высокой очистки и графита, отверждаемое при комнатной температуре, АТСП MODENGY&nbsp1006 на основе дисульфида молибдена и графита на полимерном связующем, отверждаемое при нагреве и АТСП MODENGY&nbsp1007 на основе поляризованного графита и полимерного связующего, отверждаемое при нагреве (для нанесения методом трафаретной печати).

Шейки коленчатого вала обрабатывают АТСП MODENGY для деталей ДВС, характеризующимся высокой износостойкостью и термостойкостью, устойчивостью к воздействию моторных масел.

На вкладыши коленчатого вала необходимо наносить покрытия с высокой смазывающей и несущей способностью, устойчивостью к нефтепродуктам, ускоряющими приработку. Здесь можно использовать АТСП  MODENGY для деталей ДВС и MODENGY&nbsp1006.

Шлицевые соединения, дроссельная заслонка и штоки клапанов обрабатываются АТСП MODENGY для деталей ДВС с высокой смазывающей и несущей способностью,
износостойкостью и термостойкостью, устойчивостью к воздействию моторных масел. 

Прокладка головки блока цилиндров обслуживается АТСП MODENGY&nbsp1006. Характеристики:

  • Высокие противоизносные свойства
  • Высокая прочность на сжатие
  • Термостойкость
  • Устойчивость к воздействию нефтепродуктов и охлаждающих жидкостей
  • Облегчение демонтажа
  • Увеличение герметичности 
Важно учесть, что этом материал подходит для применения только на металлических прокладках.

Опыт применения антифрикционных покрытий для деталей кривошипно-шатунного механизма автомобильных двигателей

Антифрикционные покрытия MODENGY для деталей кривошипно-шатунного механизма автомобильных двигателей доказали свою эффективность многочисленными испытаниями и опытом эксплуатации.

Антифрикционные твердосмазочные покрытия MODENGY были использованы при серийном производстве поршней на крупнейшем моторном заводе. Покрытия наносились методом трафаретной печати.

Опытом эксплуатации установлено очевидное уменьшение потерь на трение и снижение интенсивности изнашивания деталей кривошипно-шатунного механизма автомобильных двигателей при использовании антифрикционных покрытий MODENGY. Они позволяют снизить расход топлива, повысить мощность и надежность двигателя, а также существенно сократить расходы на ремонтные работы.

Основные детали (КШМ) кривошипно шатунного механизма Коленчатые валы и маховики. Тема 2.5. Урок 11

1. Тема 2.5. Основные детали (КШМ) кривошипно шатунного механизма Коленчатые валы и маховики.

Опрос:
Шатуны,
конструкция,изготовление,
материал,смазка.
Шатуны изготавливают из углеродистой стали марок
35, 40, 45 из легированных сталей марок 40ХН,
18Х2Н4ВА штамповкой либо ковкой.
Шатун состоит из верхней (поршневой головки,
стержня и нижней (кривошипной головки)). Верхняя
головка выполнена заодно со стержнем, а нижняя
может быть разъёмной либо отъёмной. Кривошипную
головку крепят шатунными болтами.
При ковке поперченное сечение шатуна круглое,
при штамповке двутавровое.
Площадь сечения стержня шатуна вверху меньше
чем внизу.
Внутри стержни сверлят канал для масла, в
двутавровых для этих целей используют трубку.

2. Тема 2.5. Основные детали (КШМ) кривошипно шатунного механизма Коленчатые валы и маховики.

а) Верхняя головка
Внутрь поршневой головки запрессовывают втулку
образующую головной подшипник шатуна. (ВГШ)
втулка. Материал втулок оловянисто-фосфористая
бронза Бр ОФ 6,5 – 0,15 и Бр ОФ 10 – 1 или из стали с
заплавкой внутри свинцовистой бронзой. У большинства
двигателей втулки стопорят винтами.
б) Нижняя головка.
Она несёт в себе кривошипный подшипник шатуна. В
случае, если головка выполнена отъёмной, кривошипный
подшипник образуется непосредственной заплавкой
антифрикционным сплавом её верхней и нижней
половинок. При отъёмной головке можно регулировать
степень сжатия в цилиндре изменением толщины
прокладки 7 под пяткой шатуна.

3. Тема 2.5. Основные детали (КШМ) кривошипно шатунного механизма Коленчатые валы и маховики.

Требования к шатунным болтам
Шатунные болты должны быть чисто обработаны, не иметь резких переходов от
одного сечения к другому, рисок, царапин, забоев. Резьба делается мелкой и чистой,
без заусенцев и задиров.
Шатунные болты затягивают с определённой силой, указываемой в инструкции,
динамометрическим ключом. Длинна болта контролируется микрометрической скобой:
появление остаточного удлинения является браковочным признаком болта. Гайки
болтов должны надёжно шплинтоваться , причём применение шплинта
несоответствующего размера не допускается.
В срок указанный в инструкции по эксплуатации дизеля, шатунные болты
необходимо заменять независимо от внешнего состояния.
Пренебрежение сроками смены шатунных болтов
весьма опасно.

4. Тема 2.5. Основные детали (КШМ) кривошипно шатунного механизма Коленчатые валы и маховики.

Коленчатые валы
изготавливаются ковкой или
штамповкой из углеродистой
стали 45 и 50 Г, 35, 40, 40Х и
18ХНВА.
Чтобы повысить износостойкость
шеек вала, шейки подвергают
поверхностной закалке ТВЧ, с той
же целью их азотируют.
Стоимость коленвала иногда
доходит о 25-30% общей
стоимости двигателя.
Конструкция коленвала.
Кривошипы (мотыли колена) вала
состоят из рамовых 4 и 6 шеек,
щёк 2 и 5 и шатунной
(кривошипной шейки).

5. Тема 2.5. Основные детали (КШМ) кривошипно шатунного механизма Коленчатые валы и маховики.

Коленчатый вал используется для
канализации масла из рамового
подшипника в кривошипный. В
простейшем случае, для этого сверлят
канал
Однако масло выходит из канала лишь в
одной точке шатунной шейки, в связи с чем
в кривошипном подшипнике, требуется
нежелательная кольцевая канавка. Чтобы
исключить необходимость её, делают
вывод масла к двум точкам шейки двумя
каналами направленными наклонно по
отношению к оси кривошипа с тем, чтобы
не затрагивать наиболее нагруженные
волокна материала шейки.
С той же целью в рамовом подшипнике
предусмотрены два входных канала.

6. Тема 2.5. Основные детали (КШМ) кривошипно шатунного механизма Коленчатые валы и маховики.

К коленчатому валу крепится
маховик и какой либо из валов
валопровода. Для этой цели
кормовой конец вала имеет
фланец. Чтобы не было утечки
масла из картера вдоль вала
наружу, вал снабжается
маслоотражателем, с которого под
действием центробежной силы
сбрасывается масло. Валы
нереверсивных двигателей часто
имеют ещё участок с
маслосгонной резьбой
заставляющей масло двигающееся
по ней, возвращаться в картер.

7. Тема 2.5. Основные детали (КШМ) кривошипно шатунного механизма Коленчатые валы и маховики.

У реверсивных двигателей
применять маслосгонную резьбу
невозможно, поэтому применяют
установку маслосбрасывающего
диска, маслосбрасывающего
гребня, уплотнительного кольца в
фланце.
Носовые концы коленчатых валов
используют для привода
вспомогательных агрегатов
(насосов, компрессора) иногда для
привода распределительного вала.

8. Тема 2.5. Основные детали (КШМ) кривошипно шатунного механизма Коленчатые валы и маховики.

У многоцилиндрового двигателя порядок работы цилиндров может быть
разным. При выборе порядка работы стремятся облегчить работу рамовых
подшипников.
Для этого нужно, чтобы не следовали один за другим рабочие хода в
цилиндрах, стоящие рядом: когда в цилиндре, скажем, справа от подшипника
будет вспышка, то в цилиндре слева от него будет ещё значительное давление
второй половины такта расширения. Если в цилиндре слева будет, например,
такт выпуска или впуска, то рамовый подшипник будет загружен меньше. Это
может быть тогда, когда цилиндры не будут работать подряд, а например, в
очень распространённой последовательности 1-5-3-6-2-4.
Выбирая порядок работы
цилиндров, стремятся также
обеспечить наиболее
полной уравновешенности
шатунного механизма.

9. Тема 2.5. Основные детали (КШМ) кривошипно шатунного механизма Коленчатые валы и маховики.

10. Тема 2.5. Основные детали (КШМ) кривошипно шатунного механизма Коленчатые валы и маховики.

11. Тема 2.5. Основные детали (КШМ) кривошипно шатунного механизма Коленчатые валы и маховики.

Маховики.
Для получения большего момента инерции при
одинаковой массе основная масса металла
сосредоточена в ободе маховика.
Маховик крепится к фланцу коленчатого вала
шпильками. На обод маховика наносится
градуиировка, позволяющая определить углы
поворота вала при регулировочных работах.
Кроме того, в нём предусматриваются
отверстия или зубцы для проворачивания вала
вручную. Согласно ГОСТ 10150-75 главные
судовые двигатели снабжаются механическим
или ручным валоповоротным устройством,
причём должна быть исключена возможность
пуска двигателя при включенном
валоповоротном устройстве.

12. Тема 2.5. Основные детали (КШМ) кривошипно шатунного механизма Коленчатые валы и маховики.

Кривошипно-шатунный механизм, назначение и детали и узлы КШМ

Кривошипно-шатунный механизм

Кривошипно-шатунный механизм воспринимает давление расширяющихся газов при такте сгорание — расширение и преобразовывает прямолинейное, возвратно-поступательное движение поршня во вращательное движение коленчатого вала.

Кривошипно-шатунный механизм состоит из:

• блока цилиндров с картером;

• головки цилиндров;

• поршней с кольцами;

• поршневых пальцев;

• шатунов;

• коленчатого вала;

• маховика;

• поддона картера.

Блок цилиндров отливают заодно с картером. И он является базисной деталью двигателя, к которой крепятся кривошипно-шатунный, газораспределительный механизмы и все навесные приборы и агрегаты двигателя (рис. 4).

Рис. 4. Головка и блок цилиндров двигателя

Изготовляют его из серого чугуна, реже из алюминиевого сплава силумина. В отливке блок-картера выполнены полости для смывания охлаждающей жидкостью стенок гильз цилиндров. Сами же гильзы могут быть вставными, изготовленными из жаростойкой стали или же отлитыми заодно с чугунным блок-картером. Блоки из алюминиевых сплавов изготовляются только со вставными гильзами. Внутренняя поверхность гильз служит направляющей для перемещения поршня, она тщательно шлифуется и называется зеркалом. Уплотнение гильз осуществляется с помощью колец из специальной резины или меди. Вверху уплотнение гильз достигается за счет прокладки головки цилиндров. Увеличение срока службы гильз цилиндров достигается в результате запрессовки в верхнюю их часть, как работающую в наиболее тяжелых условиях (высокая температура и агрессивная газовая среда), коротких тонкостенных вставок из кислотоупорного чугуна. Этим достигается снижение износа верхней части гильзы в четыре раза.

Снизу картер двигателя закрыт поддоном, выштампованным из листовой стали, уплотненным прокладкой из картона или пробковой крошки. Поддон используется в качестве резервуара для моторного масла и служит защитой картера от попадания грязи и пыли.

Головка цилиндров закрывает цилиндры сверху. На ней размещены детали газораспределительного механизма, камеры сгорания, выполнены отверстия под свечи или форсунки, запрессованы направляющие втулки и седла клапанов. Для охлаждения камер сгорания в головке вокруг них выполнена специальная полость.

Для создания герметичности плоскость разъема между головками и блоком цилиндров уплотнена стальными или сталеасбестовыми прокладками, а крепление осуществляется шпильками с гайками.

Головки отлиты из алюминиевого сплава (AЛ-4) или чугуна. Сверху они накрыты клапанной крышкой из штампованной стали или алюминиевого сплава, уплотненной пробковой или маслобензостойкой резиновой прокладкой.

Двигатели с однорядным расположением цилиндров имеют одну головку цилиндров, двигатели с V-образным расположением имеют отдельные головки на каждый ряд цилиндров, либо на группу из нескольких цилиндров, либо отдельную головку на каждый цилиндр.

Поршень воспринимает давление расширяющихся газов при рабочем такте и передает его через поршневой палец и шатун на коленчатый вал двигателя. Представляет собой перевернутый днищем вверх цилиндрический стакан, отлитый из высококремнистого алюминиевого сплава.

Поршень имеет днище, уплотняющую и направляющую (юбку) части (рис. 5). Днище и уплотняющая часть составляют головку поршня, в которой проточены канавки для поршневых колец. Днище поршня с головкой цилиндров формируют камеру сгорания и работают в крайне тяжелых температурных условиях из-за недостаточного охлаждения. Для некоторых моделей двигателей поршни изготовляют со вставкой из специального жаропрочного чугуна для верхнего компрессионного кольца и выполняют в днище поршня тороидальные камеры сгорания с выемками для предотвращения касания днища поршня с клапанами. Ниже головки выполнена юбка, направляющая движение поршня. В юбке поршня имеются бобышки с отверстиями под поршневой палец.

Конструкция поршня должна исключать его заклинивание при тепловом расширении работающего двигателя. С этой целью головку поршня выполняют меньшего диаметра, чем юбку, которую изготовляют овальной формы с большой осью, перпендикулярной оси поршневого кольца. В некоторых поршнях юбка имеет разрез, предотвращающий заклинивание поршня при работе прогретого двигателя. На юбку поршня может наноситься коллоидно-графитовое покрытие для предохранения от задиров зеркала цилиндра и улучшения приработки.

Поршневые кольца устанавливаются двух типов: компрессионные и маслосъемные. Компрессионные кольца служат для уплотнения поршня в гильзе цилиндра и предот вращения прорыва газов из камеры сгорания в картер двигателя. Маслосъемные кольца служат для снятия излишков масла с зеркала цилиндра и не допускают его попадания в камеру сгорания.

Поршневые кольца изготовляются из белого чугуна, а маслосъемные могут быть выполнены из стали. Для повышения износостойкости верхнее компрессионное кольцо подвергается пористому хромированию, а остальные для ускорения приработки покрыты слоем олова или молибдена.

Кольца имеют разрез (замок) для установки на поршень. Количество компрессионных колец, устанавливаемых на поршнях, может быть неодинаково для различных моделей двигателей, обычно два или три кольца. Маслосъемные кольца устанавливаются по одному на поршень. Они состоят из четырех элементов: из двух стальных разрезных колец, одного стального гофрированного осевого и одного радиального расширителей (рис. 5).

Поршневые кольца могут иметь различную геометрическую форму. Компрессионные кольца могут быть прямоугольного сечения, иметь коническую форму и выточку на верхней внутренней кромке кольца. Маслосъемные кольца также имеют различную форму: коническую, скребковую и пластинчатую с расширителями. Кроме того, маслосъемные кольца имеют сквозные прорези для прохода масла через канавку внутрь поршня. Канавка поршня для маслосъемного кольца имеет один или два ряда отверстий для отвода масла.

Рис. 5. Детали поршневой группы двигателя

Поршневой палец плавающего типа обеспечивает шарнирное соединение поршня с шатуном и удерживается от осевого смещения в бобышках поршня стопорными кольцами. Палец имеет форму пустотелого цилиндра, изготовлен из хромоникелевой стали. Поверхность его упрочнена цементацией и закалена токами высокой частоты.

Шатун служит для соединения поршня с коленчатым валом двигателя и для передачи при рабочем ходе давления расширяющихся газов от поршня к коленчатому валу. Во время вспомогательных тактов от коленчатого вала через шатун приводится в действие поршень.

Шатун (рис. 6) состоит из верхней неразъемной головки с запрессованной втулкой из оловянистой бронзы и разъемной нижней головки, в которую вставлены тонкостенные стальные вкладыши, залитые слоем антифрикционного сплава. Головки шатуна соединяются стержнем двутаврового сечения. Нижняя разъемная головка шатуна с помощью крышки закрепляется на шатунной шейке коленчатого вала. Шатун и его крышки изготовлены из легированной или углеродистой стали.

Крышка обрабатывается в сборе с шатуном. Номер на шатуне и метка на его крышке всегда должны быть обращены в одну сторону. При сборке V-образных двигателей необходимо помнить, что шатуны правого ряда цилиндров обращены номерами назад по ходу автомобиля, а левого ряда — вперед и совпадают с надписью на поршне

«Вперед».

Нижняя головка шатуна и крышка соединяются болтами и шпильками со специальными стопорными шайбами. Гайки имеют резьбу несколько отличную от резьбы шпилек и болтов, что обеспечивает самостопорение резьбового соединения. Вкладыши нижней головки шатуна выполнены из стальной или сталеалюминиевой ленты, покрытой антифрикционным слоем. В качестве покрытия используют свинцовые сплавы, свинцовистую бронзу или алюминиевый сплав АМО-1-20. От проворачивания в нижней головке шатуна вкладыши удерживаются выступами (усиками), которые фиксируются в канавках, выфрезерованных в шатуне и его крышке. Коленчатый вал воспринимает усилия, передаваемые шатунами от поршней, и преобразует их в крутящий момент, который через маховик передается агрегатам трансмиссии автомобиля.

Рис. 6. Шатун

Коленчатый вал (рис. 7) состоит из шатунных и коренных шеек, соединенных щеками с противовесами, фланца для крепления маховика. На переднем кольце коленчатого вала (носок) имеются шпоночные пазы для закрепления распределительной шестерни и шкива привода вентилятора, а также отверстие для установки храповика пусковой рукоятки. Шатунная шейка со щеками образует кривошип (или колено) вала. Расположение кривошипов обеспечивает равномерное чередование рабочих ходов поршня в различных цилиндрах.

Коленчатые валы штампуют из стали или отливают из высокопрочного магниевого чугуна. Шейки выполняются полыми для уменьшения центробежных сил и используются как грязеуловители для моторного масла. Шейки коленчатого вала шлифуют и полируют, поверхность закаливается токами высокой частоты. Щеки вала имеют сверления для подвода масла к трущимся поверхностям коренных и шатунных шеек коленчатого вала.

Коленчатые валы, у которых каждая шатунная шейка имеет с двух сторон коренные шейки, называются полноопорными.

Продольное перемещение коленчатого вала при его тепловом расширении ограничивается упорными сталебаббитовыми шайбами, которые устанавливаются по обе стороны первого коренного подшипника или четырьмя сталеалюминиевыми полукольцами, установленными в вытачке задней коренной опоры вала.

Рис. 7. Коленчатый вал\

Для предотвращения утечки масла на концах коленчатого вала устанавливаются маслоотражатели и сальники. Предусматриваются также маслосгонные спиральные канавки и маслоотражательный буртик.

Вкладыши коренных подшипников имеют такую же конструкцию, как и вкладыши шатунных подшипников. У двигателей с блоками, выполненными из алюминиевых сплавов, крышки коренных подшипников выполняют из чугуна для предотвращения заклинивания коленчатого вала при низких температурах.

Крышки коренных подшипников растачивают совместно с блоком цилиндров и при сборке двигателя их устанавливают только на свои места, не меняя положения.

Маховик служит для уменьшения неравномерности работы двигателя, вывода поршней из мертвых точек, облегчения пуска двигателя и способствует плавному троганию автомобиля с места.

Маховик представляет собой массивный диск, отлитый из чугуна, на обод которого напрессован стальной зубчатый венец, предназначенный для вращения коленчатого вала стартером при пуске двигателя. Для исключения нарушения установочной балансировки маховик крепится болтами к фланцу коленчатого вала на несимметрично расположенных

штифтах.

Поддон картера является резервуаром для моторного масла и предохраняет картер двигателя от попадания пыли и грязи.

Поддон штампуют из листовой стали или отливают из алюминиевых сплавов. Для герметизации плоскости разъема между картером и поддоном устанавливают пробковые

или маслобензостойкие прокладки. Поддон крепится болтами или шпильками.

Крепление двигателя к раме или несущему кузову должно быть надежным и амортизировать толчки, возникающие при работе двигателя и движении автомобиля. В качестве опор применяют специальные кронштейны (лапы), под которые устанавливают одну или две резиновые подушки или пружины. Двигатели могут быть закреплены на раме в трех или четырех точках. Часто для фиксации двигателя используются тяги или скобы.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Для чего служит кривошипно-шатунный механизм?

2. Из каких основных деталей состоит кривошипно-шатунный механизм?

3. Назвать основные детали поршневой группы и описать их устройство.

4. Как устроены шатун и коленчатый вал ?

5. Каким образом осуществляется крепление двигателя на автомобиле?

Кривошипно-шатунный механизм (КШМ) — назначение и принцип работы, конструкция, основные детали КШМ

Назначение и характеристика

Кривошипно-шатунным называется механизм, осуществляющий рабочий процесс двигателя.

Кривошипно-шатунный механизм предназначен для преобразования возвратно-поступательного движения поршней во вращательное движение коленчатого вала.

Кривошипно-шатунный механизм определяет тип двигателя по расположению цилиндров.

В двигателях автомобилей применяются различные кривошипно-шатунные механизмы (рисунок 1): однорядные кривошипно-шатунные механизмы с вертикальным перемещением поршней и с перемещением поршней под углом применяются в рядных двигателях; двухрядные кривошипно-шатунные механизмы с перемещением поршней под углом применяются в V-образных двигателях; одно- и двухрядные кривошипно-шатунные механизмы с горизонтальным перемещением поршней находят применение в тех случаях, когда ограничены габаритные размеры двигателя по высоте.

Рисунок 1 – Типы кривошипно-шатунных механизмов, классифицированных по различным признакам.

Конструкция кривошипно-шатунного механизма.

В кривошипно-шатунный механизм входят блок цилиндров с картером и головкой цилиндров, шатунно-поршневая группа и коленчатый вал с маховиком.

Блок цилиндров 11 (рисунок 2) с картером 10 и головка 8 цилиндров являются неподвижными частями кривошипно-шатунного механизма.

К подвижным частям механизма относятся коленчатый вал 34 с маховиком 43 и детали шатунно-поршневой группы – поршни 24, поршневые кольца 18 и 19, поршневые пальцы 26 и шатуны 27.

Рисунок 2 – Кривошипно-шатунный механизм двигателей легковых автомобилей

1, 6 – крышки; 2 – опора; 3, 9 – полости; 4, 5 – прокладки; 7 – горловина; 8, 22, 28, 30 – головки; 10 – картер; 11 – блок цилиндров; 12 – 16, 20 – приливы; 17, 33 – отверстия; 18, 19 – кольца; 21 – канавки; 23 – днище; 24 – поршень; 25 – юбка; 26 – палец; 27 – шатун; 29 – стержень; 31, 42 – болты; 32, 44 – вкладыши; 34 – коленчатый вал; 35, 40 – концы коленчатого вала; 36, 38 – шейки; 37 – щека; 39 – противовес; 41 – шайба; 43 – маховик; 45 – полукольцо

Блок цилиндров вместе с картером является остовом двигателя. На нем и внутри него размещаются механизмы и устройства двигателя. В блоке 11, выполненном заодно с картером 10 из специального низколегированного чугуна, изготовлены цилиндры двигателя. Внутренние поверхности цилиндров отшлифованы и называются зеркалом цилиндров. Внутри блока между стенками цилиндров и его наружными стенками имеется специальная полость 9, называемая рубашкой охлаждения. В ней циркулирует охлаждающая жидкость системы охлаждения двигателя.

Внутри блока также имеются каналы и масляная магистраль смазочной системы, по которой подводится масло к трущимся деталям двигателя. В нижней части блока цилиндров (в картере) находятся опоры 2 для коренных подшипников коленчатого вала, которые имеют съемные крышки 1, прикрепляемые к блоку самоконтрящимися болтами. В передней части блока расположена полость 3 для цепного привода газораспределительного механизма. Эта полость закрывается крышкой, отлитой из алюминиевого сплава. В левой части блока цилиндров находятся отверстия 17 для подшипников вала привода масляного насоса, в которые запрессованы свертные сталеалюминиевые втулки. С правой стороны блока в передней его части имеются фланец для установки насоса охлаждающей жидкости и кронштейн для крепления генератора. На блоке цилиндров имеются специальные приливы для: 12 – крепления кронштейнов подвески двигателя; 13 – маслоотделителя системы вентиляции картера двигателя; 14 – топливного насоса; 15 – масляного фильтра; 16 – распределителя зажигания. Снизу блок цилиндров закрывается масляным поддоном, а к заднему его торцу прикрепляется картер сцепления. Для повышения жесткости нижняя плоскость блока цилиндров несколько опущена относительно оси коленчатого вала.

В отличие от блока, отлитого совместно с цилиндрами, на рисунке 3 представлен блок 4 цилиндров с картером 5, отлитые из алюминиевого сплава отдельно от цилиндров. Цилиндрами являются легкосъемные чугунные гильзы 2, устанавливаемые в гнезда 6 блока с уплотнительными кольцами 1 и закрытые сверху головкой блока с уплотнительной прокладкой.

Рисунок 3 – Блок двигателя со съемными гильзами цилиндров

1 – кольцо; 2 – гильза; 3 – полость; 4 – блок; 5 – картер; 6 – гнездо

Внутренняя поверхность гильз обработана шлифованием. Для уменьшения изнашивания в верхней части гильз установлены вставки из специального чугуна.

Съемные гильзы цилиндров повышают долговечность двигателя, упрощают его сборку, эксплуатацию и ремонт.

Между наружной поверхностью гильз цилиндров и внутренними стенками блока находится полость 3, которая является рубашкой охлаждения двигателя. В ней циркулирует охлаждающая жидкость, омывающая гильзы цилиндров, которые называются мокрыми из-за соприкосновения с жидкостью.

Головка блока цилиндров закрывает цилиндры сверху и служит для размещения в ней камер сгорания, клапанного механизма и каналов для подвода горючей смеси и отвода отработавших газов. Головка 8 блока цилиндров (см. рисунок 2) выполнена общей для всех цилиндров, отлита из алюминиевого сплава и имеет камеры сгорания клиновидной формы. В ней имеются рубашка охлаждения и резьбовые отверстия для свечей зажигания. В головку запрессованы седла и направляющие втулки клапанов, изготовленные из чугуна. Головка крепится к блоку цилиндров болтами. Между головкой и блоком цилиндров установлена металлоасбестовая прокладка 4, обеспечивающая герметичность их соединения. Сверху к головке блока цилиндров шпильками крепится корпус подшипников с распределительным валом, и она закрывается стальной штампованной крышкой 6 с горловиной 7 для заливки масла в двигатель. Для устранения течи масла между крышкой и головкой блока цилиндров установлена уплотняющая прокладка 5. С правой стороны к головке блока цилиндров крепятся шпильками через металлоасбестовую прокладку впускной и выпускной трубопроводы, отлитые соответственно из алюминиевого сплава и чугуна.

Поршень служит для восприятия давления газов при рабочем ходе и осуществления вспомогательных тактов (впуска, сжатия, выпуска). Поршень 24 представляет собой полый цилиндр, отлитый из алюминиевого сплава. Он имеет днище 23, головку 22 и юбку 25. Снизу днище поршня усилено ребрами. В головке поршня выполнены канавки 21 для поршневых колец.

В юбке поршня находятся приливы 20 (бобышки) с отверстиями для поршневого пальца. В бобышках поршня залиты стальные термокомпенсационные пластины, уменьшающие расширение поршня от нагрева и исключающие его заклинивание в цилиндре двигателя. Юбка сделана овальной в поперечном сечении, конусной по высоте и с вырезами в нижней части. Овальность и конусность юбки так же, как и термокомпенсационные пластины, исключают заклинивание поршня, а вырезы – касание поршня с противовесами коленчатого вала. Кроме того, вырезы в юбке уменьшают массу поршня. Для лучшей приработки к цилиндру наружная поверхность юбки поршня покрыта тонким слоем олова. Отверстие в бобышках под поршневой палец смещено относительно диаметральной плоскости поршня. Посредством этого уменьшаются перекашивание и удары при переходе его через верхнюю мертвую точку (ВМТ).

Поршни двигателей легковых автомобилей могут иметь днища различной конфигурации с целью образования вместе с внутренней поверхностью головки цилиндров камер сгорания необходимой формы. Днища поршней могут быть плоскими, выпуклыми, вогнутыми и с фигурными выемками.

Поршневые кольца уплотняют полость цилиндра, исключают прорыв газов в картер двигателя (компрессионные 19) и попадание масла в камеру сгорания (маслосъемное 18). Кроме того, они отводят теплоту от головки поршня к стенкам цилиндра. Компрессионные и маслосъемные кольца – разрезные. Они изготовлены из специального чугуна. Вследствие упругости кольца плотно прилегают к стенкам цилиндра. При этом между разрезанными концами колец (в замках) сохраняется небольшой зазор (0,2…0,35 мм).

Верхнее компрессионное кольцо, работающее в наиболее тяжелых условиях, имеет бочкообразное сечение для улучшения его приработки. Наружная поверхность его хромирована для повышения износостойкости.

Нижнее компрессионное кольцо имеет сечение скребкового типа (на его наружной поверхности выполнена проточка) и фосфатировано. Кроме основной функции, оно выполняет также дополнительную – маслосбрасывающего кольца.

Маслосъемное кольцо на наружной поверхности имеет проточку и щелевые прорези для отвода во внутреннюю полость поршня масла, снимаемого со стенок цилиндра. На внутренней поверхности оно имеет канавку, в которой устанавливается разжимная витая пружина, обеспечивающая дополнительное прижатие кольца к стенкам цилиндра двигателя.

Поршневой палец служит для шарнирного соединения поршня с верхней головкой шатуна. Палец 26 – трубчатый, стальной. Для повышения твердости и износостойкости его наружная поверхность подвергается цементации и закаливается токами высокой частоты. Палец запрессовывается в верхнюю головку шатуна с натягом, что исключает его осевое перемещение в поршне, в результате которого могут быть повреждены стенки цилиндра. Поршневой палец свободно вращается в бобышках поршня.

Шатун служит для соединения поршня с коленчатым валом и передачи усилий между ними. Шатун 27 – стальной, кованый, состоит из неразъемной верхней головки 28, стержня 29 двутаврового сечения и разъемной нижней головки 30. Нижней головкой шатун соединяется с коленчатым валом. Съемная половина нижней головки является крышкой шатуна и прикреплена к нему двумя болтами 31. В нижнюю головку шатуна вставляют тонкостенные биметаллические, сталеалюминиевые вкладыши 32 шатунного подшипника. В нижней головке шатуна имеется специальное отверстие 33 для смазывания стенок цилиндра.

Коленчатый вал воспринимает усилия от шатунов и передает создаваемый на нем крутящий момент трансмиссии автомобиля. От него также приводятся в действие различные механизмы двигателя (газораспределительный механизм, масляный насос, распределитель зажигания, насос охлаждающей жидкости и др.).

Коленчатый вал 34 – пятиопорный, отлит из специального высокопрочного чугуна. Он состоит из коренных 35 и шатунных 38 шеек, щек 37, противовесов 39, переднего 35 и заднего 40 концов. Коренными шейками коленчатый вал установлен в подшипниках (коренных опорах) картера двигателя, вкладыши 44 которых тонкостенные, биметаллические, сталеалюминиевые.

К шатунным шейкам коленчатого вала присоединяют нижние головки шатунов. Шатунные подшипники смазываются по каналам, соединяющим коренные шейки с шатунными. Щеки соединяют коренные и шатунные шейки коленчатого вала, а противовесы разгружают коренные подшипники от центробежных сил неуравновешенных масс.

На переднем конце коленчатого вала крепятся: ведущая звездочка цепного привода газораспределительного механизма; шкив ременной передачи для привода вентилятора, насоса охлаждающей жидкости, генератора; храповик для поворачивания вала вручную пусковой рукояткой. В заднем конце коленчатого вала имеется специальное гнездо для установки подшипника первичного (ведущего) вала коробки передач. К торцу заднего конца вала с помощью специальной шайбы 41 болтами 42 крепится маховик 43.

От осевых перемещений коленчатый вал фиксируется двумя опорными полукольцами 45, которые установлены в блоке цилиндров двигателя по обе стороны заднего коренного подшипника. Причем с передней стороны подшипника ставится сталеалюминиевое кольцо, а с задней – из спеченных материалов (металлокерамическое).

Маховик обеспечивает равномерное вращение коленчатого вала, накапливает энергию при рабочем ходе для вращения вала при подготовительных тактах и выводит детали кривошипно-шатунного механизма из мертвых точек. Энергия, накопленная маховиком, облегчает пуск двигателя и обеспечивает трогание автомобиля с места. Маховик 43 представляет собой массивный диск, отлитый из чугуна. На обод маховика напрессован стальной зубчатый венец, предназначенный для пуска двигателя электрическим стартером. К маховику крепятся детали сцепления. Маховик, будучи деталью кривошипно-шатунного механизма, является также одной из ведущих частей сцепления.

Другие статьи по системам двигателя

Amazon.

com: ЗИЛ-131 КШМ в масштабе 1/35 ICM, Автомобиль Советской Армии


Цена: 69 долларов.92 + Депозит без импортных пошлин и доставка в Российскую Федерацию $ 22,25 Подробности
  • Убедитесь, что это подходит введя номер вашей модели.
  • Этот модельный комплект может потребовать сборки и покраски. Цемент, инструменты и краска не включены. Содержит мелкие детали, рекомендуется для детей от 14 лет. Уровень мастерства 3. ЭТО НЕ ИГРУШКА.
  • Наклейки включены для дополнительной детализации и реализма.
  • Очень подробно. Детали имеют пластиковую текстуру, напоминающую другие материалы.
  • Иллюстрированная инструкция по сборке и схема окраски прилагаются.
  • Новые формы! Более точный и подробный. Требуется меньше очистки.
Принято

мест | Удостоверение Pioneer

Принятые местоположения

Flex можно использовать как в университетском городке, так и за его пределами. Щелкните здесь, чтобы получить дополнительную информацию об учетной записи Flex. Covid 19 повлиял на многие рестораны и предприятия, и это может повлиять на некоторые услуги Flex за пределами кампуса. Пожалуйста, свяжитесь с отдельными офисами для получения подробной информации.

Денежные средства по плану питания

можно использовать только для покупок в местах общественного питания на территории кампуса.

Блюда можно использовать в залах Столетия, Нельсона и Нагеля. Щелкните здесь, чтобы узнать часы работы и информацию.

План питания Денежный

Ваш счет Meal Plan Cash можно использовать в следующих местах на территории кампуса:

Столовая
  • Столовая общежития
  • Универсальные магазины (залы J-Mac и Centennial)
  • Кафе на крыльце (Академическое сообщество Андерсона)
  • Бейглы братьев Эйнштейн (Бизнес-колледж Дэниэлса)
  • Кафе юридической школы

Щелкните здесь, чтобы узнать часы работы и информацию.

Flex на территории кампуса

Ваш аккаунт Flex можно использовать в следующих местах на территории кампуса:

Розничная торговля
  • Книжный магазин
  • Копировальные аппараты (Академическая библиотека Андерсона, Юридическая библиотека и Музыкальная библиотека)
  • Парковочные услуги (разрешения и штрафы)
  • Центр быстрого копирования
  • Фитнес-центр Coors ⁄ Joy Burns Arena
  • Pioneer ID Card Office
  • Бобовое кафе (KSHM & JKIS)
  • Pio Gears Underground (Магазин велосипедов Nagel)
Столовая
  • Столовая общежития
  • Универсальные магазины (залы J-Mac и Centennial)
  • Кафе на крыльце (Академическое сообщество Андерсона)
  • Бейглы братьев Эйнштейн (Бизнес-колледж Дэниэлса)
  • Кафе юридической школы
  • WOW (Дэниел Ф. Ричи SECS)
  • Сэкономьте 18% на всех покупках в этих местах при использовании Flex!

Нажмите здесь, чтобы узнать часы и информацию

Flex вне кампуса

Ваш аккаунт Flex можно использовать в следующих местах за пределами кампуса.Covid 19 повлиял на многие рестораны и предприятия, и это может повлиять на некоторые услуги Flex за пределами кампуса. Пожалуйста, свяжитесь с отдельными офисами для получения подробной информации.

7-Eleven
2363 E Evans Ave
Denver, CO 80210
303-722-1342

Любая покупка на сумму более 5 долларов США получит БЕСПЛАТНЫЙ кофе, БОЛЬШОЙ ГЛОП или СЛУРП.

Рогалики Брюггера
2000 S. University Blvd.
Денвер, Колорадо 80210
303-777-7600
Conoco
2001 С.Университетский бул.
Денвер, CO 80210
303-722-8801

Flex нельзя использовать для покупки газа.

Малиновый и золотой
2017 S. University Blvd.
Денвер, Колорадо 80210
720-379-5454
Незаконный Пит
1744 E. Evans Ave.
Денвер, Колорадо 80210
720-974-2198

Печенье от бессонницы
2075 S. University Blvd.
Денвер, Колорадо 80210

Кофе Кейта
2450 с.Даунинг-стрит
Денвер, Колорадо 80216
303-733-4496

Получите скидку 10% при использовании Flex.

Маленькая Индия
2390 S. Downing St.
Denver, CO 80210
303-298-1939

Купите 1 блюдо, получите 2-е блюдо равной или меньшей стоимости бесплатно.

Действительно с воскресенья по четверг. Действительно только в локации Даунинг. Не более одного на стол. Не действителен с любыми другими предложениями. Только ужин.

Последний бой Горчицы
2081 S. University Blvd.
Денвер, Колорадо 80210
303-722-7936

Модерн воск
2222 с.Альбион Стрит
Денвер, Колорадо 80226
303-758-9883

Первые покупатели получают скидку 15% и 10% скидку постоянным покупателям.

Пицца Папы Джона
1505 E Evans Ave
Denver, CO 80210
303-778-6262
Бутерброды Снарфа
1729 E.Evans Ave.
Денвер, Колорадо 80210
303-777-1664
Придорожный дом Спанки
1800 E. Evans Ave.
Denver, CO 80210
303-733-6886

ЗиЛ131 КШМ Советская Армия Автомобиль 1/35 ICM Models

ЗиЛ-131 был основным вседорожным грузовиком Советской Армии 1970-х и 80-х годов.Серийное производство было запущено в 1967 году. Автомобиль отличался высокой надежностью и проходимостью. Базовая модель использовалась в основном как личный транспорт или 5-тонный грузовой автомобиль. Они поставлялись в страны Варшавского договора, а также во многие страны Азии и Африки. Существовало несколько модификаций ЗиЛ-131 для Советской Армии и гражданского назначения, и одна из них — командирская машина КШМ. Всего с 1967 по 1990 год было выпущено около миллиона грузовиков. Небольшие партии шасси для различных автомобилей специального назначения производятся и сейчас.

ICM рекомендует краски Model Master для этого набора. Нажмите, чтобы ознакомиться с их полной линейкой эмалей, акрила, металлизаторов и спреев!

Это ваше первое моделирование или ваше первое моделирование за долгое время? Щелкните здесь, чтобы собрать все основные инструменты в одном удобном пакете!

________________________________

Подробная информация о продукте:

Масштаб: 1/35
Уровень квалификации: 3
Длина: 8,4 дюйма
Высота: 3,7 дюйма
Детали: 230
— Требуются покраска и сборка
— 10 литников
— Формованный желто-коричневый
— Прозрачные детали
— Детали включают баллон с бензином, запасное колесо, ящики для хранения и стремянку
— Детализированный интерьер и шасси
— 8 черных виниловых шин с точным рисунком протектора
— Детализированный узел колеса
— Включает наклейки и инструкции по окраске для следующие модификации:

  1. ЗиЛ-131 КШМ, Советская Армия, 1986 год
  2. ЗиЛ-131 КШМ, Чехословацкая Армия, конец 1980-х
  3. ЗиЛ-131 КШМ, Советская Армия, конец 1980-х
  4. ЗиЛ- 131 КШМ, Российская Армия, конец 2000-х
  5. ЗиЛ-131 КШМ, Украинская Армия, конец 2000-х

— Включает декали без указателей покраски для следующих версий: 90 003

  1. Гвардейский отряд
  2. Группа советских войск в Германии
  3. Народная армия ГДР
  4. Войска Польская
  5. Российская армия
  6. Украинская армия

— Иллюстрированная инструкция
________________________________

Руководство по окраске:

Полуглянцевый белый
Полевой зеленый
Полуглянцевый черный
Плоский черный
Алюминий
Серебристый хром
Ржавый
Красный указатель поворота
Янтарь указателя поворота
Средне-серый
Коричневый милитари
Кожа
9000 ______________________________

ЗиЛ-131 КШМ с советскими драйверами 1/35 | AK Interactive

Бульдозер

D9, который используется Армией обороны Израиля (ЦАХАЛ) с 1956 года, является одним из лучших бульдозеров в мире.В октябре 2003 года компания Israel Aerospace Industries (IAI) разработала совершенно новый комплект броневой защиты — Daqhpor Memugan — для бульдозеров D9R, которые широко используются в Армии обороны Израиля. Этот комплект брони состоит из бронированной кабины с хорошей обзорностью, а также защиты двигателя, топливных и масляных баков, гидравлических и электрических систем.

Бульдозер D9R обладает хорошей защитой и может даже защищать от атаки РПГ после установки брони предкрылка. Легкое вооружение, такое как пулеметы, можно установить на крыше кабины для самообороны.Доказано, что это эффективная и прочная платформа боевой поддержки.

ИНФОРМАЦИЯ О КОМПЛЕКТЕ

Эта пластиковая модель бронированного бульдозера D9R в масштабе 1/35 прекрасно передает механическую красоту и вес реального автомобиля. Точное и точное моделирование рабочего бульдозерного отвала и рыхлителя; предусмотрены богатые детали интерьера кабины; дверь и окно могут быть построены в открытом или закрытом положении; включены работоспособные трековые ссылки; Предоставляются схемы окраски Вооруженных сил США и ЦАХАЛа.

Общая длина: 247 мм Ширина: 126 мм

La excadora D9 que ha sido utilizada por las Fuerzas de Defensa de Israel (FDI) desde 1956 es una de las mejores земного шара. В октябре 2003 года компания Israel Aerospace Industries (IAI) предоставила новое оборудование для защиты блиндажа, Дакхпор Мемуган, для раскопок D9R, которое было оборудовано для прямых иностранных инвестиций. Эсте коньюнто де блайнда констра де уна кабина слепой кон альта видимости, así como protección para motores, tanques de горючие y aceite y sistemas hidráulicos y eléctricos.

Бульдозер D9R представляет собой защищенную защиту и защищенную защиту от ролевых игр, которые были выпущены на вооружение лам. Se pueden montar armas ligeras como ametralladoras en la parte superior de la cabina para defenderse. Seha demostrado que es una plataforma de apoyo de combate eficiente y duradera.

INFORMACIÓN DEL KIT

Модель с пластиковым корпусом и слепым бульдозером 1/35 D9R представляет собой идеальную прекрасную механику и реальный песо.La hoja topadora y el desgarrador viables se modelan con Precisión y Precisión; se proporcionan detalles interiores de la cabina; la puerta y la ventana se pueden construir en posición abierta o cerrada; secluyen enlaces de histas viables; Se proporcionan esquemas de pintura de las Fuerzas Armadas de EE. UU. Y de las FDI.

Общая продольная: 247 мм, деактивация: 126 мм

Командно-штабная машина БМП-1КШ технический паспорт технические характеристики разведывательные фотографии | Россия Легкий бронетранспортер Российской армии UK

Вооружение

Для самозащиты БМП-1КШ вооружена ПК 7.62-мм пулемет. Машина всегда оснащалась одноместной башней, как стандартная БМП-1, но 76-мм пушка была удалена и заменена более крупной телескопической антенной HAWK EYE.

Устройство и защита

Компоновка БМП-1КШ очень похожа на российскую боевую машину пехоты БМП-1. Корпус БМП-1КШ выполнен из цельносварной стали, что обеспечивает защиту экипажа от огня стрелкового оружия и осколков снарядов.Экипаж состоит из трех солдат, водителя и двух радистов, которые сидят в передней части машины. В кормовой части боевого отделения предусмотрено место для четырех штабных офицеров.

Силовая установка

На БМП-1КШ установлен 6-цилиндровый рядный дизельный двигатель водяного охлаждения типа УТД-20 мощностью 300 л.с. при 2000 об / мин. Торсионная подвеска такая же, как и у стандартной БМП-1, и состоит из шести опорных катков с резиновыми шинами с каждой стороны, ведущей звездочки спереди, натяжного ролика сзади и трех опорных катков.Первая и последняя опорные станции имеют гидравлический амортизатор, а верх гусеницы имеет покрытие из легкой листовой стали, которое обычно снимается при работе в снегу.

Принадлежности

БМП-1КШ оснащена радиостанциями Р-137, Р-140М или Р-145БМ, по четыре из пяти на каждой. Кроме того, на машине есть телефонное оборудование, телеграфная система связи, вентиляция, навигационная система TNA-3 и дизельный генератор, способный питать оборудование связи.Генератор установлен в верхней части корпуса. В задней части боевого отделения установлены небольшие антенны. БМП-1КШ является полностью амфибийной, движется по воде за счет гусениц.

Технические характеристики
Наверх

Вооружение

7.62-мм пулемет

Страновые пользователи

Россия и страны Востока

Дизайнер Country

Россия

Принадлежности

Радиостанция Р-137, Р-140М или Р-145БМ, Р-111, Р-124, электрогенератор, система телефонной и телеграфной связи.NBC, ночное видение,

Экипаж

7 солдат

Броня

Защита от осколков стрелкового оружия и снарядов.

Масса

13,00 кг

Скорость

65 км / ч по дороге, 7 км / ч по воде

Диапазон

550-600 км
а
а

Размеры

Длина, 6.73 м; Ширина 2,94 м; Высота 1,92 м

Турниры Pokemon GO | Сильф Арена

Правила и детали турнира
Ранг аккредитован: да
Формат события: Удаленный (виртуальный)
Тип кронштейна: Швейцарский стиль
Правила: Регламент региональных приглашений 2020
Информация для новичков:

Присоединяйтесь к PNR по указанной выше ссылке или: https: // discord.gg / WtgMkR8.

После присоединения к DIscord игроки-регионалы должны DM Zaphod # 7426 сообщить мне, что вы здесь для регионального, и я дам вам роль, которая позволит вам видеть канал региональных.

Региональные соревнования Северного Иллинойса будут проводиться PNR удаленно.

Заезды начнутся в 11:00, код регистрации будет отправлен в 11:30, а турнир начнется в 12:00. Формат будет соответствовать формату Кубка Вояджера, как отмечает Silph Arena! Пожалуйста, смотрите silph.gg / cup / voyager для подробностей !!

Раунды по полчаса.

Приглашения в PNR можно найти в PNR. Обратите внимание, что это региональный пригласительный турнир.

УКАЗАНИЕ О COVID-19: По состоянию на 3 апреля COVID представляет собой серьезную угрозу. PNR размещает это удаленно. Пожалуйста, подпишитесь на PNR, следуйте инструкциям по настройке канала и DM Zaphod для роли Регионального.

Информация для новичков:

Присоединяйтесь к PNR по указанной выше ссылке или: https: // discord.gg / WtgMkR8.

После присоединения к DIscord игроки-регионалы должны DM Zaphod # 7426 сообщить мне, что вы здесь для регионального, и я дам вам роль, которая позволит вам видеть канал региональных.

Ответы участников конкурса

Заинтересованные участники: 31

ICM 35524 — ЗиЛ-131 КШМ с советскими драйверами 1/35 — Kitchecker Modell Journal

Der Bausatz

In einer einzelnen großen Tüte sind all rehbraunen Spritzgussrahmen zusammengefasst.Die zwei Klarsichtrahmen und die acht Vinylreifen haben den Luxus eines lichtdurchfluteten Einzelzimmers. Wobei in der gesamten Wohnanlage nicht mehr viel Platz ist. Die großen Rahmen haben in etwa die Größe der Schachtel, womit ein hin и ее Rutschen in der Verpackung ausgeschlossen ist. Auch solche Kleinigkeiten tragen zum Schutz der Teile bei. Ein unbeabsichtigtes Lösen von Bauteilen ist dann doch eher unwahrscheinlich. Wenn ja, fängt die Folienverpackung das Teil sicher auf.

14 Teile von insgesamt 12 Rahmen (inklusiv der Klarsichtrahmen) werden nicht benötigt.Darunter fallen auch die zwei Längsträger des Leiterrahmens vom Rahmen A. Neue Längsträger finden sich auf den Rahmen C2 und C3. So wie es sich gehört, sind sie verzugsfrei an den Rahmen vorzufinden. Somit ist schon eine sehr gute Basis zum Bau eines geraden Leiterrahmens gegeben. Obschon ich einen Bruder des ZiL von ICM (35520) besprochen habe, findet sich bei diesem Kit keine Fischhaut. Alle Auswerfermarken sind entweder an den Klebestellen oder Rückseitig angebracht. Ohne geht es ja nicht. Ein reines Versäubern der Klebestelle reicht vollkommen aus.

Viele feine Подробности weist der ZiL-131 auf. Ist der Rahmen fertig, kommen auch schon die Anbauten wie die beidseitigen Benzintanks, zwei Drucklufttanks und das Verteilergetriebe an die Reihe. Mit dem Luftfilterkasten besteht der Motor mit angegossenem Getriebe aus 15 Teilen. Leider fehlen alle Angaben zu Versorgungsleitungen wie Zündkabel, Elektrokabel oder Kühlwasserschläuche. Mechanisch aber, sind alle Baugruppen vorhanden. Selbst die Antriebswelle vom Verteilergetriebe zur Winde ist wie allgemein gültig, fein dargestellt.Ob Vorderoder Hinterachsen, Lenk- und Schubstange, Blattfedern und vordere Stoßfänger, Stabilisatoren oder der Auspuff, все, что связано с ICM gedacht. Allerdings wird es schwierig, der Vorderachse einen leichten Lenkeinschlag zu geben. Dort, wo die Schubstange der Lenkung angreift, ist per Gummibalg das Kardangelenk geschützt. Dieser Bereich an der Achse ist около 1 см stark und knifflig in eine Lenkbewegung umzubauen. Wünschenswert wäre hier eine optionale Vorderachse zur Verwirklichung eines Lenkeinschlags der Vorderräder.Eine Dynamischere Präsentation des Modells wäre somit leichter. Sehr schön und kräftig profiliert stellen sich die 8 Vinylreifen vor. Eine produktionstechnisch bedingte mittlere Trennnaht entfernt sich mit dem Anschleifen des Profils von selbst. Auch scheint eine Beschriftung der Originalen Pneus nicht zwingend bei allen Modellen vorhanden gewesen zu sein. Aufgezogen auf die einteiligen Felgen, die etwas Nacharbeit an dem inneren Felgenhorn benötigen und mit dem Bügel zur Regierbaren Luftdruckanlage der Reifen versehen, sehen sie sehr gut aus.Eine Probe, ob die Reifen gut auf der Felge sitzen, konnte ich mit 100 Punkten beurteilen. Achtgeben sollte man auf die Laufrichtung der Räder. Ansonsten sorgt man schnell für einen «Lacher».

Mit der gleichen Sorgfalt wie mit dem Fahrgestell, geht ICM mit dem Karosserieaufbau um. Da gibt es keine angedeuteten Feinheiten или Funktionsteile.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *