АвтоДавление в тормозной системе автомобиля – Тормозная система легкого автомобиля и её составные части: стояночная тормозная система и главная тормозная система

Давление в тормозной системе автомобиля – Тормозная система легкого автомобиля и её составные части: стояночная тормозная система и главная тормозная система

Содержание

Какое давление в тормозной системе автомобиля?

давим на педаль тормоза

давим на педаль тормозаПока тормозная система исправно функционирует, редкий водитель задумывается, какие процессы происходят в ней, и какими параметрами обусловлена её работа. Давайте разберёмся, какое давление в тормозной системе автомобиля, и насколько эта величина различается у гидравлического и пневматического исполнения.

Какое давление в гидравлических тормозах легковых авто?

Изначально есть смысл разобраться в таких понятиях, как давление в гидравлической системе и давление, оказываемое суппортами или штоками цилиндров непосредственно на тормозные колодки.

Давление в самой гидравлической системе авто во всех её участках примерно одинаковое и составляет на своём пике у наиболее современных авто около 180 бар (если считать в атмосферах, то это приблизительно 177 атм). В спортивных или гражданских заряженных авто это давление может доходить до 200 бар.

тормозная система авто

тормозная система авто

Разумеется, что только усилием мускульной силы человека напрямую создать подобное давление невозможно. Поэтому в тормозной системе авто есть два усиливающих фактора.

  1. Рычаг педали. За счет рычага, который обеспечивается конструкцией педального узла, изначально прилагаемое водителем давление на педаль увеличивается в 4-8 раз в зависимости от марки авто.
  2. Вакуумный усилитель. Этот узел также усиливает давление на главный тормозной цилиндр приблизительно в 2 раза. Хотя разные конструкции этого узла предусматривают довольно большую разбежку по дополнительному усилию в системе.

какое давление в тормозной системе автомобиля

какое давление в тормозной системе автомобиля

Фактически рабочее давление в тормозной системе при штатном режиме эксплуатации авто редко превышает 100 атмосфер. И только при экстренном торможении хорошо физически развитый человек способен давлением ноги на педаль создать давление в системе выше 100 атмосфер, но происходит это только в исключительных случаях.

Давление поршня суппорта или рабочих цилиндров на колодки отличается от гидравлического давления в тормозной системе. Здесь работает принцип, сходный с принципом действия ручного гидравлического пресса, где насосный цилиндр маленького сечения перекачивает жидкость в цилиндр значительно большего сечения. Повышение усилия рассчитывается как отношение диаметров цилиндров. Если обратить внимание на поршень тормозного суппорта легкового авто, то он будет в несколько раз больше по диаметру, чем поршень главного тормозного цилиндра. Поэтому и давление на сами колодки будет увеличиваться за счёт разницы диаметров цилиндров.

тормозные диски

тормозные диски

Давление пневматических тормозов

Принцип работы пневматической системы несколько отличается от гидравлической. Во-первых, давящее на колодки усилие создаётся напором воздуха, а не давлением жидкости. Во-вторых, водитель не создаёт давление мускульной силой ноги. Воздух в ресивер накачивается компрессором, который получает энергию от двигателя. А водитель нажатием на педаль тормоза только открывает кран, который распределяет воздушные потоки по магистралям.

Распределительный кран в пневматической системе контролирует давление, которое посылается в тормозные камеры. За счёт этого регулируется усилие прижатия колодок к барабанам.

работа пневмотормозов

работа пневмотормозов

Максимальное давление в магистралях пневматической системы обычно не превышает 10-12 атмосфер. Это то давление, на которое рассчитан ресивер. Однако сила прижатия колодок к барабанам значительно выше. Усиление происходит в мембранных (реже – поршневых) пневматических камерах, которые и давят на колодки.

Пневматическая тормозная система на легковом автомобиле встречается редко. Пневматика начинает массово появляться на грузопассажирских авто или небольших грузовиках. Иногда пневматические тормоза дублируют гидравлические, то есть система имеет два отдельных контура, что усложняет конструкцию, но увеличивает надёжность работы тормозов.

Тормоза — проблемы и неисправности

Тормозная система современного легкового автомобиля представляет собой замкнутый гидравлический контур. Водитель, нажав на педаль тормоза, увеличивает давление в системе до 100 атмосфер, что собственно и вызывает движение поршней в суппортах. Новые компоненты тормозной системы без проблем переносят трехкратное превышение указанного давления, но с течением времени запас прочности снижается.

Больной вопрос

Самое слабое звено в тормозной системе – шланги и магистрали, которые не защищены от воздействия внешней среды. Так, например, шланги теряют свои свойства и могут потрескаться уже через пару лет. Тормозные трубки чаще всего изготовлены из стали, которая со временем начинает коррозировать. В обоих случаях износ линий никак не дает о себе знать, и водитель начинает подвергаться опасному риску.

И он огромный! Прогрессирующая коррозия значительно ослабляет прочность места поражения. Пока водитель не сильно нажимает на педаль тормоза, ничего не происходит. Однако попытка резкого торможения может закончиться трагедией. В момент разрыва магистрали давление в системе резко падает, что существенно ухудшает эффективность торможения. Дополнительной проблемой является тот факт, что зачастую тормозные линии проложены так, что трудно оценить их состояние, даже приподняв автомобиль с помощью домкрата.

Многие водители во время повседневных поездок не давят на педаль тормоза с большой силой, поэтому неисправность можно обнаружить лишь при техническом обследовании. Диагносты регулярно выявляют дефекты. Они утверждают, что потрескавшиеся тормозные шланги – реальная проблема, которая присутствует в массовом масштабе. Поэтому, учитывая огромный риск, не следует недооценивать комментарии специалистов, касающиеся тормозных магистралей. Если есть подозрения относительно их состояния, то следует как можно скорей заменить сомнительные элементы.

Что происходит?

Принципиальная схема тормозной системы.

1 – главный тормозной цилиндр с вакуумным усилителем.

2 – регулятор давления в задних тормозных механизмах.

3,4 – рабочие контуры.

На протяжении многих лет тормозные системы автомобилей оборудовались двумя контурами, каждый из которых отвечает за два колеса. Такая схема в случае разрыва канала позволяет остановить автомобиль с помощью оставшегося контура.

Многочисленные заезды, проведенные с целью замерить эффективность торможения с одним исправным контуром, дали шокирующий результат. Оказалось, что средний тормозной путь автомобиля  при торможении со 100 км/ч увеличивается в два раза – с 40 до 86 метров!

ВЫВОД. Неисправная тормозная система защищает от полной «потери тормозов», однако эффективность торможения значительно снижается.

Как защитить себя от неожиданности

Разрыву тормозных линий не предшествуют никакие признаки, которые могли бы подсказать о проблеме. Эффективность тормозов не падает вплоть до «трагедии». Поэтому единственный выход – регулярный контроль специалистами, особенно во время ТО. Никогда нельзя недооценивать полученных от механиков рекомендаций, касающихся тормозной системы.

Цена безопасности

Затраты на замену тормозных линий отличаются в зависимости от типа и длины. В большинстве случаев новый элемент с работой потребует около 20-50 долларов. Многие сервисы меняют жесткие стальные трубки на более удобные в доработке медные. Следует взять за правило периодически проверять состояние тормозных шлангов и трубок, даже если автомобилю всего пара лет.

Заключение

Принимая во внимание то, как часто обнаруживаются дефекты тормозных магистралей, представьте — сколько водителей передвигается на смертельно опасных автомобилях. Количество просто ошеломляет. И главное – проблема касается не только старых машин. «Отказу тормозов» подвержены и сравнительно молодые автомобили, особенно эксплуатируемые во влажном климате или на зимних дорогах, обильно политых реагентами.

 

Тормозная система легкого автомобиля и её составные части: стояночная тормозная система и главная тормозная система

Тормозная система легковых автомобилей разработана для контроля скорости, в частности замедления либо полной остановки в различных дорожных ситуациях, а с помощью стояночного тормоза зафиксировать транспортное средство на паркинге на необходимое для водителя время. Т.к. машина является средством повышенной опасности, то эта система напрямую влияет на безопасность водителя, пассажиров и пешеходов. Производители уделяют большое внимание различным тормозным системам, работают над их наибольшей эффективностью, а грамотные автовладельцы, которые занимаются тюнингом своего железного коня, начинают в первую очередь с работы над тормозами, меняют штатные тормозные диски, суппорта, вакуумные усилители на более производительные.

Производители гибридных и электрических автомобилей закладывают в них максимальное использование энергии, которая выделяется при торможении, тем самым восполняя запасы энергии батареи и использование её для движения. Водители также применяют методику торможения силовым агрегатом для снижения скорости без использования педали тормоза.

Стояночная тормозная система легковых автомобилей

Предназначение ручного, или стояночного тормоза — это удержание авто на стоянке, даже под определённым уклоном. По-простому, чтобы он не уехал самостоятельно после парковки. Также его называют парковочным тормозом, опытные водители часто называют просто ручником. В экстренной ситуации, при поломке основной системы торможения ручник допустимо использовать для уменьшения скорости и остановки транспорта. Стояночный тормоз приводится в действие посредством рукоятки усилием руки водителя, иногда ногой с помощью специальной педали (ножной стояночный тормоз). Чтобы обеспечить эффективную работу парковочного тормоза оптимально располагать его тормозные элементы на наиболее нагруженной оси либо нескольких осях при необходимости. В основном это задняя ось транспортного средства. Тип привода — механический, рукояткой водитель натягивает тросик, он притягивает колодки к барабану либо диску посредством тягового механизма. Также встречается электропривод, от водителя требуется только нажать на соответствующую кнопку.

Типы тормозных систем у разных моделей легковых автомобилей

Попробуем разобраться какие типы тормозных систем эксплуатируются на легковых автомобилях. Существуют следующие разновидности тормозных систем легковых автомобилей: рабочая (она же основная), запасная, парковочная (стояночная), вспомогательная (ABS), исключающая блокировку колёс машины при торможении, уменьшая тормозной путь и увеличивая управляемость во время снижения скорости.

Далее разберем подробнее устройство различных тормозных систем легкового автомобиля. В основе лежат механизмы торможения и их приводы. Сам тормозной механизм нужен для создания определенного усилия, которое приводит к замедлению либо остановке машины. Он расположен на ступице колеса, при повышении давления в замкнутой системе колесные цилиндры прижимают колодки к стенкам барабанов либо поверхности дисков, под действием силы трения скорость движения снижается, это получается за счёт того, что одна часть неподвижна (тормозные колодки), а другая часть совершает вращательные движения (тормозной барабан либо диск).

Применяются различные типы приводов тормозной системы на разных легковых автомобилях:

  1. Механический: работает за счёт тросов и рычагов, в основном используется для парковочного тормоза.
  2. Гидравлический: работает за счёт колебания давления тормозной жидкости в герметичном контуре.
  3. Пневматический: для перемещения колодок используется воздух.

В большинстве транспортных средств почти всегда, кроме ручника, применяется гидравлический привод систем торможения.

Гидропривод состоит из:

  1. Главного
    тормозного цилиндра.
  2. Колесных
    (рабочих) тормозных цилиндров.
  3. Вакуумного
    усилителя.
  4. Некоторые
    авто оснащены блокомABS.
  5. Регулятора
    давления задних тормозов (для машин без ABS).
  6. Рабочих
    контуров.

Назначение главного тормозного цилиндра — преобразовать усилие, приложенное к тормозной педали, в давление жидкости в тормозных контурах.

Вакуумный усилитель позволяет создать большее давление при меньшем усилии при нажатии на педаль тормоза. Это делает вождение более комфортным.

Регулятор давления предотвращает движение юзом, обеспечивает равномерное торможение передней и задней оси путем уравнивания давления в заднем контуре.

Контуры— это трубки, доставляющие тормозную жидкость ко всем колесным тормозным цилиндрам, что обеспечивает прижимание колодок.

Во многих автомобилях
совместно с гидравлической системой работают вспомогательные электронные:

  1. Антиблокировочная
    система, ABS.
    Предотвращает блокировку колёс во время снижения скорости, делая машину более
    контролируемой и управляемой.
  2. Система
    курсовой устойчивости, ESC.
    Это система динамической стабилизации, она не даёт автомобилю отклонится от
    заданной траектории при резком маневрировании.
  3. Усилитель
    экстренного торможения, BAS.
    Уменьшает время срабатывания тормозов при экстренном торможении, сокращая тормозной
    путь.
  4. Система,
    распределяющая тормозные усилия, EBD.
    Распределяет усилие на каждое из колес в зависимости от скорости его движения.

Рассмотрим особенности компоновки тормозных систем современных легковых автомобилей:

  • Поосевая компоновка самая простая. Один контур в ней отвечает за передние колёса, другой — за задние. Достоинство состоит в исключении движения в сторону при одном рабочем контуре. Недостаток: если повреждается передний контур, эффективность торможения снижается не менее, чем на 65%.
  • Диагональная компоновка. В ней один контур отвечает за правое переднее и левое заднее колеса, второй —левое переднее и правое заднее колеса. Преимущество такого контура в равномерном распределении тормозящего усилия. Но при повреждении любого из контуров эффективность торможения падает на 50%.
  • Полная компоновка. В ней один контур отвечает за четыре колеса, другой —за передние. При такой компоновке система торможения передних колес всегда остается в работоспособном состоянии, что обеспечивает возможность безопасной остановки.

Ремонт элементов тормозной системы легкого автомобиля

Ремонт заключается в замене в случае необходимости манжет тормозных цилиндров, либо полной их замене при серьезных поломках. Для доступа к ним требуется снять колесо, тормозной барабан (для системы барабанного типа), оценить работоспособность цилиндра.

Перед снятием колеса обязательно установите под другие колёса противооткаты, чтобы исключить самопроизвольный ход транспортного средства и возможную травму

При проверке один человек должен выжимать педаль тормоза, второй смотрит, как двигаются шток цилиндра, если не полностью выходит значит, неисправен сам цилиндр, либо завоздушена система. При отсутствии воздуха необходима замена цилиндра, если на нём потёки тормозной жидкости, необходимо заменить манжеты. При выходе из строя главного тормозного цилиндра во время нажатия на тормоз не нагнетается необходимое давление в контурах. В таком случае используем ремонтный комплект либо заменяем новым. Прийти в негодность могут выйти блоки электронных помощников ABS, ESC,BAS,EBD – проверяем их работу специальным сканером, при подозрениях производим замену.

Особенности технического обслуживания
тормозной системы легкого автомобиля

Периодически во время эксплуатации требуется контролировать работоспособность тормозной системы.Для этого используют стенд для проверки тормозной системы разных моделей легковых автомобилей. Он дает возможность произвести полную диагностику тормозной системы. Проверке подвергаются все элементы тормозной системы и с большой точностью можно определить проблемный участок, т.к. параметры замеряют большое количество датчиков.

Проверить и оценить работоспособность тормозной системы возможно по карте проверки тормозной системы автомобиля. Она включает следующие операции:

  1. Осматриваем
    и проверяем герметичность контуров, оцениваем состояние шлангов, аппаратов
    тормозной системы.
  2. При
    выявлении проблем производим устранение потёков подтяжкой либо заменой
    элементов.
  3. Проверяем
    надёжность крепления всех элементов, если необходимо — подтягиваем.
  4. Определяем
    количество тормозной жидкости, если он ниже минимальной отметки — доливаем.
  5. Проверяем
    ход педали тормоза, если показатель отличается от нормы для данной модели авто
    — производим регулировку.

К расходникам относятся тормозные колодки, их периодически нужно менять. Их замена производится быстро и без затруднений. Тормозные диски служат долго, единственное, при резком изменении температуры их «ведёт», вследствие чего при торможении можно ощутить биение на руле. Тормозные барабаны эксплуатируются подолгу и меняются в редких случаях. Периодически необходимо смазывать направляющие тормозных суппортов, для предотвращения их заклинивания.

Давление в контурах тормозной системы легкого автомобиля

Часто автолюбители не знают, какое давление является нормальным в тормозной системе автомобиля. Оно во всех участках одинаково и наибольшее значение составляет 180 бар. В спортивных машинах из-за больших нагрузок система возможно давление до 200 бар. Это давление создаётся в момент максимального нажатия на педаль тормоза, в обычных ситуациях давление не переходит отметку в 100 бар. Создать такое давление позволяет вакуумный усилитель.

Типичные неисправности тормозной системы
легкого автомобиля

Распространенная проблема с тормозной системой— попадание воздуха в замкнутый контур, вследствие этого ухудшается торможение. Тормозная жидкость обладает высокой гигроскопичностью, поэтому моментально поглощает воздух, проникший в систему. Т.к. воздух намного больше сжимается, чем жидкость, то при нажатии не может создаться необходимое давление, соответственно колодки будут слабее прижиматься к диску либо барабану. Чтобы этого не случилось, нужно периодически обновлять либо производить полную замену тормозной жидкости. Для этого на тормозных цилиндрах предусмотрены приспособления, при частичном откручивании которых вытекает жидкость, по ее виду можно оценить насколько много в ней воздуха. Данную процедуру удобнее выполнять вдвоём, один человек давит на педаль тормоза, создавая давление, второй частично откручивает приспособление и оценивает состояние вытекающей жидкости. Тормозная система прокачивается до полного выхода воздуха.

При прокачивании нужно пополнять ёмкость с жидкостью, так при её нехватке в магистраль попадёт дополнительный воздух

Кроме автомобилей тормозной системой оборудованы и прицепы с полной массой свыше 750 кг. Прицепы для легковых автомобилей, оснащенные тормозной системой, подойдут для перевозки тяжёлых и объёмных грузов стройматериалов, квадроциклов, снегоходов, мотоциклов. Обычно в них применяется«инерционная тормозная система», работающая за счёт силы инерции. Обслуживание такой системы не доставляет больших хлопот, следует периодически регулировать тормозные колодки, шприцевать тормоз наката.

☰Принцип работы пневматической тормозной системы автомобиля

Пневматический тормозной привод — вид конструкции тормозной системы, которая использует в качестве энергоносителя сжатый воздух. Пневматические тормоза используют в разных видах транспорта:

  • пассажирские автобусы;
  • грузовые коммерческие автомобили;
  • специализированная техника — грейдеры, бульдозеры, погрузчики, автокраны, другие крупно- и малогабаритные спецсредства;
  • железнодорожный транспорт.

Грузовик DAF с пневматическими тормозами

Тягач DAF XF105 — пример грузовика с пневматическими тормозами

Нас интересует именно автомобильный вариант пневматического тормозного привода. В статье мы расскажем о:

  • видах пневматических тормозных систем;
  • конструкции и принципе работы пневмопривода;
  • основных преимуществах и недостатках пневматики в сравнении с гидравлическими тормозами;
  • неисправностях, которые возникают в работе пневмотормозов, признаках и последствиях поломок, а также дадим полезные советы как продлить срок службы тормозной системы.

Классификация пневматических тормозных систем

Пневматический тормозной привод используют отдельно или в комплексе с другими системами (примеры — комбинированные тормозные системы электропневматического или пневмогидравлического типа).

Пневматические тормозные системы также классифицируют по количеству рабочих контуров-магистралей. Встречаются 3 вида систем:

  • одноконтурные;
  • двухконтурные;
  • многоконтурные.

Одноконтурные системы. Особенность — магистрали на передние и задние колеса объединены в одну ветку, а интенсивность потока сжатого воздуха контролирует один тормозной кран. Одноконтурная модель пневматической тормозной системы — устаревший тип конструкции, который в большинстве случаев встречается только на старых моделях грузовых автомобилей и автобусов.

Двухконтурные системы. Отличия понятны из названия — магистрали тормозной системы автомобиля разделены на две ветки. Одна ветка передает сжатый воздух на передние колеса, вторая — на задние. Поток энергоносителя контролируют два тормозных крана — по одному на каждый контур магистралей. Двухконтурная конструкция надежнее, чем одноконтурная. Если вышла из строя ветка задней оси, передние тормозные узлы продолжают функционировать и наоборот.

Многоконтурные системы. Особенность — сложная, но эффективная и надежная конструкция. Многоконтурные пневматические системы встречаются в крупных грузовых автомобилях и состоят из трех и больше контуров. Многоконтурная тормозная пневмосистема увеличивает устойчивость, облегчает управление и остановку грузовика.

Конструкция пневматической тормозной системы

Конструкция пневматического тормозного привода примерно одинаковая для всех видов автомобилей. Отличаться могут отдельные узлы и элементы.

Строение пневматической тормозной системы

Общий вид пневматической тормозной системы: 1 — двухсекционный тормозной кран, 2, 6 — тормозные камеры (силовые цилиндры), 3 — предохранительный клапан, 4 — регулятор давления, 5 — компрессор, 7 — кран отбора воздуха, 8 и 9 — разобщительный кран с соединительной головкой, 10 — ресиверы (воздушные баллоны), 11, 12 — тормозные барабаны в сборе.

Компрессор. Нагнетает воздух в ресиверах (баллонах). Компрессор устанавливают в переднюю часть автомобиля возле блока двигателя. Агрегат работает от клиновидного ремня, который соединяет шкив компрессора и шкив радиаторного вентилятора.

Ресиверы или баллоны. В ресиверах хранится запас сжатого воздуха. Пневматические тормоза оборудованы двумя ресиверами. Первый баллон, который в народе называют “мокрым”, оборудован предохранительным клапаном и краном для слива конденсата. На втором ресивере есть только кран для слива конденсата. Предохранительный клапан, который контролирует давление во втором баллоне, установлен дальше по магистрали в тормозном кране.

Предохранительный клапан. Защищает систему от перегрузки и сбрасывает избыточное давление. Количество защитных клапанов зависит от типа конструкции и количество контуров магистралей.

Регулятор давления. Контролирует и поддерживает оптимальное давление в системе, а при необходимости впускает или выпускает воздух в устройство разгрузки компрессора.

Тормозной кран. Комбинированный поршневой узел, который распределяет потоки сжатого воздуха по системе, последовательно заполняет энергоносителем все контуры пневмосистемы и тормозные камеры. Тормозной кран — связующий узел между ресиверами и тормозными цилиндрами колес. Количество тормозных кранов в пневматической системе зависит от количество контуров.

Осушитель воздуха. Выделяет пары воды и другие примеси (например, пары масла) из всасываемого воздуха. В современных моделях автомобилей осушитель совмещен с регулятором давления, поэтому последний как отдельный узел отсутствует.

Тормозные узлы с силовыми цилиндрами (тормозными камерами). Установлены на колесах автомобиля, отвечают за остановку транспортного средства. Каждый узел оборудован тормозным цилиндром, в который по трубопроводу под давлением поступает воздух и который прижимает тормозные колодки к барабану.

Разобщительный кран. Элемент встречается только в тягачах с прицепами. Через кран пневматическую тормозную систему тягача соединяют с тормозной магистралью прицепа. Кран объединяет две системы, увеличивает устойчивость и управляемость автомобиля, уменьшает риск заноса прицепа при торможении.

Пневмоусилители. Агрегаты увеличивают показатели давления до необходимого уровня и уменьшают нагрузку на компрессор. Количество усилителей отличается в различных моделях автомобилей.

Трубопровод. Система труб и шлангов соединяет все узлы и элементы. Количество ответвлений трубопровода зависит от количества контуров пневматической тормозной системы.

Педаль тормоза. Элемент передает усилие на поршни тормозного крана и открывает каналы для сжатого воздуха от ресиверов на тормозные камеры колес.

Рычаг ручного тормоза.

Измерительные приборы и датчики. Контролирующие элементы, по которым водитель следит за состоянием и работоспособностью тормозной системы. К ним относятся датчики, которые находятся в ресиверах и тормозных камерах, и двухстрелочный манометр. Одна стрелка манометра показывает давление в баллонах, а вторая — в тормозных камерах. В старых моделях автомобилей манометров было два и каждый отвечал за свой узел.

Принцип работы и функционал пневматического тормозного привода

Главная и единственная функция любой тормозной системы — вовремя остановить автомобиль не зависимо от условий и внешних факторов. Неважно, нужно плавно остановить авто перед перекрестком или резко затормозить из-за неожиданно возникшей преграды — автомобиль должен остановится без ущерба для водителя, транспортного средства, других участников дорожного движения.

Рассмотрим основные этапы и процессы, которые происходят в пневматической тормозной системе.

Пневмокомпрессор МАЗ

Пневмокомпрессор для автомобилей МАЗ с двигателем OM 906 LA

Компрессор тормозной системы — приводной агрегат, который работает только когда запущен двигатель. Через воздушный фильтр в компрессор поступает воздух, который агрегат через регулятор давления закачивает в ресиверы.

Регулятор давления, который расположен либо как отдельный узел, либо встроен в осушитель, контролирует и оптимизирует давление воздуха, а когда ресиверы заполнены полностью, обеспечивает холостой ход компрессора. Если регулятор давления не работает, его подменяет предохранительный клапан.

Ресиверы системы соединены последовательно. В нижней части первого баллона находится спускной кран, через который из энергоносителя выводится конденсат и пары масла. Второй баллон соединен с краном, который оборудован регулятором давления и предохранительным клапаном. Последние сбрасывают лишний воздух и нормализуют давление в системе, если оно превышает допустимое.

Тормозной кран контролирует и перенаправляет поток сжатого воздуха в камеры силовых цилиндров, которые находятся в тормозных узлах колес. В одноконтурной системе за передние колеса автомобиля отвечает нижний цилиндр крана, а за задние колеса тягача и колеса прицепа (если есть) — верхний цилиндр. Пневматические тормоза прицепа присоединяют к автомобилю через разобщительный кран и соединительную головку.

Когда водитель нажимает педаль тормоза, тормозной кран открывает доступ для сжатого воздуха, который из ресиверов поступает в тормозные камеры колес. В цилиндрах увеличивается давление, разжимные кулаки прижимают колодки к тормозным барабанам колес и останавливают автомобиль. Когда водитель отпускает педаль, клапаны тормозных камер колес выводя воздух и колодки возвращаются в исходное положение.

Пневматический барабанный тормоз

Пневматический барабанный тормозной узел в сборе на автомобиле

Водитель может следить за состоянием пневматической тормозной системы по манометру, который показывают давление сжатого воздуха в ресиверах и тормозных камерах. Манометр соединен с датчиками давления, которые передают данные на приборную панель в кабину водителя.

Преимущества и недостатки пневматики

Пневматическая и гидравлические тормозные системы — это два аналоговых тормозных привода, каждый из которых обладает своими преимуществами и недостатками. Первый тип привода используют в основном в тяжелых автомобилях, а второй чаще встречается на транспортных средствах повседневного использования.

Чем пневматические тормоза лучше гидравлических:

  • когда водитель отпускает педаль тормоза, сжатый воздух не возвращается обратно в систему, а выходит через клапаны сброса в атмосферу;
  • пневматическая система экономичнее, так как использует сжатый воздух, который компрессор забирает из атмосферы;
  • воздух меньше изнашивает систему, чем жидкостный наполнитель;
  • сжатый воздух — нейтральная среда, поэтому вероятность того, что энергоноситель потеряет свойства, гораздо меньше. Гидравлические смеси для тормозных систем сильно отличаются друг от друга по составу, смешивать их нельзя, а вывести из строя систему может любая посторонняя примесь;
  • пневматическая тормозная система легче переносит температурные перепады как окружающей среды, так и внутри системы. Гидравлический энергоноситель может закипеть или замерзнуть от резкого скачка температуры, в результате тормоза ломаются;
  • пневматика меньше боится мелких утечек, так как компрессор работает все время и в случае утечки рабочего газа быстро восполнит недостачу.

Однако и у гидравлики есть свои преимущества:

  • гидротормоз срабатывает быстрее за счет того, что энергоноситель обладает высокой плотностью и не сжимается, как воздух;
  • у гидравлического привода конструкция значительно проще, чем у пневматической тормозной системы
  • гидравлический привод функционирует как отдельная система в отличие от пневматического, в котором работа компрессора зависит от работы двигателя;
  • несмотря на то, что пневматические тормоза срабатывают быстрее, КПД гидравлических тормозов выше за счет меньшей потери энергии при перемещении энергоносителя по трубопроводу.

Ну и самое главное отличие между гидравликой и пневматикой — цена на запчасти и агрегаты. Хотя тяжело сравнивать, например, стоимость тормозного суппорта легкового автомобиля и барабанный тормоз тяжелого тягача, как минимум из-за большой разницы в габаритах и конструкции.

Именно благодаря отличиям между двумя видами тормозных приводов каждый из типов занимает свою нишу и практически не конкурирует с аналогом.

Неисправности пневматической тормозной системы. Причины и признаки поломок. Как продлить срок службы тормозов

Основные неисправности пневматической тормозной системе:

  • тормоза автомобиля не реагируют на нажим педали или реагируют с большим опозданием. Причины — сжатый воздух выходит через трещину в трубопроводе или ресивере, вышел из строя компрессор. Неисправности возникают в результате резкого удара, который повредил пневмосистему, постепенного износа привода, разрыва приводного ремня, который запускает компрессор. Выход — обратиться на диагностику  на станции техобслуживания;
  • увеличился тормозной путь автомобиля. Причины также могут быть разные. Например, разболталась педаль тормоза, износились тормозные колодки или барабаны, поврежден один из контуров магистрали. Неисправности возникают в результате естественного износа, резкого перепада давления или неправильной работы перепускных клапанов и тормозных кранов. Решение — посетите автосервис и пройдите диагностику пневмотормозов;
  • занос прицепа во время торможения. Проблема говорит о неисправности разобщительного клапана, который соединяет пневмосистему тягача и тормозные камеры прицепа. В результате, когда водитель тормозит, воздух поступает только в тормозные камеры, а прицеп продолжает движение. Выходит, что прицеп и тягач начинают двигаться навстречу друг другу, в результате чего прицеп как более длинный и менее устойчивый объект ведет в сторону. Чтобы устранить поломку, достаточно заменить разобщительный кран;
  • автомобиль ведет в сторону при торможении. Причина — тормоза работают несинхронно, колеса тормозят в разное время, и автомобиль может занести. Проблема возникает, когда неравномерно изнашиваются тормозные колодки и барабаны или одна из тормозных камер пропускает воздух.

Своевременный ремонт пневматических тормозов

Своевременный ремонт — залог безопасности и комфорта

Чтобы не допустить неисправности, достаточно регулярно проверять состояние тормозной системы автомобиля, следить за показатели манометров и датчиков, вовремя проходить ТО, использовать качественные и подходящие по допускам запчасти, комплектующие и сменные узлы. Именно от отношения водителя к автомобилю зависит срок службы транспортного средства. Это правило, которые должен знать и соблюдать каждый водитель независимо от того, на чем ездит человек — на легковушке или тягаче с прицепом.

☰ Как работает гидравлическая тормозная система автомобиля

Гидравлический тип тормозной системы используют на легковых автомобилях, внедорожниках, микроавтобусах, малогабаритных грузовиках и спецтехнике. Рабочая среда — тормозная жидкость, 93-98% которой составляют полигликоли и эфиры этих веществ. Остальные 2-7% — присадки, которые защищают жидкости от окисления, а детали и узлы от коррозии.

Устройство тормозной системы

Схема гидравлической тормозной системы

Составные элементы гидравлической тормозной системы:

  • 1 — педаль тормоза;
  • 2 — центральный тормозной цилиндр;
  • 3 — резервуар с жидкостью;
  • 4 — вакуумный усилитель;
  • 5, 6 — транспортный трубопровод;
  • 7 — суппорт с рабочим гидроцилиндром;
  • 8 — тормозной барабан;
  • 9 — регулятор давления;
  • 10 — рычаг ручного тормоза;
  • 11 — центральный трос ручного тормоза;
  • 12 — боковые тросы ручного тормоза.

Чтобы понять работу тормозов, рассмотрим подробнее функционал каждого элемента.

Педаль тормоза

Это рычаг, задача которого — передача усилия от водителя на поршни главного цилиндра. Сила нажатия влияет на давление в системе и скорость остановки автомобиля. Чтобы уменьшить требуемое усилие, на современных автомобилях есть усилители тормозов.

Главный цилиндр и резервуар с жидкостью

Центральный тормозной цилиндр — узел гидравлического типа, состоящий из корпуса и четырех камер с поршнями. Камеры заполнены тормозной жидкостью. При нажатии на педаль, поршни увеличивают давление в камерах и усилие передается по трубопроводу на суппорты.

Над главным тормозным цилиндром расположен бачок с запасом “тормозухи”. Если тормозная система протекает, уровень жидкости в цилиндре уменьшается и в него начинает поступать жидкость из резервуара. Если уровень “тормозухи” упадет ниже критической отметки, на приборной панели начнет мигать индикатор ручного тормоза. Критический уровень жидкости чреват отказом тормозов.

Вакуумный усилитель

Тормозной усилитель стал популярный благодаря внедрению гидравлики в тормозные системы. Причина — чтобы остановить автомобиль с гидравлическими тормозами нужно больше усилий, чем в случае с пневматикой.

Вакуумный усилитель создает вакуум с помощью впускного коллектора. Полученная среда давит на вспомогательный поршень и в разы увеличивает давление. Усилитель облегчает торможение, делает вождение комфортным и легким.

Трубопровод

В гидравлических тормозах четыре магистрали — по одной на каждый суппорт. По трубопроводу жидкость из главного цилиндра попадает в усилитель, увеличивающий давление, а затем по отдельным контурам поставляется в суппорты. Металлические трубки с суппортами соединяют гибкие резиновые шланги, которые нужны, чтобы связать подвижные и неподвижные узлы.

Тормозной суппорт

Узел состоит из:

  • корпуса;
  • рабочего цилиндра с одним или несколькими поршнями;
  • штуцера прокачки;
  • посадочных мест колодок;
  • креплений.

Если узел подвижный, то поршни расположены с одной стороны от диска, а вторую колодку прижимает подвижная скоба, которая движется на направляющих. У неподвижного тормозного суппорта поршни расположены по обе стороны диска в цельном корпусе. Суппорта крепят к ступице или к поворотному кулаку.

Тормозной суппорт с ручником

Задний тормозной суппорт с системой ручного тормоза

Жидкость поступает в рабочий цилиндр суппорта и выдавливает поршни, прижимая колодки к диску и останавливая колесо. Если отпустить педаль, жидкость возвращается, а так как система герметичная, подтягивает и возвращает на место поршни с колодками.

Тормозные диски с колодками

Диск — элемент тормозного узла, которые крепится между ступицей и колесом. Диск отвечает за остановку колеса. Колодки — плоские детали, которые находятся на посадочных местах в суппорте по обе стороны диска. Колодки останавливают диск и колесо с помощью силы трения.

Регулятор давления

Регулятор давления или, как его называют в народе, “колдун” — это страхующий и регулирующий элемент, который стабилизирует автомобиль во время торможения. Принцип работы — когда водитель резко нажимает на педаль тормоза, регулятор давления не дает всем колесам автомобиля тормозить одновременно. Элемент передает усилие от главного тормозного цилиндра на задние тормозные узлы с небольшим опозданием.

Такой принцип торможения обеспечивает лучшую стабилизацию автомобиля. Если все четыре колеса затормозят одновременно, автомобиль с большой долей вероятности занесет. Регулятор давления не дает уйти в неконтролируемый занос даже при резкой остановке.

Ручной или стояночный тормоз

Ручной тормоз удерживает автомобиль во время остановки на неровной поверхности, например, если водитель остановился на склоне. Механизм ручника состоит из ручки, центрального, правого и левого тросиков, правого и левого рычагов ручного тормоза. Ручной тормоз обычно соединяют с задними тормозными узлами.

Когда водитель тянет за рычаг ручника, центральный тросик натягивает правый и левый тросики, которые крепятся к тормозным узлам. Если задние тормоза барабанные, то каждый тросик крепится к рычагу внутри барабана и придавливает колодки. Если тормоза дисковые, то рычаг крепится к валу ручного тормоза внутри поршня суппорта. Когда рычаг ручника в рабочем положении, вал выдвигается, нажимает на подвижную часть поршня и прижимает колодки к диску, блокируя задние колеса.

Это основные моменты, которые стоит знать о принципе работы гидравлической тормозной системы. Остальные нюансы и особенности функционирования гидравлических тормозов зависят от марки, модели и модификации автомобиля.

Проверка герметичности тормозных систем | Диагностирование автомобиля

Для транспортных средств с гидроприводом

Для транспортных средств с гидроприводом данная проверка заключается в осмотре всех основных элементов гидропривода на отсутствие утечек тормозной жидкости. При этом особое внимание необходимо уделять следующим элементам:

  • главному тормозному цилиндру в месте подсоединения к нему бачка для тормозной жидкости
  • количеству жидкости в самом бачке
  • штуцерам соединения трубопроводов тормозной системы
  • штуцерам для удаления воздуха из системы
  • резиновым шлангам, особенно в местах их обжатия
  • рабочим цилиндрам и пространству вокруг них

Подтекание тормозной жидкости в элементах привода не допускается. При этом под подтеканием следует понимать появление жидкости на поверхности деталей герметичных систем привода или питания, воспринимаемое на ощупь. Не допускаются также перегибы трубопроводов тормозного привода, их перетирание, коррозия, грозящая потерей герметичности или разрушением.

Уровень жидкости в бачке должен находиться между метками, соответствующими максимальному и минимальному положению. Трещины и повреждения тормозных шлангов, доходящие до слоя армирования, а также их вздутие при повышении давления в тормозном приводе не допускаются.

Для транспортных средств с пневмоприводом

Для транспортных средств с пневмоприводом проверка заключается в осмотре и прослушивании основных элементов пневмопривода на отсутствие утечек сжатого воздуха. Проверка должна проводиться при свободном положении педали управления рабочей тормозной системой и деактивированном стояночном тормозе. Под колеса транспортного средства с обеих сторон необходимо подложить противооткатные упоры. При данной проверке особое внимание уделяется следующим элементам:

  • осушителю
  • клапанам и кранам тормозной системы
  • тормозным камерам и энергоаккумуляторам
  • модуляторам АБС
  • резиновым шлангам по всей длине

Кроме того, надо проверить на утечки прочие элементы конструкции транспортного средства, имеющие пневматический привод: пневморессоры и краны подвески кабины, сиденья и шасси. Следует отметить, что управляющие элементы пневмоподвесок могут регулировать свое положение путем частичного сброса воздуха из кранов регулировки уровня, поэтому в начальный момент после остановки транспортного средства (примерно в течение 0,5.1,0 мин) может прослушиваться утечка сжатого воздуха из таких элементов, которая затем прекращается.

Основные места контроля тормозных систем с гидроприводом

Рис. Основные места контроля тормозных систем с гидроприводом: 1 — дисковый тормозной механизм; 2 — клапаны гидропривода; 3 — главный тормозной цилиндр; 4 — резиновые шланги; 5 — трос привода стояночного тормоза; 6 — барабанный тормозной механизм

Указанную проверку необходимо повторить при приведенной в действие педали управления рабочей тормозной системой.

При обнаружении утечки сжатого воздуха ее интенсивность проверяют в указанном ниже порядке:

  1. С помощью регулятора давления установить давление в питающем контуре пневмосистемы на уровне нижнего предела регулирования. Данный предел соответствует давлению в указанном контуре, при котором вступает в работу компрессор. Чтобы определить это давление, необходимо завести двигатель и довести давление в пневмосистеме до уровня, при котором срабатывает разгрузочное устройство осушителя воздуха или регулятор давления и происходит отключение подачи компрессора. После этого, не останавливая двигатель, кратковременными интенсивными нажатиями на педаль тормоза снизить давление в пневмосистеме до уровня, при котором компрессор снова начнет подавать воздух в систему. Немедленно заглушить двигатель и считать установившееся в питающем контуре давление нижним пределом регулирования регулятора давления. Если при этом возникают трудности с определением «на слух» момента вступления компрессора в работу, можно условно считать нижним пределом регулирования давление, на 0,12.0,15 МПа меньшее, чем давление срабатывания разгрузочных устройств и отключения компрессора.
  2. Зафиксировать начальное значение давления в пневмосистеме и начать отсчет времени по секундомеру.
  3. В течение регламентированного времени не приводить в действие какие-либо органы управления пневмоприводом. Для автомобилей, оснащенных пневмоподвеской шасси или кабины, не допускать колебаний рамы или кабины. По истечении регламентированного времени определить конечное значение давления в пневмосистеме.
  4. Повторно запустить двигатель транспортного средства и довести давление в пневмосистеме до уровня нижнего предела регулирования согласно п. 1.
  5. Полностью выжать педаль тормоза, после чего зафиксировать начальное давление в пневмосистеме и начать отсчет времени по секундомеру.
  6. По истечении регламентированного времени определить конечное значение давления в пневмосистеме.

При контроле технического состояния автопоезда герметичность пневмопривода тягача и прицепа проверяется раздельно при отсоединенных пневматических трубопроводах прицепа. При этом для проверки в состоянии полного приведения в действие органов управления на управляющую магистраль прицепа подается сжатый воздух под давлением 0,65 МПа от внешнего источника, который после полного срабатывания тормозных камер отключается. При этом давление в питающей магистрали прицепа должно соответствовать номинальному.

Нарушение герметичности пневматического тормозного привода не должно вызывать при неработающем двигателе снижения давления воздуха более чем на 0,05 МПа по сравнению с начальным давлением, установленным согласно п. 1, в течение 30 мин при свободном положении органов управления тормозной системой и 15 мин после полного приведения в действие органов управления тормозной системой.

При проверке герметичности пневматического и пневмогидравлического тормозных приводов допускается корректировка установленного нормативного периода определения падения давления воздуха в тормозном приводе и предельно допустимого падения давления воздуха в приводе.

Нормативы предельно допустимого падения давления воздуха в пневматическом и пневмогидравлическом тормозных приводах транспортного средства при измерении давления с погрешностью, меньшей ±5,0 %, допускается корректировать по следующим формулам:

Основные места контроля тормозных систем с гидроприводом

где П — предельно допустимая величина падения давления воздуха в приводе от значения нижнего предела регулирования регулятором давления при неработающем двигателе и обеспечиваемой прибором максимальной погрешности измерения давления не более m %; Пн — нормативная предельно допустимая величина падения давления воздуха в приводе от значения нижнего предела регулирования регулятором давления при неработающем двигателе и нормативной величине максимальной погрешности измерения давления mн = 5 %; Т — минимально допустимый период времени определения величины падения давления воздуха в тормозном приводе при обеспечиваемой прибором точности измерения давления не более m %, с; Тн — нормативная величина периода времени определения падения давления воздуха в тормозном приводе, с.

Проверка общего состояния тормозной системы

Перед проверкой эффективности действия тормозов и их регулировкой необходимо проверить состояние и подтяжку креплений всех узлов тормозной системы, наличие контрящих устройств (шплинтов и др.). а также общее состояние деталей тормозного механизма: фрикционных накладок (износ, замасливание), тормозных барабанов (внутренней поверхности), возвратных пружин колодок и их крепление, крепление тормозных дисков и колодок и свободное их вращение на осях и т. д. После устранения замеченных дефектов проверяют состояние и работоспособность приводных устройств.

В гидравлическом приводе проверяют уровень тормозной жидкости в резервуаре главного тормозного цилиндра. Уровень жидкости должен быть на 10—15 мм ниже кромки наливного отверстия.

Перед доливкой тормозной жидкости в резервуар главного тормозного цилиндра прочищают воздушное отверстие в его пробке. При наличии воздуха в тормозной системе ее прокачивают. Для этого снимают с правого заднего колеса колпачок перепускного клапана и надевают на его сферический конец резиновый шланг длиной 400—500 мм. Свободный конец шланга погружают в стеклянный сосуд емкостью 1/2 л, заполненный на 1/3-1/2 тормозной жидкостью. Отвернув перепускной клапан на 1/2-3/4 оборота, несколько раз резко нажимают на тормозную педаль и медленно отпускают ее, перекачивая жидкость из главного цилиндра в сосуд.

Прокачивание продолжают до тех пор, пока из шланга, опущенного в банку, прекратится выделение пузырьков воздуха. Во время прокачивания следует доливать жидкость в главный цилиндр, не допуская снижения уровня жидкости более чем наполовину. После этого, задержав педаль в нажатом состоянии, завертывают перепускной клапан. Воздух выпускают последовательно из всех колесных тормозных цилиндров, начиная с правого заднего колеса, затем из правого переднего, левого переднего и левого заднего. На передних тормозах, имеющих два колесных тормозных цилиндра, прокачку начинают с нижнего цилиндра.

Бачок для заполнения гидравлической системы тормозной жидкостью

Рис. Бачок для заполнения гидравлической системы тормозной жидкостью:
1 — манометр; 2 — штуцер; 3 — предохранительный воздушный клапан; 4 — шариковый запорный клапан; 5 — наконечник шланга

У автомобилей с гидровакуумным усилителем ножного тормоза (автомобиль ГАЗ-53А) для удаления воздуха из гидравлического цилиндра усилителя прокачивают его. Для этой цели на гидроцилиндре предусмотрены перепускные клапаны.

Магистраль гидравлического привода можно заполнять тормозной жидкостью при помощи бачка под давлением 1,5—2,0 кГ/см2. Жидкость подается из бачка по гибкому шлангу через наливное отверстие главного тормозного цилиндра. Для предупреждения попадания воздуха из бачка в систему гидравлического привода предусмотрен шариковый (или цилиндрический) пустотелый клапан 4 с резиновым седлом.

Основные требования, которые предъявляются к тормозной жидкости: малая вязкость в пределах изменения температуры от —40 до +40°С, достаточно высокая температура кипения ( + 115-:- +125°С), а также низкая температура застывания порядка —40° -t 45°С и отсутствие разрушающего действия на резиновые детали системы привода. Наибольшее распространение получила тормозная жидкость БСК (ТУ 1608—47) и ЗСК (ТУ 4226—57). Жидкость БСК состоит из касторового масла (47%) и бутилового спирта (53%) с примесью органического красителя (красного цвета). Тормозная жидкость ЭСК содержит касторовое масло н этиловый спирт в том же соотношении и имеет цвет от оранжевого до красного. Смешение двух жидкостей, имеющих разное основание (касторовое масло или глицерин), не допускается во избежание их расслаивания.

В системе пневматического привода тормозов проверяют давление воздуха и герметичность системы и выполняют необходимые регулировочные работы. При исправном состоянии компрессорной установки нарастание давления в системе от нуля до максимального значения (7—8 кГ/см2) при работающем на средних оборотах коленчатого вала двигателе должно происходить в течение 5—6 мин. Причинами недостаточного давления, если отсутствует утечка воздуха в системе, могут быть изношенность поршневой группы компрессора и малое натяжение ремня привода компрессора. Нормально натянутый ремень должен прогибаться между шкивами вентилятора и компрессора при усилии 3—4 кГ на 10—15 мм. Герметичность системы на участке компрессор — тормозной кран проверяют по манометру при неработающем двигателе и отпущенной педали тормоза. Давление (с 7—8 кГ/см2) не должно падать быстрее чем на 0,1 кГ/см2 за 10—12 мин.

На участке тормозной кран — тормозные камеры герметичность проверяют по падению давления при нажатии до отказа недали тормоза и неработающем двигателе. При этом давление должно резко упасть на 1—1,5 кГ/см2 и далее не снижаться.

Непрерывное снижение давления указывает на утечку воздуха в системе. Места утечки воздуха можно определять на слух и при помощи смачивания этих мест мыльным раствором. Утечку устраняют заменой деталей, подтяжкой и регулировкой. Давление воздуха в тормозной системе проверяют также присоединением манометра вместо одной из тормозных камер. При работе двигателя на холостом ходу и отпущенной педали тормоза давление по манометру на щитке приборов должно быть максимальным (7—7,35 кГ/см2), а по манометру у тормозной камеры равняться нулю. На автомобиле ЗИЛ-13O эту проверку можно выполнить по одному манометру, установленному на щитке и имеющему две шкалы: верхнюю, показывающую давление в баллонах, и нижнюю — в тормозных камерах.

У автомобилей, работающих с прицепами и снабженных выводом сжатого воздуха для присоединения пневматической системы тормозов прицепа, проверяют и регулируют по контрольному манометру давление воздуха на выводе.

В системе пневматического привода проверяют при помощи мыльной эмульсии герметичность предохранительного клапана и срабатывание его по достижении максимального давления. При необходимости клапан регулируют.

Самопроизвольное притормаживание автомобиля на ходу при отпущенной педали вследствие неплотной посадки впускного клапана крана управления устраняют очисткой и притиркой клапана к гнезду, а также регулировкой его положения.

Эффективность действия тормозов проверяют одним из следующих способов:

  • по следу торможения автомобиля
  • по величине максимального замедления
  • по величине тормозного усилия или статического момента трения, измеряемого на каждом колесе неподвижно стоящего автомобиля
  • по величине тормозного усилия, измеряемого на каждом колесе с учетом живой силы движущегося автомобиля

При первом способе контроля автомобиль на горизонтальном сухом участке дороги (при нормальном давлении в шинах) разгоняют до скорости 30—40 км/ч и резко тормозят ножным тормозом до «юза». По степени сходства между собой следов, оставляемых колесами на дороге и признакам заноса автомобиля судят об одновременности действия тормозов и о равномерности распределения тормозного усилия по колесам.

При плавном торможении от начальной скорости 30 км/ч путь торможения автомобиля должен быть в пределах значений, установленных техническими условиями. Хотя такой способ контроля широко распространен в практике, он ведет к интенсивному изнашиванию покрышек и его нельзя считать целесообразным.

При втором способе проверки эффективность тормозов оценивают по максимальному замедлению, определяемому деселерометром.

Деселерометр маятникового типа состоит из литого корпуса (из полистирола) 1, маятника 3 и кронштейна 4. Принцип действия прибора основан на перемещении маятника 3 под действием сил инерции, возникающих при торможении автомобиля. Величина перемещения маятника (инерционной массы) пропорциональна замедлению при торможении, т. е. чем быстрее автомобиль тормозится, тем на большую величину отклоняется маятник от своего первоначального (нулевого) положения, и наоборот.

Величину отклонения маятника от нулевого положения указывает стрелка 6 по шкалам 2 и 15, градуированным в величинах замедления. По нижней шкале, кроме замедления, определяют величину уклона дороги в %.

Маятник 3 может свободно качаться на оси 10 в опорах кронштейна 9. С каждой стороны маятника имеются штифты, один из которых 8 (расположенный со стороны задней стенки) служит для передвижения стрелки 6, а другой 13 — для удержания маятника в нулевом положении.

 Деселерометр маятникового типа

Рис. Деселерометр маятникового типа

Стрелка 6 укреплена па оси ручки 7, которая служит для перемещения стрелки и установки ее на нуль шкалы. Со стороны крышки 14 на оси ручки 11 укреплен поводок 12, который при повороте ручки вправо прижимает штифт маятника к упору, имеющемуся на внутренней стороне крышки, что исключает колебание маятника в нерабочем положении. При повороте ручки влево на 90° (до конца) маятник может свободно колебаться.

При контроле эффективности торможения автомобиля деселерометр устанавливают на стекле двери или лобовом стекле кабины автомобиля при помощи шарнирного кронштейна 4 и резиновых присосов 5 с тем, чтобы направление качания маятника совпадало с направлением движения автомобиля.

Затем, освободив гайку 16 кронштейна, поворотом корпуса совмещают маятник с нулевым делением шкалы, а вращением ручки 7 устанавливают стрелку на нуль.

При достижении скорости 30 км/ч освобождают маятник ручкой 11 и резко тормозят автомобиль; при замедлении автомобиля маятник 3 отклоняется от вертикального положения (нулевого) и увлекает за собой стрелку 6. После остановки автомобиля маятник возвращается в исходное положение, а стрелка остается зафиксированной на месте наибольшего отклонения маятника, указывая по шкале величину замедления. Сравнивая полученные значения замедления с нормативными судят об эффективности торможения автомобиля. Цена одного деления шкалы 0,5 м/сек2, точность показаний — ±0,5 м/сек2, пределы показаний прибора 0 — 8 м/сек2.

Третий способ предусматривает проверку тормозов на стендах с беговыми барабанами (роликами) или с динамометрическими площадками и лентами. Эффективность действия тормозов в этом случае оценивают по величине тормозного момента или усилия на каждом отдельном колесе, а также по синхронности их действия.

На роликовых стендах колеса автомобиля вращаются принудительно от его двигателя через трансмиссию либо через ролики, вращающиеся от электродвигателя стенда за счет сил трения, возникающих между шинами и роликами.

Наибольшее применение нашли стенды с роликами, вращающимися от электродвигателя. Стенды этого типа имеют две (реже четыре) динамометрические каретки со спаренными роликами, на которые устанавливают автомобиль. Каретки монтируют на полу у осмотровой канавы или на металлической эстакаде. Схема каретки одной из конструкций стенда показана на рисунке. Два рифленых чугунных (или покрытых литым базальтом) ролика 7, установленные на подшипниках в станине, соединены между собой роликовой цепью 12 и приводятся во вращение от электродвигателя 1 через червячную 2 и две пары цилиндрических шестерен 4, 3, 5 и 6, смонтированных в корпусе 8.

При своем вращении ролики заставляют вращаться опирающиеся на них колеса автомобиля. При затормаживании автомобиля между колесом и рифленым роликом возникает тормозная сила, замедляющая вращение колеса. С увеличением сопротивления вращению рифленых роликов шестерня 5, передавая вращение шестерне 6, будет сама одновременно вращаться относительно геометрической оси этой шестерни и валика 7, увлекая за собой корпус 8, который будет поворачиваться в подшипниках 9. Вся система будет работать по принципу планетарной передачи. Если корпус удерживать от вращения рычагом 10, то усилие, приложенное к рычагу 10, будет находиться в определенном соотношении с величиной тормозного момента, действующего на ролик 7 и шину колеса и фиксироваться динамометром 11 или записываться в виде диаграммы зависимости тормозного усилия и силы давления на педаль. Для определения начала блокировки колес автомобиля при торможении между основными роликами устанавливается вспомогательный, прижимаемый к колесу автомобиля торсионом или пружиной. Ролик вращается одновременно с колесом автомобиля и в момент блокировки колес останавливается. В этот момент зажигается контрольная лампочка или выключаются электродвигатели кареток.

 Схема тормозной каретки с рифлеными валиками

Рис. Схема тормозной каретки с рифлеными валиками

Усилие на педали определяется при помощи гидравлического датчика, устанавливаемого на тормозной педали, или для этой цели применяют пневматический распор.

Усилия, регистрируемые динамометрами при вращении колес, при незаторможенных колесах будут показывать силу сопротивления качению колес. По мере увеличения силы давления на педаль пропорционально возрастает тормозное усилие до момента начала скольжения колес по тормозному ролику, что и соответствует максимальному значению тормозной силы при данном сцепном весе, приходящемся на колесо.

Стенды с подвижными площадками для контроля тормозов в статическом состоянии автомобиля не получили распространения.

В зарубежной практике на станциях обслуживания применяют стенды с динамометрическими площадками для контроля тормозов движущегося автомобиля, т.е. с учетом живой силы автомобиля. Стенд состоит из четырех рифленых площадок, расположенных на уровне пола, и измерительной колонки, расположенной сбоку от площадок. При испытании автомобиль разгоняют до скорости 10—13 км/ч и при наезде на площадки резко тормозят. Под влиянием силы инерции, действующей на автомобиль, и силы трения между шинами и рифленой поверхностью площадок они стремятся сдвинуться в направлении движения автомобиля.

Перемещение каждой площадки передается при помощи системы тяг, динамометрических рычагов и гидравлических устройств к самостоятельному указателю измерительной колонки.

По показаниям указателей можно судить о равномерности распределения тормозного усилия по отдельным колесам автомобиля и величине силы их торможения.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *