РазноеЗарядное для литиевых аккумуляторов – Схемы самодельных зарядок для литий-ионных аккумуляторов (18650, 14500 li-ion), как правильно заряжать литий-полимерные АКБ

Зарядное для литиевых аккумуляторов – Схемы самодельных зарядок для литий-ионных аккумуляторов (18650, 14500 li-ion), как правильно заряжать литий-полимерные АКБ

Переделка шуруповерта на литий, часть вторая, заряжаем правильно

В прошлый раз я рассказал как правильно переделать батарею для аккумуляторного инструмента. Также я писал, что расскажу об особенностях заряда, а предметом обзора на этот раз выступит плата DC-DC преобразователя.
Кому интересно, прошу в гости.

Изначально я планировал ограничиться двумя частями, переделкой батареи и зарядного. Но пока готовил обзор, в голове созрела идея для третьей части обзора, более сложной.
А в этой части я расскажу как можно переделать родное трансформаторное зарядное, если оно еще работает, ну или если еще жив силовой трансформатор.

Платка преобразователя была заказана довольно давно в количестве нескольких штук (про запас), заказывалась специально для этой переделки, потому как имеет некоторые особенности, впрочем не буду забегать далеко, бем последовательны.

Для начала я разделю зарядные устройства не три основных типа:
1. Самые простые — трансформатор, диодный мост и несколько деталей. Такими зарядными комплектуют ультрабюджетный инструмент.

2. Фирменные. По сути то же самое, но в состав уже входят простенькие «мозги», автоматические отключающие заряд в конце.
3. «Продвинутые» — импульсный блок питания, контроллер заряда, иногда заряд нескльких батарей одновременно.

Инструмент из первой категории редко попадает под переделку, так как часто проще (и дешевле) купить новый, а третья категория обычно имеет свои сложности по переделке. В принципе можно переделать и устройства третьей группы, но не в рамках статьи, так как типов таких зарядных очень много и к каждой нужен индивидуальный подход.

В этот раз я буду переделывать зарядное устройство из второй группы, фирменное, хотя и простое. Но при этот переделка имеет много общего и с первой группой, потому будет полезна большему количеству читателей.

Для того, чтобы зарядить аккумулятор надо не просто подключить его к блоку питания, такой эксперимент обычно заканчивается не очень хорошо. Надо подключить его к зарядному устройству. И здесь наступает небольшое непонимание, так как довольно много людей привыкло называть зарядными устройствами небольшие блоки питания от которых они заряжают свои смартфоны, планшеты и ноутбуки. Это не зарядные устройства, а блоки питания.

Чем же отличается зарядное устройство от блока питания.
Блок питания предназначен выдавать стабилизированное напряжение в диапазоне заявленных токов нагрузки.

Зарядное устройство обычно сложнее, так как выходное напряжение у него зависит от тока нагрузки, который в свою очередь ограничен. При этом в зарядном устройстве находится узел прекращающий заряд в конце, а также иногда и защита от подключения аккумулятора в неправильной полярности.

Самое простое зарядное устройство это просто блок питания и резистор (иногда лампа накаливания, что даже лучше) последовательно с аккумулятором. Такая схема ограничивает тока заряда, но как вы понимаете ничего больше она сделать не может.

Чуть сложнее, когда ставят еще и таймер, отключающий заряд после определенного времени, но такой принцип быстро «убивает» аккумуляторы.

Например так сделано в одном из недорогих зарядных для шуруповертов (фото не мое).

Следующим классом идут более «умные » зарядные устройства, хотя по сути они не на много лучше предыдущего.
Например вот фото фирменного зарядного устройства Bosch, предназначенного для заряда NiCd аккумуляторов.

Но все эти зарядные устройства кажутся очень простыми после взгляда на современные варианты для заряда литиевых аккумуляторов.


Конечно последний вариант не совсем вписывается в нашу концепцию переделки, так как на желательно чтобы наше зарядное не только заряжало правильно, а и стоило при этом минимальных денег.

Зарядные устройства китайских шуруповертов выглядят конечно не в пример проще, но опять же, делать с нуля такое устройство вряд ли кто то захочет, хотя именно это я и планирую сделать в третьей части, правда корректнее.

И так, для начала предположим что у нас на руках имеется зарядное устройство которое просто не подходит под новый тип аккумуляторов, но является исправным. Ну или по крайней мере у него исправен трансформатор.

Как я писал выше, можно даже использовать просто резистор или лампочку, но это «не наш метод».

Условная схема типичного недорогого зарядного устройства выглядит примерно так:
Трансформатор, диодный мост, тиристор и схема управления. Правда иногда вместо тиристора стоит реле, ток никак не ограничивается и может присутствовать схема термоконтроля от перегрева (хотя и она не всегда спасает.

Но нам от этой схемы нужно только трансформатор и диодный мост, правда придется добавить еще конденсатор, так мы получим некую исходную неизменную часть, она отмечена красным и дальше меняться не будет.

Диодный мост обычно находится на плате и при необходимости его можно использовать (если он исправен). Т.е. по большому счету можно выпаять из платы все радиоэлементы, оставив только четыре диода и клеммы для подключения батареи, а саму плату использовать как основу.
Катод у диодов помечен полоской, точка, где соединяются два вывода помеченные полоской — плюс, соответственно точка соединения «не меченных» выводов — минус. К двум другим точкам соединения подключается трансформатор.

Правда открыв зарядное устройство вы можете увидеть и такую картину (не обращайте внимание на отсутствие трансформатора):
В этом случае придется выпаивать все.

Диоды на плате удобно заменить на готовый диодный мост, к выводам АС подключается трансформатор, + и — соответственно идут дальше в схему.
Можно конечно сказать как подобрать конденсатор, но я советую не заморачиваться и поставить такой как на фото, емкость 1000мкФ, напряжение 35 Вольт. Емкость можно и больше, например 2200, а напряжение 50 или 63 Вольта, большая емкость и напряжение смысла не имеют, а только увеличат габарит конденсатора.

Конденсатор можно любой, подойдет даже «нонейм». Да, ставить его надо в любом случае, независимо от исправности диодного моста.

Теперь переходим к самому зарядному, а точнее к его вариантам, этот узел помечен на последней схеме прямоугольником.
Самый простой и при этом относительно правильный способ, поставить микросхему стабилизатора напряжения LM317.

Но как я писал выше, ток заряда надо ограничивать. Да, многие схемы могут не только ограничивать, а и стабилизировать его, но по большому счету аккумуляторам неважно, будет ток заряда 1, 2 или 3 Ампера, неважно будет ли он стабилен в процессе заряда или «плавать», важно чтобы ток заряда не превышал установленный для аккумуляторов. Хотя для аккумуляторов, которые ставят в шуруповерты превысить его тяжело, так как они могут работать не только при больших токах разряда, но и заряда.

Простейшее решение, перевести микросхему LM317 из режима стабилизации напряжения в режим стабилизации тока, а если говорить точнее, то добавить режим стабилизации тока.
Достигается это добавлением одного резистора, как показано на схеме.
Номинал резистора рассчитать очень просто: 1.25/I (ток в Амперах) = R (номинал резистора в Омах).
Например нужен ток 1.5 Ампера, тогда будет 1.25/1.5= 0.83 Ома.

Номиналы резисторов делителя напряжения также рассчитать довольно просто, но я бы советовал последовательно с верхним резистором поставить подстроечный, чтобы точно выставить напряжение, так как в отличии от тока здесь точность важна.
Можно воспользоваться специальным калькулятором, но он не очень удобен, потому предложу номиналы без него, для напряжения 12.6 Вольта (3 последовательных аккумулятора 3.7 Вольта) верхний резистор нужен 1.5кОм, последовательно с ним подстроечный 200 Ом, а нижний резистор 13кОм.

Я специально указал, что подстроечный резистор ставится последовательно с верхним резистором. В случае обрыва на выходе будет минимальное напряжение. Если оборвать нижний резистор, то на выходе будет максимальное напряжение. Кстати, в распространенных платах DC-DC преобразователей сделано наоборот, в случае обрыва подстроечного резистора они дадут на выход максимальное напряжение.

Все хорошо в вышеприведенной схеме, простота, цена, но большая выделяемая мощность сводит на нет все преимущества, так как радиатор будет нужен весьма внушительный, потому для больших токов заряда она не очень подходит.

Более правильным вариантом будет применить понижающий DC-DC преобразователь. Например такой:

Конечно в исходном виде он не будет ограничивать ток, но при желании его можно доработать (на тот случай если он уже есть).
Доработка проста и я ее уже описывал в одном из своих обзоров, правда там в конце я применял ее как драйвер светодиодов, но по сути это неважно.
Надо:
1 транзистор типа BC557 или любой аналог (да хоть известный КТ361 или КТ3107)
2 резистора номиналом 33-200 Ом любой мощности.
1 резистор в качестве токового шунта
1 керамический конденсатор 0.1мкФ.

Токоизмерительный резистор рассчитывается очень просто, как и в случае с LM317, только значения чуть другие.
0,6/I (ток в Амперах) = R (номинал резистора в Омах).
Например нужен ток 1.5 Ампера, тогда будет 0,6/1.5= 0.4 Ома.

Выход добавочной схемы подключается к выводу 4 микросхемы LM2596, если применена другая микросхема, то ищем в описании вывод помеченный как FB и подключаем к нему.

В таком варианте при помощи подстроечного резистора устанавливаем выходное напряжение (на холостом ходу). Правда такая схема может немного недозаряжать аккумуляторы, хотя и не сильно, но это плата за простоту. Чтобы заряжать полностью, надо переключить вход измерения напряжения (один из резисторов делителя напряжения) к выходу всей схемы.

Все вышеприведенные способы заряда работоспособны, но не очень удобны.
Более правильно будет применить плату, которая «умеет» не только стабилизировать выходное напряжение, а и ток.
Например вот такая платка. Отличить подходящие платы от других весьма просто, в описании должно быть написано — DC-DC StepDown, а на плате присутствовать как минимум два подстрочных резистора.

Но помимо регулировки выходного тока данная плат имеет еще дополнительный бонус в виде индикации:
1. Светодиод вверху, показывает режим ограничения тока
2. Пара светодиодов внизу, показывают окончание заряда.

Индикация заряда аккумулятора реализована очень просто, переключение светодиодов происходит при падении тока ниже чем 1/10 от изначально установленного. Такой режим работы очень распространен и используется во многих простых зарядных устройствах.
Т.е. к примеру мы установили ток заряда в 1.5 Ампера, подключили аккумулятор, когда ток заряда упадет ниже чем 150мА, то один из светодиодов погаснет, а второй засветится, показывая тем самым, что процесс заряда окончен.
Обзоры данной платы делал коллега ksiman, потому для более детального описания проще дать ссылку.

Схема данной платы также из указанного выше обзора, возможно будет полезна.

Получается, что данная плата весьма неплохо подходит для заряда аккумуляторов, сначала выставляем напряжение окончания заряда из расчета 4,2 Вольта на элемент, а затем ток заряда.
Для гурманов можно предложить такую же плату, но с индикацией тока заряда и напряжения на батарее, но как по мне, то в данном случае это лишнее.
Я делал обзор этой платы, собственно это и есть фото из того обзора, там же я показывал как самому сделать импульсный блок питания.

Так будет выглядеть этот вариант на блок схеме.

Вот мы потихоньку и подобрались к предмету обзора, который прежде всего заинтересовал своей низкой ценой. У меня очень большие подозрения насчет «фирменности» установленной микросхемы, но если не использовать ее на все заявленные 3 Ампера, то она вполне жизнеспособна.

Так получилось, что изначально я не думал делать обзор данной платы и хотя их было куплено 4 штуки, но дома у меня осталась всего одна и та уже со следами моего вмешательства.
Я выпаял родные светодиоды и припаял другие.

В исходном виде на плате расположены три светодиода:
1. Заряжено.
2. Заряд
3. Индикация ограничения тока.

Как работает индикация.
Светодиоды Заряд и Заряжено включены так, что светит только один из них, потому можно их рассматривать как один. В платах без регулировки тока при которой будет срабатывать индикация, переключение происходит при падении тока заряда ниже 1/10 от установленного резистором — Ограничение тока. В обозреваемой плате можно установить произвольный ток срабатывания, я бы советовал выставить 1/5.

Светодиод индикации ограничения тока работает несколько по другому, он светит когда происходит ограничение тока, т.е. когда ток при установленном напряжении стремится вырасти больше, чем установлено регулятором.
Например выставили ток 1 Ампер и 10 Вольт (условно), подключили нагрузку, которая при 10 Вольт потребляет 0.5 Ампера. На выходе будет 10 Вольт 0.5 Ампера. Затем подключили нагрузку, которая при 10 Вольт будет потреблять 1.5 Ампера, на выходе будет 1 Ампер и 8 Вольт (условно), т.е. плата снизит напряжение до такого значения при котором ток на выходе не будет превышать установленного и при этом засветит светодиод.

Также на плате находится три подстроечных резистора:
1. Регулировка выходного напряжения.
2. Регулировки порога срабатывания индикации окончания заряда.
3. Регулировка порога ограничения выходного тока.

Плата весьма простая, на ней расположена собственно микросхема LM2596, стабилизатор 78L05 и компаратор LM358.
LM2596 собственно ШИМ контроллер.
78L05 используется дли питания компаратора и как источник опорного напряжения.
LM358 «следит» за током и попутно управляет индикацией

В качестве токового шунта работает дорожка на печатной плате.
Такой метод измерения тока не очень хорош, так как ток будет «плавать» в зависимости от температуры платы, но так как для нас стабильность выходного тока не имеет значения, то можно не обращать на это внимание.

Расположение контактов, органов управления и индикации со страницы товара.

Платы с возможностью ограничения выходного тока весьма хорошо подходят для заряда аккумуляторов. А те платы, которые имеют индикацию окончания заряда, позволяют еще и получить некое удобство, позволяющее знать что аккумулятор заряжен.
Но есть у всех вышеперечисленных способов один минус, все эти варианты не могут отключить аккумулятор после окончания заряда, т.е. полностью прекратить процесс.
Конечно мне скажут, а как же живут аккумуляторы в блоках бесперебойного питания. А вот здесь есть особенность, у некоторых типов аккумуляторов есть понятие — циклический заряд и так называемый Standby, т.е. поддерживающий. Тот же свинцовый аккумулятор в циклическом режиме заряжают до 14.3-15 Вольт, а в дежурном только до 13.8-13.9 Вольта.

Если аккумулятор не отключить, то небольшой ток заряда всегда будет через него течь, и хотя литиевым аккумуляторам в этом плане немного «повезло», ток у них падает очень значительно, но все равно, оставлять их в таком режиме не рекомендуется.
Дело в том, что кадмиевые или свинцовые просто начинают разрушаться, нагреваться и все, а с литиевыми возможно возгорание. Да, литиевые аккумуляторы имеют защитный клапан, но лишняя защита никогда не мешает.

Очень часто задают вопрос — а как же плата защиты, ведь она может отключить аккумулятор по завершении заряда. Может и не только может, а и отключит, только сделает это она не при 4.2 Вольта на элемент, а при 4.25-4.35 Вольта, так как функция отключения для нее скорее защитная, а не основная. Потому так делать крайне не рекомендуется.

Собственно потому я придумал простенькую схемку, которая будет отключать аккумулятор по завершению заряда. Принцип работы очень прост (потому имеет некоторые ограничения). Подключили аккумулятор, так как конденсатор С1 разряжен, то через него течет ток, который открывает транзистор, а он подает ток на реле. Реле подключает к зарядному аккумулятор, а дальше реле питается через оптрон, который подключен к выходу индикации заряда платы преобразователя.

Соответственно была разработана небольшая платка, причем в универсальном исполнении.

Ну а дальше все просто и знакомо, печатаем плату на бумаге, переносим на текстолит, травим.
Кому интересно, процесс изготовления печатных плат подробно показан в этом обзоре.

Когда я придумывал схему, то старался ее максимально упростить, применив минимум компонентов.
1. Реле — любое с напряжением обмотки 12 Вольт (для вариантов с 3-4 аккумуляторами) и контактами рассчитанными на ток хотя бы 2х от тока заряда.
2. Транзистор — BC846, 847, или известный КТ315, КТ3102, а также аналоги.
3. Диод — любой маломощный диод.
4. Резисторы — любые в диапазоне 15 — 33кОм
5. Конденсатор — 33-47мкФ 25-50 Вольт.
6. Оптрон — PC817, стоит на большинстве плат блоков питания.

Собрал плату.

Плату я сделал универсальной, можно применить вместо реле полевой транзистор, часть компонентов остается та же, что и была до этого. Кроме того такой вариант более универсален, так как подходит для шуруповертов с 3-4-5 аккумуляторами.
Но у такой платы есть недостаток. Внутри транзистора есть «паразитный» диод и если оставить аккумулятор подключенным к зарядному устройству, но выключить его из розетки, то аккумулятор будет разряжаться через схему зарядного. В том варианте, что я показал выше, будет похожая проблема, но там ток совсем маленький, около 0.5мА и для полного разряда аккумулятору понадобится около 4000 часов.

Здесь применены немного другие номиналы, хотя по сути важен только номинал резисторов R4 и R5. Номинал R5 должен быть по крайней мере в 2 раза меньше чем у R4.

Подбираем компоненты для будущей платы. К сожалению транзистор скорее всего придется купить, так как в готовых устройствах такие применяются редко, они могут встречаться на материнских платах, но крайне редко.

Плата универсальная, можно применить реле и сделать по предыдущей схеме, а можно применить полевой транзистор.

Теперь блок схема зарядного устройства будет выглядеть следующим образом:
Трансформатор, затем диодный мост и конденсатор фильтра, потом плата DC-DC преобразователя, ну и в конце плата отключения.
Полярность выводов индикации заряда я не подписывал, так как на разных платах может быть по разному, если что то не работает, то надо просто поменять их местами, тем самым изменив полярность на противоположную.

Переходим собственно к переделке.
Первым делом я перерезаю дорожки от выхода диодного моста, клемм подключения аккумулятора и светодиода индикации заряда. Цель — отключить их от остальной схемы, чтобы она не мешала «процессу». Можно конечно просто выпаять все детали кроме диодов моста, будет то же самое, но мне было проще перерезать дорожки.

Затем припаиваем фильтрующий конденсатор. Я припаял его прямо к выводам диодов, но можно поставить отдельный диодный мост, как я показывал выше.
Помним, что вывод с полоской — плюс, без полоски — минус. У конденсатора длинный вывод — плюс.

Печатные платы сверху не влазили совсем, постоянно упираясь в верхнюю крышку, потому пришлось разместить их снизу. Здесь конечно было тоже не все так гладко, пришлось выкусить одну стойку и немного подпилить пластмассу, но в любом случае здесь им было куда лучше.
по высоте они стали даже с запасом.

Переходим к электрическим соединениям. Для начала припаиваем провода, сначала я хотел применить более толстые, но потом понял что просто с ними не развернусь в тесном корпусе и взял обычные многожильные сечением 0.22мм.кв.
К верхней плате припаял провода:
1. Слева — вход питания платы преобразователя, подключается к диодному мосту.
2. Справа — белый с синим — выход платы преобразователя. Если применена плата отключения, то к ней, если нет, то на контакты аккумулятора.
3. Красный с синим — выход индикации процесса заряда, если с платой отключения, то к ней, если нет, то на светодиод индикации.
4. Черный с зеленым — Индикация окончания заряда, если с платой отключения, то на светодиод, если нет, то никуда не подключаем.

К нижней плате припаяны пока только провода к аккумулятору.

Да, совсем забыл, на левой плате виден светодиод. Дело в том, что я совсем забыл и выпаял все светодиоды, которые были на плате, но проблема в том, что если выпаять светодиод индикации ограничения тока, то ток ограничиваться не будет, потому его надо оставить (помечен на плате как CC/CV), будьте внимательны.

В общем соединяем все так, как на показано, фото кликабельно.

Затем клеим на дно корпуса двухсторонний скотч, так как снизу платы не совсем гладкие, то лучше использовать толстый. В общем этот момент каждый делает как удобно, можно приклеить термоклеем, привинтить саморезами, прибить гвоздями 🙂

Приклеиваем платы, провода прячем.
В итоге у нас должны остаться свободными 6 проводов — 2 к батарее, 2 к диодному мосту и 2 к светодиоду.

На желтый провод внимание не обращайте, это частный случай, у меня нашлось только реле на 24 Вольта, потому я его запитал от входа преобразователя.
Когда готовите провода, то всегда старайтесь соблюдать цветовую маркировку, красный/белый — плюс, черный/синий — минус.

Подключаем провода к родной плате зарядного. Здесь конечно у каждого будет по своему, но общий принцип думаю понятен. Особенно внимательно надо проверить правильность подключения к клеммам аккумулятора, лучше предварительно проверить тестером, где плюс и минус, впрочем то же самое касается и входа питания.

После всех этих манипуляций обязательно надо проверить и возможно заново установить выходное напряжение платы преобразователя, так как в процессе монтажа можно сбить настройку и получить на выходе не 12.6 Вольт (напряжение трех литиевых аккумуляторов), а к примеру 12.79.
Также можно подкорректировать и ток заряда.

Так как настройка порога срабатывания индикации окончания заряда не очень удобна, то я рекомендую купить плату с двумя подстроечными резисторами, это проще. Если купили плату с тремя подстроечными резисторами, то для настройки надо подключить к выходу нагрузку примерно соответствующую 1/10 — 1/5 от установленного тока заряда. Т.е. если ток заряда 1.5 Ампера и напряжение 12 Вольт, то это может быть резистор номиналом 51-100 Ом мощностью около 1-2 Ватт.

Настроили, перед сборкой проверяем.
Если сделали все правильно, то при подключении аккумулятора должно сработать реле и включиться заряд. В моем случае светодиод индикации при этом погасает, а включается когда заряд окончен. Если хотите сделать наоборот, то можно включить этот светодиод последовательно с входом оптрона, тогда светодиод будет светить пока идет заряд.

Так как в заголовке обзора все таки указана плата, а обзор о переделке зарядного, то я решил проверить и саму плату. Через пол часа работы при токе заряда 1 Ампер температура микросхемы была около 60 градусов, потому я могу сказать, что данную плату можно использовать до тока 1.5 Ампера. Впрочем это я подозревал с самого начала, при токе в 3 Ампера плата скорее всего выйдет из строя из-за перегрева. Максимальный ток при котором плату еще можно относительно безопасно использовать — 2 Ампера, но так как плата находится в корпусе и охлаждение не очень хорошее, то я рекомендую 1.5 Ампера.

Все, скручиваем корпус и ставим на полный прогон. Мне правда пришлось перед этим разрядить аккумулятор, так как я его зарядил в процессе подготовки прошлой части.
Если к зарядному подключается заряженный аккумулятор, то на 1.5-2 секунды срабатывает реле, потом опять отключается, так как ток низкий и блокировка не происходит.

Так, а теперь о хорошем и не очень.
Хорошее — переделка удалась, заряд идет, плата отключает аккумулятор, в общем просто, удобно и практично.
Плохое — Если в процессе заряда отключить питания зарядного, а потом опять включить, то заряд автоматически не включится.
Но есть куда большая проблема. В процессе подготовки я использовал плату из предыдущего обзора, но там же я писал, что плата без контроллера, потому полностью блокироваться не умеет. Но более «умные» платы в критической ситуации полностью отключают выход, а так как он одновременно является и входом то при подключении к зарядному которое я переделал выше, стартовать оно не будет. Для старта необходимо напряжение, и плате для старта необходимо напряжение 🙁

Решения данной проблемы несколько.
1. Поставить между входом и выходом платы защиты резистор, через который на клеммы будет попадать ток для старта зарядного, но как поведет себя плата защиты, я не знаю, для проверки ничего нет.
2. Вывести вход для зарядного на отдельную клемму батареи, так часто делается у аккумуляторного инструмента с литиевыми аккумуляторами. Т.е. заряжаем через одни контакты, разряжаем через другие.
3. Не ставить плату отключения вообще.
4. Вместо автоматики поставить кнопку как на этой схеме.

Вверху вариант без платы защиты, внизу просто реле, оптрон и кнопка. Принцип прост, вставили аккумулятор в зарядное, нажали на кнопку, пошел заряд, а мы пошли отдыхать. Как только заряд будет окончен, реле полностью отключит аккумулятор от зарядного.

Обычные зарядные устройства постоянно пытаются подать напряжение на выход если оно ниже определенного значения, но такой вариант доработки неудобен, а с реле не очень то и применим. Но пока думаю, возможно и получится сделать красиво.

Что можно посоветовать по поводу выбора вариантов заряда батарей:
1. Просто применить плату с двумя подстроечными резисторами (она есть в обзоре), просто, вполне корректно, но лучше не забывать что зарядное включено. День-два проблем думаю не будет, но уехать в отпуск и забыть зарядное включенным я бы не рекомендовал.
2. Сделать как в обзоре. Сложно, с ограничениями, но более правильно.
3. Использовать отдельное зарядное, например известный Imax.
4. Если в вашей батарее сборка из двух-трех аккумуляторов, то можно использовать B3.
Это довольно просто и удобно, кроме того есть полное описание в этом обзоре от автора Onegin45.

5. Взять блок питания и немного доработать его. Нечто подобное я делал в этом обзоре.

6. Сделать полностью свое зарядное, со всем автоотключениями, корректным зарядом и расширенной индикацией. Самый сложный вариант. Но это тема третьей части обзора, впрочем там же скорее всего будет и переделка блока питания в зарядное.

7. Использовать зарядное устройство типа такого.

Кроме того я часто встречаю вопросы насчет балансировки элементов в батарее. Лично я считаю, что это лишнее, так как качественные и подобранные аккумуляторы разбалансировать не так просто. Если хочется просто и качественно, то куда проще купить плату защиты с функцией балансировки.

Недавно был вопрос, можно ли сделать так, чтобы зарядное умело заряжать и литиевые аккумуляторы и кадмиевые. Да, сделать можно, но лучше не нужно так как кроме разной химии аккумуляторы имеют и разное напряжение. Например сборке из 10 кадмиевых аккумуляторов надо 14.3-15 Вольт, а из трех литиевых — 12.6 Вольта. В связи с этим нужен переключатель, который можно случайно забыть переключить. Универсальный вариант возможен только если количество кадмиевых аккумуляторов кратно трем, 9-12-15, тогда их можно заряжать как литиевые сборки 3-4-5. Но в распространенных батареях инструмента стоят сборки 10 штук.

На этом вроде все, я постарался ответить на некоторые вопросы, которые мне задают в личке. Кроме того, обзор скорее всего будет дополнен ответами на ваши следующие вопросы.

Купленные платы вполне работоспособны, но микросхемы скорее всего поддельные, потому нагружать лучше не более чем на 50-60% от заявленного.

А я пока думаю что надо иметь в правильном зарядном устройстве, которое будет делаться с нуля. Пока из планов —
1. Автостарт заряда при установке аккумулятора
2. Рестарт при пропадании питания.
3. Несколько ступеней индикации процесса заряда
4. Выбор количества аккумуляторов и их типа при помощи джамперов на плате.
5. Микропроцессорное управление

Хотелось бы также узнать, что интересно было бы вам увидеть в третьей части обзора (можно в личку).

Хотел применить специализированную микросхему (вроде даже бесплатный семпл можно заказать), но она работает только в линейном режиме, а это нагрев :((((

Возможно будет полезно, ссылка на архив с трассировками и схемами, но как я выше писал, добавочная плата скорее всего не будет работать с платами, которые полностью отключают аккумуляторы.

Дополнение, такие способы переделки подходят только для батарей до 14.4 Вольта (примерно), так как зарядные устройства под 18 Вольт аккумуляторы выдают напряжение выше 35 Вольт, а платы DC-DC рассчитаны только до 35-40.

Зарядник Li-ion батарей на LM 317 и TL431.

РадиоКот >Схемы >Питание >Зарядные устройства >

Зарядник Li-ion батарей на LM 317 и TL431.

Началось всё с того, что ко мне в руки попал Panasonic Lumix DMC-F1 с объективом Leica-DC-Vario-Elmarit

К нему в комплекте не было ничего, но аппарат обладает металлическим корпусом и делает прекрасные снимки, не смотря на свои 3,2 мегапикселя. Для размещения фотографий и картинок в интернете, лично по моему мнению, более чем достаточно.
Cнимки, сделанные Panasonic Lumix DMC-F1.

Все фотографии к статье сделаны именно этим фотоаппаратом.
Первым делом надо было найти родной аккумулятор — Panasonic CGA-S001, Li-Ion, 3.6 В, 1200 мА/час

Поиски закончились безрезультатно, и пришлось купить аналог, аккумулятор ENKATSU Electric Pn CGA-S001 Li-Ion, 3.6 В, 680 мА/час

Но аккумуляторы надо чем-то заряжать, а вот цены на зарядные устройства совсем не понравились и было решено сделать зарядник самостоятельно.
Существует много разных схем зарядников для Li-Ion аккумуляторов, но покупать специализированные микросхемы не было желания и времени.
Схема была набрана как детские кубики с картинками из фрагментов разных схем и никаких особенностей не имеет.
Ток заряда в пределах 100 миллиампер, торопится мне некуда, да и батарея в этом режиме дольше проработает и качественней заряжается.
Настройка схемы трудностей не вызывает.
1. Без нагрузки устанавливаем подстроечным резистором 4,2 в на выходе.
2. Подключаем батарею.
3. Проверяем ток зарядки.
4. Ожидаем погасания светодиода.
5. Отключаем батарею.

Через некоторое время купил на барахолке плату от сотового самсунга из которой удалось отковырять живую LTC4054 и пустить её в дело, скорее из спортивного интереса.

Микросхема управляется лишь одним резистором, сопротивление которого можно рассчитать по формуле:

Напряжение питания микросхемы 4,25-6,5В, оптимальным считается напряжение 5В.

Файлы:
Печатная плата в формате SL 5.0.

Вопросы, как обычно, складываем тут.


Как вам эта статья?

Заработало ли это устройство у вас?

Схемы для зарядного устройства для литиевых аккумуляторов

Литиевые аккумуляторы изготавливаются с использованием различных ионных компонентов, с неизменным присутствием иона лития. Другим составляющим может быть сухой ионит с кобальтом, фосфатом железа, комплекс никель-кобальт алюминий и прочие. Подбор активных составов продолжается. В зависимости от гальванической пары меняется мощность аккумуляторов, их напряжение и емкость, но способы сбора в батареи с обвязкой для всех одинаковы.

Поместить сборку в гнездо

Схема подключения литиевых аккумуляторов

Установка литиевой батареи решает разные задачи. В случаях, когда нужно иметь токовую нагрузку, измеряемую десятками ампер используют высокотоковые элементы. Это касается ручного инструмента, тяговых батарей для транспортировки. Средние нагрузки лежат на ноутбуках, фотоаппаратах, фонарях.

Рассмотрим высокотоковые аккумуляторы на основе литий-ионных банок с номинальным напряжением 3,7 В. Они могут иметь разные размеры, емкость, но напряжение будет только 3,7. Изготовлены элементы:

  • катод из алюминиевой фольги, на которую нанесен мелкодисперсный графит;
  • анод из медной подложки, на которую нанесен LiCoO2:
  • сепаратор, ячеистый состав пропитан неводным раствором соли Li.

Именно такие комплектующие используют в цилиндрических элементах, аккумулятор называют литий-ионным. Чаще всего схема питания шуруповертов, ноутбуков, фонарей, биноклей изготовлены с применением литиевых аккумуляторов форм-фактора 18650. Элемент имеет в длину 65 мм, диаметр 18 мм. Напряжение рабочее 3,0-4,2 В. Относится в высокотоковым, то есть может отдавать ток силой до 10 С.

Сборка батареи

Для питания инструмента большей мощности необходимо соединять последовательно несколько банок, по расчету. При этом емкость измеряется по самому слабому элементу.

Для повышения емкости нужно использовать параллельное соединение. Банки, соединенные одинаковыми полюсами суммируют емкость. Если нужно поднять емкость и напряжение, используют комбинирование. Соединяют группы банок параллельно. Потом каждый комплект соединяют последовательно.

Для шуруповертов с рабочим напряжением 12,14,18 В используется последовательная схема литиевого аккумулятора. Зная, что отдельные элементы не должны перезаряжаться выше 4,20 В, разряжаться ниже 2,5 В, требуется обеспечить равномерное напряжение во всех банках и защиту от опасного для них напряжения. Батарея может быть собрана из защищенных аккумуляторов. Тогда на них есть маркировка «protected» («защищенные»). В корпусе имеется плата, отключающая элемент при достижении критичных параметров.

Защита 18650

Защищенный цилиндр на 2 мм длиннее стандартного, незащищенного и немного толще, за счет дополнительной обертки. Если используются незащищенные литиевые аккумуляторы, в схему заряда литиевых  аккумуляторов устанавливается плата защиты MBS, рассчитанная на максимальную токовую нагрузку, количество банок. Часто там же встроен балансир.

Схема подключения защитной платы к связке Li-ion

Схемы балансиров для литиевых аккумуляторов

В чем заключается балансировка при сборке батареи последовательно? Когда соединение банок идет противоположными полюсами, напряжение суммируется. Ток протекает одинаковый. По разным причинам разница в емкости может немного отличаться. Но если не поставить преграду, самая малая банка переполнится, то есть перезарядится. Это плохо. При работе ток отбирается в равных количествах. Банка, у которой емкость немного ниже, разрядится настолько, что может выйти из строя, пока другие элементы сборки отдают энергию до нормы.

балансировочный-шлейф распайка

балансировочный-шлейф-2 для комбинированного соединения

Балансир представляет схему, которая создает препятствия для прохождения тока в заряженную батарею, направляя ее через дополнительные сопротивления, резисторы. Балансир включает стабилитрон TL431A и транзистор односторонней прямой проводимости BDI 40

зарядное и балансир IMAX6

Отличные балансиры включены в схему зарядных устройств для литиевых аккумуляторов, которыми широко пользуются. Их маркировка Turnigy Accucel-6 50W 6A и iMAX B6.

Перед вами простая и понятная схема балансировки литиевых аккумуляторов, которую можно сделать самостоятельно.

 

balansir-shema

Схема светодиодов для контроля разряда литиевых аккумуляторов

Актуально узнать, когда аккумулятор сядет. Разряжать литиевые батареи до 2,5 В не стоит, будут трудности с предзарядом. Резкое мигание светодиода послужит заметным аварийным сигналом.

Несложная схема с применением монитора напряжения еще и компактная. Неоспоримое достоинство – низкое потребление энергии. При севшей батарее это важно. Хорошо с задачей справится мигающий светодиод L-314.

indikator-na-max9030

Можно купить готовый прибор –MAX9030. Схема компоновки представлена. При понижении напряжения до 3,0 В начинает вспыхивать ярко светодиод с длинным интервалом. В спящем режиме расходуется 50 наноампер (10-9), при вспышках 35 мкА.

Вывод

Для каждого устройства можно составить литиевую батарею, отвечающую запросам. Но необходимо подобрать параметры комплектующих в соответствии с видом литиево-ионных аккумуляторов. Марганцевые имеют напряжение 4 В, кобальтовые 3,7 В, а железо-фосфатные 3,3 В. Собирая батарею, нужно брать элементы одного вида, лучше из одной партии.

Видео

Посмотрите ход подключения защиты и сбора батареи.

Зарядное устройство для литиевых аккумуляторов своими руками

Многие могут сказать, что за небольшие деньги можно заказать специальную плату из Китая, посредством которой можно заряжать литиевые аккумуляторы через USB. Она будет стоить около 1 доллара.

Как собрать зарядку для литиевых аккумуляторов

Но нет смысла покупать то, что легко собирается за несколько минут. Не стоит забывать и о том, что заказанную плату придется ждать около месяца. Да и покупное устройство не приносит столько удовольствия, как сделанное своими руками.
Первоначально планировалось собрать зарядное устройство на базе микросхемы LM317.

Первоначально планировалось

Но тогда для питания этой зарядки потребуется более высокое напряжение, чем 5 В. Микросхема должна иметь разницу в 2 В между входящим и выходящим напряжениями. Заряженный литиевый аккумулятор имеет напряжение 4,2 В. Это не соответствует описанным требованиям (5-4,2=0,8), поэтому необходимо поискать другое решение.

Зарядку, которая будет рассматриваться в этой статье, способен повторить практически каждый. Ее схема довольно проста для повторения.

схема
Идея этой схемы состоит в том, что здесь присутствует и ограничение зарядного тока аккумулятора, и стабилизация напряжения. Последняя построена на основе стабилитрона TL431.
В роли усиливающего элемента выступает транзистор. А резистор R1 регулирует ток заряда, значение которого зависит лишь от параметров аккумулятора. Рекомендуется использовать 1-ваттный резистор. Оставшиеся резисторы могут иметь мощность 250 или 125 мВт.
На выходе зарядника необходимо установить напряжение 4,2 В, поскольку оно соответствует напряжению полностью заряженного литиевого аккумулятора. Оно задается резисторами R2 и R3.
В сети имеется большое количество софта для расчета напряжения стабилизации TL431.

TL431

TL431

Одну из таких программ можно скачать в конце статьи.
Чтобы осуществить более точную настройку напряжения на выходе, можно поменять резистор R2 на многооборотный. Его сопротивление должно составлять порядка 10 кОм.

резистор R2
Можно применить и такую схему:

Другая схема
В качестве индикатора используется светодиод. Годится любой. Его цвет не имеет значения.
Настройка заключается лишь в установке напряжения 4,2 В на выходе схемы. Микросхема TL431 встречается довольно часто, особенно в БП компьютеров. Транзисторы можно использовать типа КТ819 или КТ805.
Представленная схема предназначается для заряда только одного Li-ion аккумулятора стандарта 18650.

Но, в принципе, можно использовать и для иных видов аккумуляторов. Требуется лишь выставить необходимое для этого значение выходного напряжения зарядки.
Если устройство не работает, то необходимо проверить управляющий вывод TL431 на наличие напряжения. Его значение должно быть не меньше 2,5 В.

Как собрать зарядку для литиевых аккумуляторовКак собрать зарядку для литиевых аккумуляторов
Это наименьшее допустимое значение опорного напряжения для этой микросхемы. Хотя иногда можно встретить и на 3 В.

Рекомендуется перед пайкой изготовить тестовый стенд для проверки работоспособности схемы, а по окончании сборки основательно проверить монтаж.

Как собрать зарядку для литиевых аккумуляторов

Как собрать зарядку для литиевых аккумуляторов

Прикрепленные файлы: АРХИВ 1:  АРХИВ 2

Автор: Алексей Алексеевич.


 

РЕМОНТ ЗАРЯДНОГО ДЛЯ ЛИТИЕВЫХ АККУМУЛЯТОРОВ

Сосед обратился с просьбой отремонтировать зарядное устройство для литиевого аккумулятора. После переполюсовки зарядное полностью перестало реагировать на сеть и аккумулятор. Так как тема использования аккумуляторов типоразмера 18650 для меня имеет в последнее время прикладной характер, решил соседу помочь.

Зарядное для аккумуляторов типоразмера 18650

Зарядное для аккумуляторов 18650

Со слов соседа, алгоритм работы устройства таков: при подключенном аккумуляторе и поданном сетевом напряжении загорается красный светодиод и горит до тех пор, пока аккумулятор не зарядится, после чего загорается зеленый светодиод. Без установленного аккумулятора и поданном сетевом напряжении, светится зеленый светодиод.

Зарядное для аккумуляторов типоразмера 18650 - параметры

Судя по этикетке, заряд током 450 mA осуществляется в щадящем режиме, но как оказалось после вскрытия это вариант эконом)). Схема зарядки состоит из двух узлов: преобразователя сетевого напряжения на одном транзисторе MJE 13001 и контроллера уровня заряда.

Разборка зарядного от Li-Ion 18650 1

Разборка зарядного от Li-Ion 18650 2

Детали зарядного для 18650

Разборка зарядного от Li-Ion 18650

Схема зарядного для АКБ

Преобразователь на одном MJE 13001 часто встречается в дешевых зарядках для телефонов, а так же в зарядках типа «лягушка». Рисовать ее не стал – просто посмотрел в интернете похожую схему. Плюс, минус один резистор/конденсатор большой роли не играют. Схема типовая.

Схема зарядного для АКБ 18650

Тестером прозвонил диоды, стабилитрон и транзистор, убедился в их целостности. Решил проверить резисторы и попал в точку! Оказался оборванным резистор R1 – 510 кОм (на вышеприведенной схеме это резистор R3), подтягивающий напряжение питания к базе транзистора. В наличии такого не нашлось, взамен его был установлен резистор на 560 кОм.

Ремонт зарядного для 18650

После замены резистора зарядка завелась.

Ремонт зарядного от Li-Ion 18650

Зарядное заработало — светодиод светится

Ради интереса заглянул в даташит контроллера заряда аккумулятора. Им является микросхема HT3582DA.

микросхема HT3582DA

Так же часто встречается ее клон СТ3582.

HT3582DA

Схема включения HT3582DA

Как выяснилось, допускаются два варианта включения микросхемы: 5-й вывод замыкается либо с 8-м либо с 6-м выводом. В моем случае были замкнуты 5-й и 6-й. Как видим, производитель заявляет максимум 300 мА. Так что, на этикетке зарядки выражен большой оптимизм в 450 мА))). Но самое интересное ждало впереди. Проверка мультиметром напряжения на выходе зарядного показала его обратную полярность.

HT3582DA

Напряжение на выходе ЗУ

Как оказалось, сначала нужно вставить аккумулятор для определения контроллером полярности, а потом включать в сеть. В даташите говорится о автоматическом определении полярности батареи. Кроме того, контроллер легко выдерживает короткое замыкание на выходе.

HT3582DA

При КЗ заряд отключается

Для проверки результатов ремонта вставил аккумулятор и включил зарядное в сеть. Через какое то время заметил, что красный светодиод не светится, а значит снова что то не работает. Ни какого криминала при вскрытии выявлено не было, все доступные проверке тестером элементы в порядке. Начал подумывать на контроллер, но решил перед началом поисков его в магазинах проверить конденсаторы. В наличии имеется тестер полупроводниковых приборов Т4. С его помощью были проверены электролиты, а затем и керамические конденсаторы. И вот они то меня сильно и удивили. Оба конденсатора на 0,1 мкф показали следующее:

Конденсатор 104   тестер полупроводниковых приборов Т4

тестер полупроводниковых приборов Т4   тестер полупроводниковых приборов Т4

тестер полупроводниковых приборов Т4   тестер полупроводниковых приборов Т4

Тестер полупроводниковых приборов Т4 меряет конденсаторы

Конденсатор 472 пФ почему то оказался аж 8199 пФ. Поскольку такого в закромах не нашлось, пришлось слепить из двух близкое значение. Конденсаторы на 0,1 мкф заменил на исправные с предварительной проверкой параметров.

тестер полупроводниковых приборов Т4

Ремонт закончен

После произведенных манипуляций зарядное заработало должным образом. Сосед счастлив и распространяет информацию о моих магических способностях). Автор материала — Кондратьев Николай, Г. Донецк.

   Форум по ремонту техники

   Ремонт электроники
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *