Самодельная батарея 12в на 18650
Доброго времени суток, читатели Муски! Сегодня я расскажу о изготовлении литиевой батареи на 12в (3s) на банках 18650.Поступил заказ:
Собрать liion батарею на 18650 на 12в
Зарядка от имеющегося в наличии б/п от старого ноутбука (19.5в)
Потребление до 4А
Схема 3s1p
aliexpress.com/item/32796016887.html
Покупка:
BMS универсальная 3s-5s
aliexpress.com/item/32903676169.html
dc-dc понижайка с регулировкой напряжения и тока
aliexpress.com/item/1084552308.html
Покупка:
Держатели 18650
mysku.ru/blog/aliexpress/72594.html
Прокладки:
aliexpress.com/item/32883546865.html
Сборка:
На + банок приклеиваю прокладки
Собираю банки на держателях. Привариваю никелевую ленту. Со стороны платы приклеиваю термоскотч.
Банок 18650 Eaiep 26f для данной задачи за глаза. Среди китайских одни из лучших банок.
Настраиваю bms под данную задачу. Выпаиваю три шунта, ставлю перемычки под 3s
P- минус потребителя
С- минус зарядки
B- минус батареи
Данные bms сделаны качественно и показали себя надежными. Работают в куче проектов проблем с ними нет. BMS имеет балансировку. BMS универсальная можно настроить на 3s, 4s или 5s
Настраиваю dc-dc понижайку на 12.6в (после диода) и 1.3А (стандартный ток заряда для данных банок)
Заряд завершен:
При желании можно выпаять smd светодиоды и припаять на проводах любые корпусные диоды. Я обычно так делаю при переделке зарядок шуруповертов. Но в данном случае такого пожелания клиента не было, его вполне устраивает индикация на плате.
Собираю и проверяю на нагрузку:
Готовая батарея:
Всем спасибо за внимание!
Зарядное устройство для сборки аккумуляторов своими руками 12.6 Вольт 1 Ампер
Еще один обзор еще одного небольшого зарядного устройства для 3S (12.6 Вольт) сборки аккумуляторов. Не так давно я публиковал обзор версии на 3 Ампера, сегодня версия попроще, 1 Ампер.К сожалению все пошло не так, как хотелось, но не буду забегать вперед, подробности
Началось все с того, что заказал я для товарища пять небольших зарядных устройств. Хотя нет, заказал я их раза в три больше, но другие относятся к более мощной серии и о них я расскажу в другой раз, а пока покажу «малышей».
Вопросов как к доставке, так и к упаковке не возникло, продавец отнесся к своей задаче вполне ответственно. Все было плотно уложено в картонную коробку, а сверху лежал листик вспененного полиэтилена.
Помимо этого каждый блок был упакован в небольшой пакетик. Конечно картонные коробочки смотрелись бы лучше, но в принципе и так неплохо.
На выбор было два варианта вилки, естественно я выбрал Евро. Каждое зарядное устройство имеет кабель подключения нагрузки, длина кабеля около метра, на конце находится привычный многим разъем 5.5/2.1
Корпус не склеен, потому выкручиваем единственный саморез и лезем внутрь.
Плата, на твердую тройку. Даже при беглом взгляде видно, что нет как минимум входного фильтра, а трансформатор несколько маловат для заявленной мощности в 12.6 Ватта, хотя с учетом потерь на диоде и шунте скорее в 13 Ватт, но не суть важно, проверим позже в деле.
1. Использован ШИМ контроллер KTG207C со встроенным высоковольтным транзистором. Судя по даташиту мощность составляет 12 Ватт для адаптера и 18 для открытого корпуса. В нашем случае мы имеем дело с адаптером (БП в маленьком закрытом корпусе), потому работать он будет с перегревом.
2. Входной конденсатор емкостью 15мкФ, измеренная 13.8, ESR- 1 Ом. Без запаса, но для зарядного нормально.
3. Присутствует нормальный помехоподавляющий конденсатор Y типа, я о них как-то рассказывал в своем видео.
Качество пайки примерно на те же три балла, что и вид сверху. Имеются большие «сопли» припоя на некоторых контактах. Выходные провода припаяны снизу, хотя для них в плате есть соответствующие отверстия, да и сечение проводов не очень высокое, хотя опять же, для зарядного это не критично.
Первичная сторона меня интересует меньше всего, а вот вторичная куда важнее.
Уже видно, что зарядное устройство «без мозгов», а в качестве ОУ применена привычная LM358. Кроме того видно, что поверх одного из резисторов напаян еще один, видимо подбирали выходной ток.
Так как по печатной плате не очень удобно разбираться, что и как сделано, то я перечертил схему в более привычный вид.
Как и предполагалось, перед нами простое зарядное устройство. Хотел сначала назвать его примитивным, но нет, есть варианты куда проще.
На схеме я выделил основные узлы.
1. Синий — узел стабилизации напряжения. Фактически он определяет напряжение окончания заряда.
2. Красный — узел стабилизации тока. Определяет ток заряда.
3. Зеленый — источник опорного напряжения. Отвечает за стабильность измерения тока заряда и индикации.
4. Оранжевый — узел индикации. Так как под окончанием заряда (для литиевых аккумуляторов) принято понимать падение зарядного тока ниже чем 1/10 от исходного тока заряда, то здесь схема похожа на узел стабилизации тока, но с другими порогами срабатывания.
Стандартный первичный тест.
1. Напряжение окончания заряда 12.67 Вольта, т.е. каждый аккумулятор будет заряжен не до 4.20, а до 4.22 Вольта, что несколько выше нормы, хотя и терпимо.
2. При подключенной батарее и отключенном питании потребление 14мА, многовато, кроме того при этом светит светодиод.
3. Ток заряда 1.05 Ампера, немного выше заявленного. Причем что интересно, выше я показывал печатную плату и там был добавлен дополнительный резистор. Так вот если его выпаять то ток упадет с 1.05 до 1.00 (согласно расчетам). Зачем его припаяли — загадка.
5, 6. Ради интереса посмотрел ток через 5 и 10 минут после переключения индикации. Через 5 минут ток упал до 35мА, а еще через 5 минут до 20мА. Такой режим заряда не приветствуется, но допускается. Рекомендация проста — не оставлять на длительное время (несколько дней).
Вот теперь можно перейти к тестам под нагрузкой.
Так как моя электронная нагрузка не умеет работать в режиме CV, то я подключился до шунта зарядного устройства и нагрузил его током 1.05 Ампера, эмулируя реальную ситуацию. Зарядное было подключено отдельным проводом к сети, а сверху накрыто родной крышкой. Впрочем это видно на фото. Конечно есть отличия от реальных условий эксплуатации, но они незначительны.
Первый тест — измерение ухода напряжения окончания заряда от прогрева. Уход есть, хотя и не очень большой, кроме того к концу заряда температура падает и напряжение приходит в норму. Но я провожу этот тест для общей оценки качества устройства.
Но в процессе теста меня ждал неприятный сюрприз. Примерно через 20-25 минут электронная нагрузка «притихла», т.е. выключила вентилятор. Обычно это говорит о том, что произошло автоотключение.
Я немного остудил устройство и запустил тест еще раз, через 17 минут опять произошло отключение по падению напряжения.
Причина стала понятна сразу, как я открыл крышку. Банальный перегрев. Причем сначала я волновался по поводу перегрева трансформатора, но перегрев микросхемы произошел раньше, в процессе работы она нагрелась как минимум до 115 градусов, реально выше, так как измерил я через секунд 5 после отключения.
Так как зарядные устройства все таки были нужны, а в таком виде эксплуатировать их нельзя, то было принято решение снизить выходной ток.
Ниже я выделил элементы, которые влияют на выходные параметры.
1. Зеленым — шунт, влияет как на выходной ток, так и на индикацию. Влияет пропорционально, т.е. снижение выходного тока в 2 раза во столько же снизит порог переключения индикации.
2. Красным — делитель опорного напряжения. Влияет на выходной ток.
3. Синим — Второй делитель опорного напряжения. Влияет на порог переключения индикации.
Вариантов у меня было два, изменить номинал шунта или номинал делителя опорного напряжения (красный). Так как удобнее уменьшать сопротивление резисторов путем параллельного подключения еще одного, то я выбрал второй вариант, менять номиналы делителя.
Можно было конечно посчитать все при помощи калькулятора, но мне было куда проще сделать это в старом, но проверенном симуляторе электронных схем.
Сначала я сделал родную схему и узнал напряжение на выходе делителя (оно будет немного отличаться от реального). Вышло 116мВ.
Затем посчитал, какое напряжение мне надо выставить, чтобы на выходе был нужный мне ток (я решил сделать 700-750мА, среднее 725).
Так как исходный ток известен, то считаем 116/1.05х0.725=0.79.
Затем путем подбора добавочного резистора (правый нижний на схеме) я добился напряжения в 80мВ. В моем случае вышло что надо припаять параллельно резистор номиналом 10 кОм.
Затем находим нужный делитель на плате, нумерация в схеме и на плате соответствует. Попутно поправил косо установленный резистор. После этого припаиваем параллельно новый резистор. Я использовал резистор размера 0805.
Проверяем. Примерно соответствует расчетам, можно оставлять как есть.
Погонял еще примерно с пол часа, температура контроллера упала со 115 до 85. Как по мне, то довольно неплохо, для улучшения ситуации можно снизить ток до 700мА, ниже смысла снижать нет.
Кроме того, теперь ток переключения индикации составляет почти требуемые 1/10 от тока заряда 🙂
После обзора было снято видео, где я вкратце объясняю что к чему, просто как дополнение.
Теперь попробую кратко описать мое мнение об этом устройстве.
Общее качество изготовления не очень высокое, схема простая. Если снизить выходной ток до 700-750мА, то будет работать.
Без доработки использовать крайне не рекомендую, контроллер будет работать в режиме постоянного перегрева периодически выключаясь для остывания и может выйти из строя.
На этом все, надеюсь что обзор был полезен, а также скажу, что у меня лежит еще одно зарядное устройство 12.6 Вольта 3 Ампера, но уже «фирменное».
переделка зарядного устройства для литиевых аккумуляторов 18, 12 вольт своими руками
Для того чтобы переделать шуруповерт на литиевый аккумулятор, потребуется сам агрегат, батареи и нехитрый арсенал инструментов. Целесообразность трансформации вызвана эксплуатационными характеристиками литий–ионных моделей.
Их электрическая плотность существенно превосходит показатели никель–кадмиевых батарей. Отмечается меньший вес и большая продолжительность работы. Вдобавок Li-Ion аккумуляторы лишены такого недостатка Ni-Mh аналогов как эффект памяти. Соответственно их зарядка может осуществляться в любое время, независимо от действующего уровня.
Но батареи Li-Ion хуже работают в холодную погоду. Уже при температуре 10 С они начинают быстро разряжаться. Если работа по преимуществу идет на открытом пространстве, то лучше обойтись без трансформации. При наличии базовых навыков произвести замену шуруповерта на литиевые аккумуляторы можно своими руками.
Особенности переделки
В большинстве моделей, по крайней мере «Интерскол», «Макита», «Хитачи» представлены универсальные механизмы. Это означает, что зарядник предназначен для питания батарей Ni-Mh и Li-Ion типа.
Особенности связаны с мощностью аккумуляторов. Новые и заменяемые изделия должны соответствовать друг другу. В противном случае возникнет сбой или разрыв цепи, о чем сигнализирует индикатор. При перегрузках или разрыве одновременно мигают красная и зеленая лампочка.
В ситуации, когда зарядное устройство не универсальное, ему потребуется переделка, также как и блоку питания. Процесс зависит от типа ЗУ и производителя, подразумевая практически полное выпаивание элементов платы, установку конденсатора, резисторов и их последующую настройку.
Наряду с этим существует универсальный способ трансформации ЗУ. Он связан с использованием платы BMS, стабилизирующей входное напряжение и ток. На рынке она имеет обозначение DC-DC StepDown, а непосредственно на плате присутствуют подстроечные резисторы. Модуль впаивают в схему зарядного устройства, используя соединения P+ и P- на плате и старые клеммы зарядки.
Переделка на литиевые аккумуляторы 12 вольт
Приведенный выше способ применяется для всех аккумуляторов. Вольтаж определяется параметрами блока питания. Отличия связаны с количеством батарей. Основная масса руководств по трансформации относится к 14 В агрегатам, где для замены используют 4 литиевых батареи 18650. Для 12 В устройства такого количества многовато. Здесь будет достаточно 3-х батарей 18650.
Переделка на литиевые аккумуляторы 18 вольт
Аналогичный подход применяется к 18 вольтовым изделиям. Здесь отличия, также связаны с численностью аккумуляторов. Батарея состоит из 5 единиц 18650, что обеспечивает ей сверх эффективную работу. Если процесс работы слишком интенсивен, шуруповерт даже отдает горелым. Поэтому впоследствии 5-й аккумулятор нередко удаляют.
Необходимые компоненты для переделки
Предварительно необходимо подобрать компоненты, которые помогут трансформировать шуруповерт. Состав определяется особенностями процесса, а именно пайкой, использованием специальных кассет либо точечной сварки. Кассеты применять не рекомендуется в виду их уязвимости к воздействию тока. В остальном список включает:
- аккумуляторы Li-ion18650;
- защитная плата или модуль, обеспечивающий равномерную нагрузку при зарядке;
- аппарат контактной сварки. Он предпочтительнее пайки, поскольку литиевые батареи чувствительны к нагреву и могут выйти из строя;
- провода сечением 0,75 мм², 1,5 мм², 2,5 мм²;
- термоусадка;
- отвертка;
- дисковый нож.
Батарейка должна соответствовать мощности старых компонентов в пропорции 1/3. Т.е. литиевый элемент является полноценной заменой 3-х никель-кадмиевых батарей. Обычно используют 3 шт. Li-ion вместо 10 Ni-Mh, что слегка снизит мощность агрегата. Можно установить 4 аккумулятора, но это сократит рабочий ресурс электродвигателя.
Ключевое значение имеет показатель тока, приведенный в рабочем паспорте шуруповерта. Он колеблется в диапазоне 15-40 А, соответственно подбираются элементы со схожими параметрами отдачи. Это касается как батарей, так и защитных плат. Универсальный вариант модуль BMS на 25 А или 30 А. Нежелательно использовать аккумуляторы от старого ноутбука, поскольку на высокую нагрузку они не рассчитаны.
Как переделать
Непосредственная замена аккумуляторов в шуруповерте не зависит от емкости питающих элементов. Процесс производится в несколько этапов, начинаясь с корпусной разборки аккумулятора.
Разборка блока питания для новой зарядки
Лучше, если он имеет шурупную или заклепочную сборку. Хуже если имеет место клеевое соединение, в этом случае все делается с предельной аккуратностью.
Затем изнутри удаляются все элементы, кроме контактных пластин или клемм. Новые батареи последовательно соединяются между собой выбранным способом (пайка, точечная сварка). Последовательность является ключевым фактором успеха, обеспечивая неизменность емкости и напряжения. Для соединения подходят провода сечением 2,5 мм², способные выдержать высокое напряжение при работе.
Пайка проводов к модулю стабилизации
Аккумуляторный блок и защитная плата BMS соединяются между собой при помощи проводов. Желательно использовать сечение 1,5 и даже 2,5 мм². Непосредственная схема подключения состоит в:
- Соединении провода идущего на плюс к соответствующему контакту платы, обозначенному B+;
- Соединении провода идущего на минус к соответствующему контакту платы, обозначенному B-;
- Провода с остальных контактов блока подключаются к клеммам, обозначенным на плате как B1, B2, B3. Количество соединений зависит от числа аккумуляторов.
Во избежание короткого замыкания защитный модуль изолируется от аккумуляторов термоусадкой, это убережет его от контактов пайки или сварки.
Пайка проводов блока питания с модулем
На самой плате BMS есть еще 2 контакта, обозначенные P+ и P-. От них провода идут к соответствующим клеммам старой микросхемы.
Установка напряжения
На резисторах устанавливается выходное напряжение. Этот показатель на каждый элемент не должен превышать 4,2 вольт.
Размещение в корпусе
Заключительный этап состоит в сборке аккумулятора. Корпусные части тщательно вычищаются, аккумуляторный блок вставляется в полости. Учитывая меньшие размеры, его крепят к поверхности посредством клея или герметика.
К клеммам припаивают провода плюс и минус, клеммник также укладывается в корпус, следом аккуратно помещается защитная плата BMS. В конце части корпуса соединяются шурупами, скобами или клеем.
Отличие зарядного устройства от блока питания заключается в присутствии тока заряда. От него зависит уровень напряжения и соответствующие ограничения. Контроллер реагирует на перегрузку, некорректную полярность, несоответствие выходному значению. Как правило, устройство просто отключается.
Трансформация состоит в дополнении ЗУ, куда включают такой элемент как модуль BMS, с регулировкой резисторов. Остается задать нужные значения, достигнув которых заряд останавливается. Нередко при переделке зарядного устройства, зеленый индикатор не загорается. Вместо этого просто гаснет красная лампочка.
Большинство современных шуруповертов оснащается универсальными ЗУ. Они работают как на никель-кадмий, так и на литий. Приобретается готовая зарядка, но это дополнительные вложения.
Резюмируя, чтобы переделать АКБ шуруповерта на li ion 12 вольт либо 14, 18 вольт, необходим набор комплектующих, опыт работы с электрооборудованием и немного свободного времени. Целесообразно предварительно рассчитать общую стоимость вложений. Ремонт — долгая процедура, поэтому иногда проще купить новый шуруповерт, их цена сегодня не высока.
Недорогое зарядное устройство 12.6 Вольта 3 Ампера. Обзор зарядного устройства для зарядки li-ion аккумуляторов, схемы, тест
Буквально совсем недавно я выкладывал пару обзоров зарядных устройств, но так получилось, что случайно ко мне попало еще одно. К сожалению оно также на 12.6 Вольт (3S сборка литиевых аккумуляторов), но я решил, что обзор может быть полезен из-за низкой цены. Увы, не все так, как хотелось бы, но об этом уже в обзоре.Было заказано 10 штук зарядных устройств, на момент заказа цена была $8.13, то ли акция была, то ли продавец цену сейчас поднял, не знаю. Чтобы не было проблем с таможней, заказал двумя заказами.
Любопытно что упаковки были разные, видно коробки были те, что попались под руку, но упаковано было плотно.
В любом случае пришло все, каждое зарядное упаковано в отдельную картонную коробку, кабели лежали отдельно.
В комплект входит собственно зарядное устройство и кабель питания.
Из десяти кабелей один попался с вилкой у которой плоские штыри, хотя в заказе было указано — EU. Не критично, но неприятно.
А вот второй нюанс куда интереснее. В описании лота указано — Liitokala 12.6 В 3A зарядное устройство. Если насчет 12.6 и 3 все понятно, то вот насчет Литокала возникли некоторые вопросы. В принципе, насколько мне известно, Литокала не производит подобных зарядных устройств. Но на зарядных устройствах присутствует наклейка Liitokala, причем оригинально, в одной коробке были, в другой нет. Хотя если смотреть на фото, то можно понять, что разницы между ними никакой нет, вернее разница только в наклейке.
Корпус — привычный "брусок" черного цвета, на одной стороне расположен разъем подключения кабеля питания, на другой кабель для подключения к потребителю. Разъем 5.5/2.1мм.
Со стороны кабеля находится светодиод индикации режима работы.
Но меня интересовало это зарядное не только само по себе, а и в сравнении с тем, что я обозревал ранее.
Напомню, зарядное устройство с теми же заявленными характеристиками, 12.6 Вольта 3 Ампера, на вид также почти такое же, корпус чуть больше. Ссылка на обзор, чтобы понимать о чем идет речь.
Справа обозреваемое, слева то, что я разбирал ранее. Даже здесь видны некоторые отличия.
Зарядные устройства я покупал не себе, потому перед разборкой пришлось спросить товарища, не против ли он, если я его разберу для обзора, так как половинки корпуса склеены. Возражений не последовало, потому разобрал.
Внутри отличий гораздо больше. Как минимум у предыдущего трансформатор имеет магнитопровод большего размера, на фото это не так заметно, мешает скотч. Хуже изоляция радиаторов, вернее она есть в небольшом количестве только на радиаторе транзистора.
Ну а входной фильтр. Справа обозреваемый экземпляр, диодный мост попроще, дросселя нет, предохранитель обычный.
На выходе ситуация немного лучше. Хотя нет, точнее сказать — не сильно отличается от предыдущего, также два конденсатора и также нет дросселя по выходу. И кстати, как и у предыдущего есть место под вторую диодную сборку.
Вынимаем плату из корпуса для более тщательного осмотра, так как еще при первом взгляде мне показалось, что отличий больше.
1. Входные диоды 1N4007, фильтр отсутствует, зато конденсатор емкостью 82мкФ. Даже с учетом что реальная емкость китайских конденсаторов обычно занижена, все равно нормально для зарядного мощностью 35-40 Ватт.
2. Транзистор 8N65, вполне нормально для такой мощности.
3. Помехоподавляющий конденсатор правильный, потому безопасность в основном упирается упирается в отсутствие изоляции радиаторов и защитных прорезей в плате.
4. Выходная диодная сборка 10 Ампер 100 Вольт, нормально как по напряжению, так и по току. Конденсаторы 1000мкФ 25 Вольт, также вопросов особо нет, за исключением их "безродности".
На удивление плата спаяна даже аккуратно, конечно ей далеко до фирменных устройств, но в целом нормально.
Защитных прорезей нет, но расстояние между "горячей" и "холодной" сторонами довольно неплохое.
Первичная сторона блока питания. На всякий случай, если кому-то придется ремонтировать подобное зарядное.
А вот и первый косяк. Хотя по большому счету я даже не знаю как корректно назвать то, что я увидел.
Сверху на плате виден желтый помехоподавляющий конденсатор Х класса, так вот он не участвует в процессе. Не, ну бывает что паяют перемычки вместо дросселя, я уже к этому давно привык, но впаять конденсатор и не использовать его.
На фото я обозначил как запаян термистор и предохранитель, видно что конденсатор (справа) ни с чем не соединен. Странное решение 🙂
Как и в прошлый раз меня куда больше интересует вторичная сторона, так как первичная обычно имеет настолько маленькие отличия от других, что ее уже можно по памяти рисовать.
Как и предыдущие зарядные устройства, схема основана на операционном усилителе LM358, никаких "умных" контроллеров и в помине нет.
Вся электроника это ШИМ контроллер 6853K09, его подключение идентично контроллерам — 63D39, 63D12, и все они очень похожи на FAN6862. А также ОУ LM358, классика дешевых зарядных устройств.
Перечертил схему, хотя в данном случае по сути это компиляция из схемы блока питания, и предыдущего зарядного устройства 12.6 Вольта 1 Ампер, которые я описывал ранее, но с некоторыми отличиями.
Позиционные номера компонентов совпадают со схемой, по крайней мере в большинстве случаев 🙂
Сходство выходной части ну очень большое со схемой этого зарядного, а в какой то мере схема даже проще. Но в любом случае обе схемы гораздо проще, чем у предыдущего варианта 3 Ампера зарядного. Там было двойное питание и при желании можно было получить почти нулевое потребление когда зарядное не подключено к сети.
Схемотехника выходной части также примитивна, синий — стабилизация напряжения, красный — тока, синий — индикация, зеленый — опорное напряжение.
Это один из самых простых вариантов зарядных устройств, проще только на базе LM317 или резистора, но второй вариант не используется с литиевыми батареями (по крайней мере попадается крайне редко).
Первые тесты по моей методике тестирования зарядных устройств.
1. Выходное напряжение на холостом ходу заметно завышено, примерно по 40мВ на элемент. Это означает, что каждый элемент будет заряжаться до 4.24, а не до 4.20 Вольта. В таком варианте больше шансов получить срабатывание платы защиты аккумуляторной сборки. У предыдущего варианта было 20мВ превышение.
2. Собственный ток потребления без сети составляет 11мА, у предыдущего 7мА, а у 1А версии 14мА. Но у предыдущей версии 3 Ампера можно этот ток заметно снизить, у обозреваемого это сделать заметно сложнее, хотя и реально.
3. Ток заряда 3.23 Ампера, что почти на 10% больше заявленного. По большому счету ничего страшного в этом нет, просто аккумуляторы зарядятся чуть быстрее, но в моем случае повышенный ток "вылез боком".
4. Переключение индикации с красного на зеленый происходит при 359мА, что немного больше чем стандартная 1/10 от исходного тока. Не критично.
5, 6. Ток заряда через 5 и через 10 минут после срабатывания индикации. Как и следовало из схемы, данное зарядное не умет отключать аккумуляторы по завершении процесса, продолжая оставлять их под током. Для типичного сценария зарядил/отключил это неважно, но на неделю я бы не стал оставлять.
Следующий тест под нагрузкой, как всегда проверяем две вещи:
1. Нагрев.
2. Уход напряжения после прогрева.
Электронная нагрузка в таком тесте подключается до шунта чтобы зарядное не переходило в режим стабилизации тока (хотя в итоге все равно светил красный индикатор), и ток нагрузки выбирается таким, какой был измерен в предыдущем тесте.
Напряжение после получасового прогрева заметно убежало от исходного. Конечно по завершении заряда падает и нагрев, но сначала зарядное доведет напряжение батареи до 12.7 Вольта, а после остывания снизит до 12.68. Хотя стоп, почему снизит, без нагрузки на выходе было 12.72, потому даже скорее повысит. Жаль нет подстроечного резистора для коррекции.
На графике виден уход напряжения при нагреве. У предыдущего 3 Ампера зарядного уход был 0.005 Вольта! Как говорится — почувствуйте разницу.
С нагревом также картина не очень веселая. Сначала температура корпуса и компонентов после получасового прогрева.
А теперь через 1 час 14 минут. Самая высокая температура зарегистрирована в районе обмотки трансформатора, более 100 градусов.
Я бы не сказал что все так уж плохо, так как зарядное работает обычно час-два, максимум три, дальше обычно аккумулятор заряжается и нагрев падает. Кроме того, на начальном этапе нагрев будет немного меньше, так как выходная мощность зарядного меньше. Например на каждом аккумуляторе 3.8 Вольта, в сумме выходит 3.8х3х3.2=36,5 Ватта, а почти в самом конце заряда (в этом режиме я проводил тест) — 4,2х3х3,2=40,3, на 10 процентов больше.
Температура отдельных компонентов в конце теста —
Входной диодный мост — 74.5
Высоковольтный транзистор — 86.3
Трансформатор — 94.8
Обмотка трансформатора — 102.8
Выходная диодная сборка — 99.9
Выходные конденсаторы — 82.4
Термограмма с двух ракурсов.
На мой взгляд проблема перегрева кроется в нескольких вещах и первая — малый запас по мощности трансформатора. Вторая — завышенный выходной ток, почти 10% это немало. Я считаю, что стоит снизить его хотя бы до заявленного значения, а в идеале опустить до 2.8 Ампера. В таком варианте работать должно нормально.
Как и в прошлый раз (в обзоре 1 А зарядного) я советую изменить номиналы делителя. В данном случае либо увеличить R20, либо уменьшить R22. Так как уменьшить проще чем увеличить, то лучше сделать именно так, например припаяв параллельно резистор номиналом 8.2-10кОм. Чем меньше сопротивление резистора, тем меньше будет выходной ток.
Выводы просты. Главное преимущество данного зарядного — цена, дешевле мне пока не попадалось. Как вы понимаете, цена определяется обычно качеством сборки и работы. А в данном случае производитель явно экономил почти на всем. Но даже в таком варианте зарядное работает, но я бы советовал его немного доработать. Сама по себе доработка проста, самая большая сложность это аккуратное вскрытие.
Но в любом случае к Литокале данные изделия имеют примерно такое же отношение как я к балету 🙂
Вот и все. Надеюсь что обзор был полезен, как всегда жду комментариев и вопросов.