РазноеСолнечная энергия это источник – Солнечные батареи: все про альтернативный источник энергии — solar-energ.ru. Альтернативные источники энергии для частного дома: виды и проекты

Солнечная энергия это источник – Солнечные батареи: все про альтернативный источник энергии — solar-energ.ru. Альтернативные источники энергии для частного дома: виды и проекты

Содержание

Солнечная энергетика — Википедия

Карта солнечного излучения

Солнечная энергетика — направление альтернативной энергетики, основанное на непосредственном использовании солнечного излучения для получения энергии в каком-либо виде. Солнечная энергетика использует возобновляемый источник энергии[1] и является «экологически чистой», то есть не производящей вредных отходов во время активной фазы использования[2]. Производство энергии с помощью солнечных электростанций хорошо согласовывается с концепцией распределённого производства энергии. Гелиотермальная энергетика — нагревание поверхности, поглощающей солнечные лучи, и последующее распределение и использование тепла (фокусирование солнечного излучения на сосуде с водой или солью для последующего использования нагретой воды для отопления, горячего водоснабжения или в паровых электрогенераторах). В качестве особого вида станций гелиотермальной энергетики принято выделять солнечные системы концентрирующего типа (CSP — Concentrated solar power). В этих установках энергия солнечных лучей с помощью системы линз и зеркал фокусируется в концентрированный луч света. Этот луч используется как источник тепловой энергии для нагрева рабочей жидкости.

Карта солнечного излучения — Европа

Поток солнечного излучения, проходящий через площадку в 1 м², расположенную перпендикулярно потоку излучения на расстоянии одной астрономической единицы от центра Солнца (на входе в атмосферу Земли), равен 1367 Вт/м² (солнечная постоянная). Из-за поглощения, при прохождении атмосферной массы Земли, максимальный поток солнечного излучения на уровне моря (на Экваторе) — 1020 Вт/м². Однако следует учесть, что среднесуточное значение потока солнечного излучения через единичную горизонтальную площадку как минимум в

π раза меньше (из-за смены дня и ночи и изменения угла солнца над горизонтом). Зимой в умеренных широтах это значение в два раза меньше.

Возможная выработка энергии уменьшается из-за глобального затемнения — уменьшения потока солнечного излучения, доходящего до поверхности Земли.

Достоинства[править | править код]

  • Перспективность, доступность и неисчерпаемость источника энергии в условиях постоянного роста цен на традиционные виды энергоносителей.
  • Теоретически, полная безопасность для окружающей среды, хотя существует вероятность того, что повсеместное внедрение солнечной энергетики может изменить альбедо (характеристику отражательной (рассеивающей) способности) земной поверхности и привести к изменению климата (однако при современном уровне потребления энергии это крайне маловероятно).

Недостатки[править | править код]

  • Зависимость от погоды и времени суток[3].
  • Сезонность в средних широтах и несовпадение периодов выработки энергии и потребности в энергии. Нерентабельность в высоких широтах, необходимость аккумуляции энергии.
  • При промышленном производстве — необходимость дублирования солнечных энергетических установок традиционными сопоставимой мощности.
  • Высокая стоимость конструкции, связанная с применением редких элементов (к примеру, индий и теллур).
  • Необходимость периодической очистки отражающей/поглощающей поверхности от загрязнения.
  • Нагрев атмосферы над электростанцией.
  • Необходимость использования больших площадей[3].
  • Сложность производства и утилизации самих фотоэлементов в связи с содержанием в них ядовитых веществ, например, свинец, кадмий, галлий, мышьяк и т. д.
    [3]
    .
Годовая выработка электроэнергии в мире на СЭС
Год Энергия ГВт·ч Годовой прирост Доля от всей
2004 2,6 0,01 %
2005 3,7 42 % 0,02 %
2006 5,0 35 % 0,03 %
2007 6,8 36 % 0,03 %
2008 11,4 68 % 0,06 %
2009 19,3 69 % 0,10 %
2010 31,4 63 % 0,15 %
2011 60,6 93 % 0,27 %
2012 96,7 60 % 0,43 %
2013 134,5 39 % 0,58 %
2014 185,9 38 % 0,79 %
2015 253,0 36 % 1,05 %
2016 301,0 33 % 1,3 %
Источник — BP Statistical Review of World Energy, 2015, 2017[4][5][6]
Power of solar energy by country.jpg Solar capacity.jpg

В 1985 году все установленные мощности мира составляли 0,021 ГВт.

В 2005 году производство фотоэлементов в мире составляло 1,656 ГВт.

На начало 2010 года общая мировая мощность фотоэлементной солнечной энергетики составляла лишь около 0,1 % общемировой генерации электроэнергии

[7].

В 2012 году общая мощность мировых гелиоэнергетических установок выросла на 31 ГВт, превысив 100 ГВт.

Крупнейшие производители фотоэлементов в 2012 году[8]:

  1. Yingli — 2300 МВт
  2. Флаг США First Solar — 1800 МВт
  3. Trina Solar — 1600 МВт
  4. Флаг Канады Canadian Solar — 1550 МВт
  5. Suntech — 1500 МВт
  6. Флаг Японии Sharp — 1050 МВт
  7. Jinko Solar — 900 МВт
  8. Флаг США
    SunPower — 850 МВт
  9. REC Group — 750 МВт
  10. Флаг Республики Корея Hanwha SolarOne — 750 МВт

В 2013 году глобально было установлено 39 ГВт фотоэлектрических мощностей. В результате общая мощность фотоэлектрических установок на начало 2014 года оценивалась в 139 ГВт[9].

Лидером по установленной мощности является Евросоюз[10], среди отдельных стран — Китай. По совокупной мощности на душу населения лидер — Германия.

В 2010 году 2,7 % электроэнергии Испании было получено из солнечной энергии[11].

В 2011 году около 3 % электроэнергии Италии было получено из фотоэлектрических установок

[12].

В декабре 2011 года на Украине завершено строительство последней, пятой, 20-мегаваттной очереди солнечного парка в Перово, в результате чего его суммарная установленная мощность возросла до 100 МВт[13]. Солнечный парк Перово в составе пяти очередей стал крупнейшим парком в мире по показателям установленной мощности. За ним следуют канадская электростанция Sarnia (97 МВт), итальянская Montalto di Castro (84,2 МВт) и немецкая Finsterwalde (80,7 МВт). Замыкает мировую пятерку крупнейших фотоэлектрических парков — 80-мегаваттная электростанция Охотниково в Сакском районе Крыма.

В 2018 г. Саудовская Аравия заявила о намерении построить крупнейшую в мире солнечную электростанцию мощностью 200 ГВт[14].

Рабочие места[править | править код]

В середине 2011 года в фотоэлектрической промышленности Германии было занято более 100 тысяч человек. В солнечной энергетике США работали 93,5 тысяч человек

[15].

Перспективы солнечной электроэнергетики[править | править код]

В мире ежегодный прирост энергетики за последние пять лет составлял в среднем около 50 %[16]. Полученная на основе солнечного излучения энергия гипотетически сможет к 2050 году обеспечить 20—25 % потребностей человечества в электричестве и сократит выбросы углекислоты. Как полагают эксперты Международного энергетического агентства (IEA), солнечная энергетика уже через 40 лет при соответствующем уровне распространения передовых технологий будет вырабатывать около 9 тысяч тераватт-часов — или 20—25 % всего необходимого электричества, и это обеспечит сокращение выбросов углекислого газа на 6 млрд тонн ежегодно[7].

Перспективы использования солнца для получения электричества ухудшаются из-за высоких издержек. Так, СТЭС Айвонпа обходится вчетверо дороже, а генерирует гораздо меньше электроэнергии, по сравнению с газовыми электростанциями. По подсчётам экспертов, в будущем электроэнергия, вырабатываемая этой станцией, будет стоить вдвое дороже, чем получаемая от обычных источников энергии, а расходы, очевидно, будут переложены на потребителей

[17].

Тем не менее, по прогнозам, себестоимость генерации электроэнергии солнечными электростанциями к 2020 году снизится до себестоимости генерации с использованием ископаемого топлива и переход к использованию солнечных электростанций станет экономически выгодным[18].

Из-за своей низкой эффективности, которая в лучшем случае достигает 20 процентов, солнечные батареи сильно нагреваются. Остальные 80 процентов энергии солнечного света нагревают солнечные батареи до средней температуры порядка 55 °C. С увеличением температуры фотогальванического элемента на 1°, его эффективность падает на 0,5 %. Эта зависимость не линейна и повышение температуры элемента на 10° приводит к снижению эффективности почти в два раза. Активные элементы систем охлаждения (вентиляторы или насосы) перекачивающие хладагент, потребляют значительное количество энергии, требуют периодического обслуживания и снижают надёжность всей системы. Пассивные системы охлаждения обладают очень низкой производительностью и не могут справиться с задачей охлаждения солнечных батарей

[19].

Флаг Республики Корея

С помощью солнечного света можно освещать помещения в дневное время суток. Для этого применяются световые колодцы. Простейший вариант светового колодца — отверстие в потолке юрты. Световые фонари применяются для освещения помещений, не имеющих окон: подземные гаражи, станции метро, промышленные здания, склады, тюрьмы, и т. д. Световой колодец диаметром 300 мм способен освещать площадь 8 м². Один колодец позволяет в европейских условиях предотвратить ежегодный выброс в атмосферу до 7,4 тонн СО

2. Световые колодцы с оптоволокном разработаны в 2004 году в США. В верхней части такого колодца применяются параболические коллекторы. Применение солнечных колодцев позволяет сократить потребление электроэнергии, в зимнее время — сократить дефицит солнечного света у людей, находящихся в здании[20].

Солнечная энергия широко используется как для нагрева воды, так и для производства электроэнергии. Солнечные коллекторы производятся из доступных материалов: сталь, медь, алюминий и т. д., то есть без применения дефицитного и дорогого кремния. Это позволяет значительно сократить стоимость оборудования, и произведенной на нём энергии. В настоящее время именно солнечный нагрев воды является самым эффективным способом преобразования солнечной энергии.

В 2001 году стоимость электроэнергии, полученной в солнечных коллекторах составляла $0,09—$0,12 за кВт·ч. Департамент Энергетики США прогнозирует, что стоимость электроэнергии, производимой солнечными концентраторами снизится до $0,04—$0,05 к 2015—2020 г.

В 2007 году в Алжире началось строительство гибридных электростанций. В дневное время суток электроэнергия производится параболическими концентраторами, а ночью из природного газа.

На начало 2010 года общая мировая мощность солнечной термальной энергетики (концентраторных солнечных станций) достигла одного гигаватта[7]. К 2020 году страны Евросоюза планируют построить 26,3 ГВт солнечных термальных мощностей[21].

Флаг Республики Корея Солнечная жаровня

Солнечные коллекторы могут применяться для приготовления пищи. Температура в фокусе коллектора достигает 150 °С. Такие кухонные приборы могут широко применяться в развивающихся странах. Стоимость материалов необходимых для производства простейшей «солнечной кухни» составляет $3—$7.

Традиционные очаги для приготовления пищи имеют термическую эффективность около 10 %. В развивающихся странах для приготовления пищи активно используются дрова. Использование дров для приготовления пищи приводит к массированной вырубке лесов и вреду для здоровья. Например, в Индии от сжигания биомассы ежегодно поступает в атмосферу более 68 млн тонн СО2. В Уганде среднее домохозяйство ежемесячно потребляет 440 кг дров. Домохозяйки при приготовлении пищи вдыхают большое количество дыма, что приводит к увеличению заболеваемости дыхательных путей. По данным Всемирной организации здравоохранения в 2006 году в 19 странах южнее Сахары, Пакистане и Афганистане от заболеваний дыхательных путей умерло 800 тысяч детей и 500 тысяч женщин.

Существуют различные международные программы распространения солнечных кухонь. Например, в 2008 г. Финляндия и Китай заключили соглашение о поставках 19 000 солнечных кухонь в 31 деревню Китая. Это позволит сократить выбросы СО2 на 1,7 млн тонн в 2008—2012 гг. В будущем Финляндия сможет продавать квоты на эти выбросы.

Использование солнечной энергии в химическом производстве[править | править код]

Солнечная энергия может применяться в различных химических процессах. Например:

  • Израильский Weizmann Institute of Science в 2005 году испытал технологию получения неокисленного цинка в солнечной башне. Оксид цинка в присутствии древесного угля нагревался зеркалами до температуры 1200 °С на вершине солнечной башни. В результате процесса получался чистый цинк. Далее цинк можно герметично упаковать и транспортировать к местам производства электроэнергии. На месте цинк помещается в воду, в результате химической реакции получается водород и оксид цинка. Оксид цинка можно ещё раз поместить в солнечную башню и получить чистый цинк. Технология прошла испытания в солнечной башне канадского Institute for the Energies and Applied Research.
  • Швейцарская компания Clean Hydrogen Producers (CHP) разработала технологию производства водорода из воды при помощи параболических солнечных концентраторов. Площадь зеркал установки составляет 93 м². В фокусе концентратора температура достигает 2200°С. Вода начинает разделяться на водород и кислород при температуре более 1700 °С. За световой день 6,5 часов (6,5 кВт·ч/кв.м.) установка CHP может разделять на водород и кислород 94,9 литров воды. Производство водорода составит 3800 кг в год (около 10,4 кг в день).

Водород может использоваться для производства электроэнергии, или в качестве топлива на транспорте.

Флаг Республики Корея Беспилотный самолёт NASA Pathfinder Helios с фотоэлементами на крыльях

Фотоэлектрические элементы могут устанавливаться на различных транспортных средствах: лодках, электромобилях и гибридных автомобилях, самолётах, дирижаблях и т. д.

Фотоэлектрические элементы вырабатывают электроэнергию, которая используется для бортового питания транспортного средства или для электродвигателя электрического транспорта.

В Италии и Японии фотоэлектрические элементы устанавливают на крыши железнодорожных поездов. Они производят электричество для кондиционеров, освещения и аварийных систем.

Компания Solatec LLC продаёт тонкоплёночные фотоэлектрические элементы для установки на крышу гибридного автомобиля Toyota Prius. Тонкоплёночные фотоэлементы имеют толщину 0,6 мм, что никак не влияет на аэродинамику автомобиля. Фотоэлементы предназначены для зарядки аккумуляторов, что позволяет увеличить пробег автомобиля на 10 %.

В 1981 году летчик Paul Beattie MacCready совершил полет на самолёте Solar Challenger[en], питающемся только солнечной энергией, преодолев расстояние в 258 километров со скоростью 48 км/час[22]. В 2010 году солнечный пилотируемый самолет Solar Impulse продержался в воздухе 24 часа. Военные испытывают большой интерес к беспилотным летательным аппаратам (БПЛА) на солнечной энергии, способным держаться в воздухе чрезвычайно долго — месяцы и годы. Такие системы могли бы заменить или дополнить спутники.

  1. Калифорнийская электростанция «Million Solar Roofs» суммарной мощностью 3 ГВт Архивная копия от 6 октября 2014 на Wayback Machine 15.12.2005
  2. ↑ Геополитика солнца (неопр.). Частный Корреспондент. chaskor.ru (22 ноября 2008). Дата обращения 22 ноября 2008. Архивировано 22 августа 2011 года.
  3. 1 2 3 Лапаева Ольга Федоровна. Трансформация энергетического сектора экономики при переходе к энергосберегающим технологиям и возобновляемым источникам энергии (рус.) // Вестник Оренбургского государственного университета. — 2010. — Вып. 13 (119).
  4. ↑ BP Statistical Review of World Energy June 2015, Renewables section, BP (June 2015).
  5. ↑ BP Statistical Review of World Energy June 2015, Electricity section, BP (June 2015).
  6. ↑ Статистическое обозрение Всемирной энергетической организации 2017 года, BP (June 2017).
  7. 1 2 3 BFM.RU Солнечные технологии обеспечат четверть электричества.
  8. ↑ Graph of the Day: World’s top ten solar PV suppliers. 15 April 2013// RE neweconomy
  9. ↑ http://www.ren21.net/Portals/0/documents/Resources/GSR/2014/GSR2014_full%20report_low%20res.pdf
  10. Геро Рютер, Андрей Гурков. Мировая солнечная энергетика: переломный год (неопр.). Deutsche Welle (29 мая 2013). Дата обращения 15 июня 2013. Архивировано 19 июня 2013 года.
  11. Paul Gipe Spain Generated 3 % of its Electricity from Solar in 2010 28 Январь 2011 г
  12. Paul Gipe Italy Passes 7,000 MW of Total Installed Solar PV 22 Июль 2011 г.
  13. ↑ Activ Solar построила в Крыму крупнейшую солнечную электростанцию в мире (неопр.) (недоступная ссылка). Дата обращения 2 марта 2012. Архивировано 19 июня 2013 года.
  14. ↑ Deutsche Welle 30.03.2018 Саудовская Аравия заменит нефть солнечными батареями
  15. Stephen Lacey Green Jobs Are Real: German and American Solar Industry Both Employ More People Than U.S. Steel Production 17 Июнь 2011 г.
  16. Дмитрий Никитин. Трудный путь к солнцу: согреет ли Россию солнечная энергетика (неопр.). РБК (17 июня 2013). Дата обращения 15 июня 2013. (недоступная ссылка)
  17. Кассандра Суит (перевёл Алексей Невельский). Гигантская солнечная электростанция в Калифорнии убивает птиц.. Гелиотермальная станция стоимостью $2,2 млрд может стать последним таким проектом: она нагревает воздух до 540 градусов по Цельсию, регуляторы и биологи считают это причиной смерти десятков птиц (рус.). Ведомости, перевод из The Wall Street Journal (13 февраля 2014). Дата обращения 6 июня 2016.
  18. ↑ Органическое топливо — на свалку истории? // Наука и жизнь. — 2018. — № 3. — С. 65.
  19. David Szondy. Stanford researchers develop self-cooling solar cells. (англ.). gizmag.com (25 July 2014). Дата обращения 6 июня 2016.
  20. ↑ BBC News — Alfredo Moser: Bottle light inventor proud to be poor
  21. Tildy Bayar Solar Thermal Holds Steady in Europe 15 Октябрь 2012 г.
  22. ↑ Britannica Book of the Year 2008: «MacCready, Paul Beattie», page 140
  • Д. Мак-Вейг Применение солнечной энергии. — М.: Энергоиздат, 1981. — Тираж 5 600 экз. — 210 с.
  • Умаров Г. Я.; Ершов А. А. Солнечная энергетика. — М.: Знание, 1974. — 64 с.
  • Алексеев В. В.; Чекарев К. В. Солнечная энергетика. — М.: Знание, 1991. — 64 с.
⛭

Отрасли промышленности

ru.wikipedia.org

Солнечная энергия — Википедия

Эта статья или раздел содержит незавершённый перевод с английского языка.

Вы можете помочь проекту, закончив перевод.

Карта солнечного излучения на поверхности Земли Карта солнечного излучения — Европа

Со́лнечная эне́ргия — энергия от Солнца в форме радиации и света. Эта энергия в значительной мере управляет климатом и погодой, и является основой жизни. Технология, контролирующая солнечную энергию, называется солнечной энергетикой.

В верхние слои атмосферы Земли постоянно поступает 174 ПВт солнечного излучения (инсоляции)[1]. Около 6 % инсоляции отражается от атмосферы, 16 % поглощается ею. Средние слои атмосферы в зависимости от погодных условий (облака, пыль, атмосферные загрязнения) отражают до 20 % инсоляции и поглощают 3 %.

Атмосфера не только уменьшает количество солнечной энергии, достигающей поверхности Земли, но и диффундирует около 20 % с того что поступает, и фильтрует часть его спектра. После прохождения атмосферы около половины инсоляции находится в видимой части спектр. Вторая половина находится преимущественно в инфракрасной части спектра. Только незначительная часть этой инсоляции приходится на ультрафиолетовое излучение[2][3].

Солнечное излучение поглощается поверхностью суши, океанами (покрывают около 71 % поверхности земного шара) и атмосферой. Абсорбция солнечной энергии через атмосферную конвекцию, испарение и конденсация водяного пара является движущей силой круговорота воды и управляет ветрами. Солнечные лучи абсорбоване океаном и сушей поддерживает среднюю температуру на поверхности Земли, что ныне составляет 14 °C[4]. Благодаря фотосинтезу растений солнечная энергия может превращаться в химическую, которая хранится в виде пищи, древесины и биомассы, которая в конце концов превращается в ископаемое топливо[5].

Солнечная энергия является источником энергии ветра, воды, тепла морей, биомассы, а также причиной образования на протяжении тысячелетий торфа, бурого и каменного угля, нефти и природного газа, однако эта опосредованная энергия и накопленная в течение тысяч и миллионов лет. Энергию Солнца можно использовать и непосредственно, как источник электроэнергии и тепла. Для этого нужно создать устройства, которые концентрируют энергию Солнца на малых площадях и в малых объемах.

Общее количество солнечной энергии, которую поглощает атмосфера, поверхность суши и океана составляет примерно 3 850 000 эксаджоулей (ЭДж) в год[6]. За один час, это дает больше энергии, чем весь мир использовал за целый 2002 год[7][8]. Фотосинтез забирает около 3 000 ЭДж в год на производство биомассы[9]. Количество солнечной энергии, которая достигает поверхность земли такая большая, что за год она примерно вдвое превзойдет всю энергию, которую потенциально можно выработать со всех невозобновляемых источников: угля, нефти, урановых руд[10].

«‘Годовое поступление солнечного излучения и потребления энергии человеком»‘1
Солнце 3 850 000 [6]
ветер 2 250 [11]
Потенциал биомассы ~200 [12]
Мировое потребление энергии2 539 [13]
Электроэнергия2 ~67 [14]
1 Энергию подано в эксаджоулях 1 ЭДж = 1018Дж = 278 ТВт/ч 
2 Потребления по состоянию на 2010 год

Количество солнечной энергии, которую потенциально может использовать человек, отличается от количества энергии, которое находится вблизи земной поверхности. Такие факторы как смена дня и ночи, облачность и доступная поверхность суши уменьшают количество энергии, пригодной для использования.

Географическое положение влияет на энергетический потенциал, поскольку ближе к экватора области принимают большее количество солнечного излучения. Однако, использование устройств на фотовольтації, которые могут изменять свою ориентацию в соответствии с положением Солнца на небосклоне, может значительно повышать потенциал солнечной энергии в отдалённых от экватора областях.[15]

Доступность земель значительно влияет на возможную добычу энергии, поскольку солнечные панели можно устанавливать лишь на землях, которые для этого подходят и не используются для других целей. Например, подходящим местом для установки панелей стали крыши[15].

Солнечные системы делятся на активные и пассивные, в зависимости от способа впитать солнечную энергию, ее переработать и распределить.

Активные солнечные технологии используют фотовольтонику, концентрированную солнечную энергию (англ.), солнечные коллекторы, насосы и вентиляторы, чтобы превратить солнечное излучение в полезный выход энергии. Среди пассивных солнечных технологий: использование материалов с благоприятными тепловыми характеристиками, дизайн помещений с естественной циркуляцией воздуха и выгодное расположение зданий относительно положения Солнца. Активные солнечные технологии повышают энергоснабжения, тогда как пассивные уменьшают потребность в дополнительных источниках энергии[16].

2000 года Программа развития ООН, Департамент по экономическим и социальным вопросам ООН и Мировой энергетический совет опубликовали оценку потенциала солнечной энергии, которую человечество может добывать, приняв во внимание такие факторы, как инсоляция, облачность и доступна для использования поверхность суши. Оценка показала, что глобальный потенциал солнечной энергии составляет 1,575–49,837 ЭДж на год «(см. таблицу ниже)»[15].

Годовой потенциал солнечной энергии по регионам (ЭДж)[15]
Регион Северная Америка Латинская Америка и Карибы Западная Европа Центральная и Восточная Европа Страны бывшего Советского Союза Ближний Восток и Северная Африка Sub-Saharan Африка Pacific Asia Южная Азия Centrally planned Asia Pacific OECD
Минимум 181,1 112,6 25,1 4,5 199,3 412,4 371,9 41,0 38,8 115,5 72,6
Максимум 7 410 3 385 914 154 8 655 11 060 9 528 994 1 339 4 135 2 263

В это время работают нагревательные устройства, которые аккумулируют энергию Солнца, а также опытные образцы электродвигателей и автомобилей, которые используют энергию Солнца.

Солнечная энергия, как полагают, к концу века может составить не более 1 % от общего количества используемой энергии. Еще в 1870 году в Чили было построено солнечный опреснитель морской воды, который производил до 30 т пресной воды в сутки и работал более 40 лет. Благодаря применению гетеропереходов коэффициент полезного действия солнечных батарей уже достигает 25 %. Налажено производство солнечных батарей в виде длинной поликристаллической кремниевой ленты, которые имеют КПД более 10 %.

Технологии, которые используют тепловую энергию солнца, можно применять для нагрева воды, обогрева помещений, охлаждения помещений и генерации технологической теплоты[17].

В 1897 году Франк Шуман, американский изобретатель, инженер и пионер по использованию солнечной энергии, построил небольшой демонстрационный солнечный двигатель, принцип работы которого заключался в том, что солнечный свет отражалось на квадратные контейнеры, заполненные эфиром, температура кипения которого меньше, чем воды. Внутри до контейнеров были пригнаны черные трубы, которые приводили в движение паровой двигатель. В 1908 году Шуман основал компанию Sun Power Company, которая должна была строить большие установки на солнечной энергии. Вместе со своим техническим советником А. С. Э Аккерманом и британским физиком Чарльзом Верноном Бойзом[18] Шуман разработал улучшенную систему, использовав систему зеркал, которые отражали солнечные лучи на коробки солнечных коллекторов, повышая эффективность нагрева до уровня, когда можно было вместо эфира использовать воду. Затем Шуман построил полномасштабный паровой двигатель, который работал на воде под низким давлением. Это дало ему возможность 1912 года запатентовать целую систему с солнечным двигателем.

Между 1912 и 1913 годами Шуман построил первую в мире геотермальную электростанцию в городе Маади Египет. Шумановская электростанция использовала параболоцилиндрический концентратор, чтобы привести в движение двигатель мощностью 45 — 52 кВт, который перекачивал более 22 000 литров воды за минуту с реки Нил на близлежащие хлопковые поля. Хотя Первая мировая война, а также открытие дешевой нефти в 1930-х годах, и помешали дальнейшему продвижению солнечной энергии, но шумановское видение и базовый дизайн был возрожден в 1970-х годах на новой волне интереса к геотермальной энергии[19]. В 1916 году в прессе часто Цитировали слова Шумана, в которых он защищал использования солнечной энергии:

« Мы доказали, что использование солнечной энергии может быть коммерчески выгодным в тропиках, и даже более того, доказали, что после исчерпания запасов нефти и угля, человечество получит неисчерпаемый источник энергии в виде солнечных лучей.

Оригинальный текст (англ.)

We have proved the commercial profit of sun power in the tropics and have more particularly proved that after our stores of oil and coal are exhausted the human race can receive unlimited power from the rays of the sun.


40
Франк шуман
New York Times, 2 июля 1916[20]
»

Нагревание воды[править | править код]

Солнечные водонагреватели направлены к Солнцу, чтобы повысить эффективность.

В низких географических широтах (ниже 40 градусов) от 60 до 70 % всей бытовой горячей воды температурой до 60 °C могут обеспечить солнечные системы для нагрева воды[21]. Наиболее распространенными типами солнечных водонагревателей являются: вакуумные трубные коллекторы (44 %) и плоские коллекторы (34 %), которые обычно используют для нагрева бытовой горячей воды; а также прозрачные пластиковые коллекторы (21 %), которые главным образом используют, чтобы подогревать плавательные бассейны[22].

По состоянию на 2007 год общая установленная мощность солнечных систем для нагрева воды составляла примерно 154 тепловых ГВт.[23] Китай является мировым лидером в этой области, установив по состоянию на 2006 год 70 ГВт тепловых и планируя к 2020 году достичь 210 ГВт тепловых[24]. Израиль и Кипр являются мировыми лидерами по использованию солнечных систем для подогрева воды на душу населения с 90 % домохозяйств, которые их установили[25]. В США, Канаде и Австралии солнечные водоподогреватели служат преимущественно для подогрева плавательных бассейнов, с установленной мощностью состоянию на 2005 год около 18 ГВт тепловых[16].

Обогрев, охлаждение и вентиляция[править | править код]

В США на HVAC приходится 30 % (4.65 EJ/yr) энергии, которая используется в коммерческих зданиях и почти 50 % (10.1 EJ/yr) энергии, которая используется в жилых домах[26][27]. Системы солнечного обогрева, охлаждения и вентиляции можно использовать, чтобы компенсировать часть этой энергии.

»

Тепловая масса — это любой материал, который можно применять, чтобы сохранять тепло, в частности солнечное. Среди материалов, которые могут выполнять функцию тепловой массы, камень, цемент и вода. На протяжении истории их применяли в засушливом или теплом климате, чтобы сохранить помещение прохладным, поскольку они впитывают солнечную энергию в течение дня и выпускают накопленное тепло ночью. Однако их можно применять и в прохладных регионах, чтобы сохранять тепло. Размер и расположение тепловой массы зависит от нескольких факторов, таких как климат, соотношение времени солнечной освещенности и пребывание в тени. Если тепловую массу правильно разместить, то она сохраняет температуру в помещении в комфортном диапазоне и уменьшает потребность в устройствах для дополнительного обогрева и охлаждения[28].

Солнечный дымоход (англ.) (или тепловой дымоход, в этом контексте) — это пассивная система солнечной вентиляции, состоящей из вертикального ствола, который соединяет внутреннюю и внешнюю стороны здания. Если дымоход нагревается, то воздух внутри также нагревается, вызывая вертикальный сквозняк (англ.) который протягивает воздух через дом. Его работу можно улучшить, если использовать непрозрачные материалы и тепловую массу[29] таким образом, который напоминает теплицу.

Листопадные растения предложено как способ контролировать солнечное нагревание и охлаждение. Если они растут на южной стороне здания в северном полушарии или северной стороне здания в южном полушарии, то их листья обеспечивает тень в течение лета, тогда как голые стволы без препятствий пропускают солнечные лучи зимой[30].

Приготовление еды[править | править код]

Параболическая тарелка вырабатывает пар для приготовления пищи, Ауровіль (Индия)

Солнечные печи используют солнечный свет для приготовления пищи, сушки и пастеризации. Их можно разделить на три широких категории: коробчасті печи (англ. box cookers), панельные печи (англ. panel cookers) и отражательные печи (англ. reflector cookers)[31]. Простейшая солнечная печь — коробчаста, которую впервые построил Орас Бенедикт де Соссюр 1767 года[32]. Простая коробчаста печь состоит из изолированного контейнера с прозрачной крышкой. Она может эффективно применяться при частично закрытом облаками небе и обычно достигает температуры 90-150 °C[33]. Панельная печь использует отражающую панель, чтобы направить солнечные лучи на изолированный контейнер и достичь температуры, сравнимой с коробчастою печью. Отражательные печи используют различную геометрию отражателя (тарелку, корыто, зеркала Френеля), чтобы сфокусировать лучи на контейнер. Эти печи достигают температуры 315 °C, но требуют прямого луча и их нужно переставлять вместе с изменением положения Солнца[34].

Технологическое тепло[править | править код]

Системы концентрации солнечной энергии, такие как параболические тарелки, корыта и отражатели Шеффлера могут обеспечивать технологическое тепло для коммерческих и индустриальных нужд. Первой коммерческой системой был Total Solar Energy Project (англ.) (STEP) в Шенандоа, (Джорджия, США), где поле со 114 параболических тарелок обеспечило 50 % технологического тепла, вентиляции воздуха и потребностей в электроэнергии для швейной фабрики. Эта подключена к сети когенерационная установка обеспечила 400 Квт электроэнергии а также тепловую энергию в виде 401 Вт пара и 468 КВт охлажденной воды и обеспечивала хранение тепла с одногодинним пиковой нагрузкой[35]. Пруды-испарители — это мелкие бассейны, которые сконцентровують растворенные в воде твердые вещества с помощью испарение. Использование прудов-испарителей, чтобы добыть соль из морской воды, является одним из старейших применений солнечной энергии. Среди современных применений: повышение концентрации солей при добыче металлов методом выщелачивания, а также удаления твердых веществ из сточных вод[36]. При использовании шнуров (англ.), сушилки (англ.) и вешалок белье высыхает в процессе испарения под действием ветра и солнечных лучей без потребления электроэнергии и газа. В законах некоторых штатов даже специально прописан защита «права сушить» одежду[37]. Unglazed transpired collectors (UTC) are perforated sun-facing walls used for ventilation air preheating. UTCs can raise the incoming air temperature up to 22 °C (40 °F) and deliver outlet temperatures of Шаблон:Convert/Dual/LoffAoffDbSoffT.[38] Короткий период возврата вложенных денег (от 3 до 12 лет) делает transpired collectors финансово выгоднее, чем glazed collection systems[38]. По состоянию на 2003 год более 80 систем с суммарной коллекторной площадью 35 000 м2 были установлены во всем мире, включая коллектор площадью 860 м2 в Коста-Рике для сушки кофейных бобов и коллектор площадью 1300 м2 в Коїмбатори (Индия) для высушивания marigolds[39].

Обработка воды[править | править код]

»

Солнечное опреснение можно использовать, чтобы превратить соленую или солоноватую воду на питьевую. Впервые пример такого преобразования зафиксировали арабские алхимики XVI века[40]. Впервые масштабный проект из солнечного опреснения построили в 1872 году в чилийском шахтерском городке Лас-Салинас[41]. Завод, который имел площадь солнечного коллектора 4700 м2 мог производить до 22 700 л питьевой воды и оставался в работе на протяжении 40 лет[41]. Individual still designs include single-slope, double-slope (greenhouse or type), vertical, conical, inverted absorber, multi-wick, and multiple effect.[40]. Эти опреснители могут работать в пассивном, активном и гибридном режимах. Double-slope казани наиболее экономически выгодные для децентрализованных бытовых нужд, тогда как active multiple effect units более подходят для широкомасштабных проектов[40].

Для солнечной дезинфекции воду наливают в прозрачные бутылки с ПЭТ и помещают их на несколько часов под солнечные лучи[42]. Время дезинфекции зависит от климата и погодных условий, по крайней мере от 6 часов до 2 дней, если небо полностью покрыто облаками[43]. Этот способ рекомендовала Всемирная организация здравоохранения как доступный метод обработки бытовой воды и безопасного хранения[44]. Более 2 миллионов людей в странах, что развиваются, ежедневно применяют этот метод для обработки своей питьевой воды[43].

Солнечную энергию можно использовать в ставках-усереднювачах для обработки сточных вод без применения химикатов и затраты электроэнергии. Еще одним преимуществом для окружающей среды является то, что водоросли живут в таких прудах и потребляют диоксид углерода в процессе фотосинтеза, хотя они могут вырабатывать токсичные вещества, которые делают воду непригодной для употребления[45][46].


Солнечная энергетика работает за счет преобразования солнечного света в электроэнергию. Это может происходить или непосредственно, с использованием фотовольтаики, или косвенно, с использованием систем концентрированной солнечной энергии (англ.), в которых линзы и зеркала собирают солнечный свет с большой площади в тонкий луч, а механизм слежения отслеживает положение Солнца. Фотовольтаика превращает свет в электрический ток с помощью фотоэффект.

Предполагают, что солнечная энергетика станет крупнейшим источником электроэнергии к 2050 году, в которой на долю фотовольтаики и концентрированной солнечной энергии будет приходиться 16 и 11 % мирового производства электроэнергии соответственно[47].

Коммерческие электростанции на концентрированной солнечной энергии впервые появились в 1980-х годах. После 1985 года установка этого типа SEGS (англ.) в пустыне Мохаве (Калифорния) 354 МВт стала крупнейшей солнечной электростанцией в мире. Среди других солнечных электростанций этого типа СЭС Солнова (англ.) (150 МВт) и СЭС Андасол (англ.) (100 МВт), обе в Испании. Среди крупнейших электростанций на фотовольтаїці (англ.): Agua Caliente Solar Project (250 МВт) в США, и Charanka Solar Park (221 МВТ) в Индии. Проекты мощностью более 1 ГВт находятся на стадии разработки, но большинство установок на фотовольтаїці, мощностью до 5 КВт, имеют небольшой размер и расположены на крышах.По состоянию на 2013 год на солнечную энергию приходилось менее 1 % от электроэнергии в мировой сети[48].

Архитектура и городское планирование[править | править код]

Наличие солнечного света влияла на дизайн зданий от самого начала истории архитектуры[50]. Впервые продвинутые методы солнечной архитектуры и городского планирования ввели древние греки и китайцы, которые ориентировали свои дома на юг, чтобы обеспечить их освещением и теплом[51].

Среди общих характеристик пассивной солнечной архитектуры (англ.): благоприятная ориентация зданий относительно Солнца, компактные пропорции (малое отношение площади поверхности к объему), выборочное затемнение (навесы) и тепловая масса (англ.)[50]. Когда эти свойства удачно подобраны с учетом местного климата, то это обеспечивает хорошее освещение помещений и позволяет оставаться в комфортном диапазоне температур. Дом мегаронного типа Сократа — является классическим примером пассивной солнечной архитектуры[50]. На нынешнем этапе солнечного дизайна применяют компьютерное моделирование с помощью которой связывают между собой дневное освещение (англ.), а также системы солнечного обогрева и вентиляции в an integrated solar design package[52]. Активное солнечное оборудование, такое как насосы, вентиляторы и switchable windows может дополнить пассивный дизайн и улучшить показатели работы системы.

Городской тепловой остров (МТО) — это городской район, где температура выше, чем в окружающих сельских местностях. Выше температуры является следствием применения таких материалов как асфальт и бетон, которые лучше впитывают солнечное излучение, поскольку имеют ниже альбедо и выше теплоемкость, чем в окружающей среде. Чтобы непосредственно противодействовать эффекту, здания красят в белое и насаживают на улицах деревья. Согласно проекту гипотетической программы «cool communities» в Лос-Анджелеси, используя эти методы городскую температуру можно снизить примерно на 3 °C. Стоимость проекта оценивается в US$1 млрд, а общая годовая выгода может составлять US$530 млн благодаря уменьшению затрат на вентиляцию и охрану здоровья[53].

Сельское хозяйство и растениеводство[править | править код]

Эта статья или раздел содержит незавершённый перевод с английского языка.

Вы можете помочь проекту, закончив перевод.

(Скрытый викитекст)

»

Сельское хозяйство и растениеводство ищут способы оптимизировать впитывание солнечной энергии для того, чтобы повысить продуктивность растений.

Оранжерея превращают солнечный свет в тепло, обеспечивая круглогодичное выращивание растений, которые в природе не приспособлены для этого климата. Простейшие оранжереи использовали в римские времена, чтобы круглый год выращивать огурцы для императора Тиберия[54]. Современные В Европе в XVI веке появились оранжереи для выращивания растений, привезённых из исследовательских путешествий[55].

  1. ↑ Smil (1991), p. 240
  2. ↑ Радиационный и световой режим (неопр.) (недоступная ссылка). Дата обращения 6 апреля 2018. Архивировано 12 октября 2013 года.
  3. ↑ Natural Forcing of the Climate System (неопр.) (недоступная ссылка). Intergovernmental Panel on Climate Change. Дата обращения 29 сентября 2007. Архивировано 29 сентября 2007 года.
  4. Сомервилл, Richard. Historical Overview of Climate Change Science (неопр.) (PDF). Intergovernmental Panel on Climate Change. Дата обращения 29 сентября 2007.
  5. Vermass, Wim. An Introduction to Photosynthesis and Its Applications (неопр.) (недоступная ссылка). Arizona State University. Дата обращения 29 сентября 2007. Архивировано 3 декабря 1998 года.
  6. 1 2 Smil (2006), p. 12
  7. ↑ http://www.nature.com/nature/journal/v443/n7107/full/443019a.html
  8. ↑ Powering the Planet: Chemical challenges in solar energy utilization (неопр.) (PDF). Дата обращения 7 августа 2008.
  9. ↑ Energy conversion by organisms photosynthetic (неопр.). Food and Agriculture Organization of the United Nations. Дата обращения 25 мая 2008.
  10. ↑ Exergy Flow Charts — GCEP (неопр.). stanford.edu.
  11. Archer, Cristina. Evaluation of Global Wind Power (неопр.). Stanford. Дата обращения 3 июня 2008.
  12. ↑ fa.upc.es/personals/fluids/oriol/ale/eolss.pdf Renewable Energy Sources (неопр.). Renewable and Appropriate Energy Laboratory. Дата обращения 6 декабря 2012.
  13. ↑ Total Primary Energy Consumption (неопр.). Energy Information Administration. Дата обращения 30 июня 2013.
  14. ↑ Total Electricity Consumption Net (неопр.). Energy Information Administration. Дата обращения 30 июня 2013.
  15. 1 2 3 4 Energy and the challenge of sustainability (неопр.) (PDF). UN Development Programme and World Energy Council (сентябрь 2000). Дата обращения 17 января 2017.
  16. 1 2 Philibert, Cédric The Present and Future use of Solar Thermal Energy as a Primary Source of Energy (неопр.). IEA (2005). Дата обращения 6 апреля 2018. Архивировано 12 декабря 2011 года.
  17. ↑ Solar Energy Technologies and Applications (неопр.) (недоступная ссылка). Canadian Renewable Energy Network. Дата обращения 22 октября 2007. Архивировано 15 ноября 2007 года.
  18. ↑ V.+Boys/famous/4c880e9645e2ca90f61156a9efa6d16a C. V. Boys — Scientist (неопр.). yatedo.com.
  19. Smith, Zachary Alden; Taylor, Katrina D. Renewable And Alternative Energy Resources: A Reference Handbook (англ.). — ABC-CLIO, 2008. — P. 174. — ISBN 978-1-59884-089-6..
  20. ↑ American Inventor Uses egypt’s Sun for Power — Appliance Concentrates the Heat Rays and Produces Steam, Which Can Be Used to Drive Irrigation Pumps in Hot Climates — View Article — NYTimes.com/date=2 July 1916 (неопр.). nytimes.com.
  21. ↑ Renewables for Heating and Cooling (неопр.) (PDF). International Energy Agency. Дата обращения 13 августа 2015.
  22. Weiss, Werner. Solar Heat Worldwide (Markets and Contributions to the Energy Supply 2005) (неопр.) (PDF). International Energy Agency. Дата обращения 30 мая 2008. Архивировано 10 сентября 2008 года.
  23. Weiss, Werner. Solar Heat Worldwide – Markets and Contribution to the Energy Supply 2006 (неопр.) (PDF). International Energy Agency. Дата обращения 9 июня 2008.
  24. ↑ Renewables 2007 Global Status Report (неопр.) (PDF). Worldwatch Institute. Дата обращения 30 апреля 2008. Архивировано 29 мая 2008 года.
  25. Del Chiaro, Bernadette. Solar Water Heating (California How Can Reduce Its Dependence on Natural Gas) (неопр.) (PDF). Environment California Research and Policy Center. Дата обращения 29 сентября 2007. Архивировано 27 сентября 2007 года.
  26. Apte, J. Future Advanced for Windows Zero-Energy Homes (неопр.) (PDF) (недоступная ссылка). American Society of Heating, Refrigerating and Air-Conditioning Engineers. Дата обращения 9 апреля 2008. Архивировано 10 апреля 2008 года.
  27. ↑ Energy Consumption Characteristics of Commercial Building HVAC Systems Volume III: Energy Savings Potential (неопр.) (PDF) 2-2. United States Department of Energy. Дата обращения 24 июня 2008.
  28. ↑ Mazria(1979), p. 29-35
  29. Bright, David Passive solar heating simpler for the average owner. (неопр.). Bangor Daily News (18 февраля 1977). Дата обращения 3 июля 2011.
  30. ↑ Mazria(1979), p. 255
  31. ↑ Anderson and Palkovic (1994), p. xi
  32. ↑ Butti and Perlin (1981), p. 54-59
  33. ↑ Anderson and Palkovic (1994), p. xii
  34. ↑ Anderson and Palkovic (1994), p. xiii
  35. Stine, W B and Harrigan, R W. Shenandoah Total Solar Energy Project (неопр.). John Wiley. Дата обращения 20 июля 2008.
  36. ↑ Bartlett (1998), p.393-394
  37. Thomson-Philbrook, Julia. Right to Dry Legislation in New England States and Other (неопр.). Connecticut General Assembly. Дата обращения 27 мая 2008.
  38. 1 2 Solar Buildings (Transpired Air Collectors — Ventilation Preheating) (неопр.) (PDF). National Renewable Energy Laboratory. Дата обращения 29 сентября 2007.
  39. ↑ Ошибка в сносках?: Неверный тег <ref>; для сносок Leon 2006 не указан текст
  40. 1 2 3 Tiwari (2003), p. 368-371
  41. 1 2 Daniels (1964), p. 6
  42. ↑ SODIS solar water disinfection (неопр.). EAWAG (The Swiss Federal Institute for Environmental Science and Technology). Дата обращения 2 мая 2008.
  43. 1 2 Household Water Treatment Options in Developing Countries: Solar Disinfection (SODIS) (неопр.) (PDF) (недоступная ссылка). Centers for Disease Control and Prevention. Дата обращения 13 мая 2008. Архивировано 29 мая 2008 года.
  44. ↑ Household Water Treatment and Safe Storage (неопр.). World Health Organization. Дата обращения 2 мая 2008.
  45. Shilton A. N., Powell N., Mara D. D., Craggs R. Solar-powered aeration and disinfection, anaerobic co-digestion, biological CO(2) scrubbing and biofuel production: the energy and carbon management opportunities of waste stabilisation ponds (англ.) // Water Sci. Technol. (англ.)русск. : journal. — 2008. — Vol. 58, no. 1. — P. 253—258. — DOI:10.2166/wst.2008.666. — PMID 18653962.
  46. Tadesse I., Isoaho S. A., Green F. B., Puhakka J. A. Removal of organics and nutrients from tannery effluent by advanced integrated Wastewater Pond Systems technology (англ.) // Water Sci. Technol. (англ.)русск. : journal. — 2003. — Vol. 48, no. 2. — P. 307—314. — PMID 14510225.
  47. International Energy Agency. Technology Roadmap: Solar Photovoltaic Energy (неопр.) (PDF) (недоступная ссылка). http://www.iea.org. IEA (2014). Дата обращения 7 октября 2014. Архивировано 7 октября 2014 года.
  48. ↑ Historical Data Workbook (2013 calendar year)
  49. ↑ Darmstadt University of Technology solar decathlon home design (неопр.). Darmstadt University of Technology. Дата обращения 25 апреля 2008. Архивировано 18 октября 2007 года.
  50. 1 2 3 Schittich (2003), p. 14
  51. ↑ Butti and Perlin (1981), p. 4, 159
  52. ↑ Balcomb(1992)
  53. Rosenfeld, Arthur; Romm, Joseph; Akbari, Hashem; Lloyd, Alan. Painting the Town White — and Green (неопр.) (недоступная ссылка). Heat Island Group. Дата обращения 29 сентября 2007. Архивировано 14 июля 2007 года.
  54. ↑ Butti and Perlin (1981), p. 19
  55. ↑ Butti and Perlin (1981), p. 41

ru.wikipedia.org

Нетрадиционные возобновляемые источники эенергии | Солнечная энергия как альтернативынй источник энергии

Становились ли вы участником обсуждений альтернативной энергии? Практически каждый человек хоть что-то, но слышал об этом. И многим даже выпадало воочию наблюдать солнечные батареи или ветровые электростанции. Сейчас развитие данной сферы энергоснабжения очень важно для дальнейшего комфортного существования человечества.

Так как основную часть традиционных ресурсов, таких как полезные ископаемые, мы практически исчерпали, приходится искать более долговечные источники. Одним из таких нетрадиционных источников энергии является солнечная энергия. Этот ресурс один из наиболее распространенных и легкодоступных, поскольку солнечный свет в том или ином количестве есть в любом уголке нашей планеты. Поэтому разработки, связанные с аккумуляцией солнечной энергией, начались достаточно давно и активно проводятся и по сей день.

Как источник энергии солнечный свет отличная альтернатива традиционным ресурсам. И при грамотном использовании вполне может вытеснить все другие энергоресурсы в будущем.

Что является источником солнечной энергии?

Что является источником солнечной энергии?

Чтобы найти наиболее эффективные методы преобразования энергии Солнца, ученым нужно было понять, какое превращение является источником солнечной энергии. Для получения ответа на данный вопрос было проведено огромное количество опытов и исследований. Существуют разные гипотезы, призванные объяснить это явление. Но экспериментальным путем в процессе долгих исследований было доказано, что реакция, во время которой с помощью ядер углерода водород превращается в гелий, выступает тем самым  основным источником солнечной энергии.

Солнце как источник энергии Солнечной системы

Мы уже знаем, что источником солнечной энергии являются водород и гелий, но ведь и сама солнечная энергия – это источник для определенных процессов. Все земные природные процессы  осуществляются благодаря энергии, полученной от Солнца.

Солнце как источник энергии Солнечной системы

Без солнечных излучений был бы невозможным:

  • Круговорот воды в природе. Именно благодаря воздействию Солнца испаряется вода. Именно этот процесс запускает циркуляцию влаги на Земле. Повышение и понижение температуры влияет на образование облаков и выпадение осадков.
  • Фотосинтез. Процесс, благодаря которому поддерживается баланс углекислого газа и кислорода, образуются необходимые для развития и роста растений вещества также происходит с помощью солнечных лучей.
  • Циркуляция атмосферы. Солнце влияет на процессы перемещения воздушных масс и теплорегуляции.

Солнечная энергия – это основа существования жизни на Земле. Но на этом ее благотворное воздействие не заканчивается. Для человечества солнечная энергия может быть полезной как альтернативный источник энергии.

Гелиотермальная энергетика как вид автономного питания

В настоящее время активное развитие технологий сделало возможным преобразование энергии Солнца в другие применяющиеся человеком виды. Как возобновляемый источник энергии солнечная энергия получила широкое распространение и активно используется, как в промышленных масштабах, так и локально на небольших частных участках. И с каждым годом сфер, где применение гелиотермальной энергии является обыденным делом, становится все больше.

Гелиотермальная энергетика как вид автономного питания

Сегодня солнечный свет как источник энергии используется:

  • В сельском хозяйстве для отопления и электроснабжения различных хозяйственных построек таких, как теплицы, ангары и прочие.
  • Для обеспечения электричества в медицинских центрах и зданий спортивного назначения.
  • Для снабжения электроэнергией населенных пунктов.
  • Для обеспечения более дешевого освещения на улицах городов.
  • Для поддержания налаженной работы всех коммуникационных систем в жилых домах.
  • Для ежедневных бытовых потребностей населения.

Исходя из этого, мы видим, что солнечная энергия в действительности может стать отличным источником питания практически в каждой сфере человеческой деятельности. Поэтому продолжение исследований в данной отрасли могут изменить привычное нынешнее существование в корни.

Активные и пассивные системы преобразования солнечной энергии

На сегодняшний день благодаря различным разработкам и методам солнечная энергия как альтернативный источник энергии может быть преобразована и аккумулирована разными способами. Сейчас существуют системы активного использования гелиоэнергии, и пассивные системы. В чем их суть?

Активные и пассивные системы преобразования солнечной энергии

  • Пассивные (подбор стройматериалов и проектировка помещений для максимального применения энергии солнечного света) по большей части направлены на использование прямой солнечной энергии. Пассивные системы – это здания, в которых проектирования происходило таким способом, чтобы как можно больше световой и тепловой энергии получать от Солнца.
  • Активные (фотоэлектрические системы, солнечные электростанции и коллекторы), в свою очередь, подразумевают действительно переработку полученной солнечной энергии в другие необходимые человеку виды.

Оба вида подобных систем применяются в тех или иных случаях в зависимости от потребностей, которые они должны удовлетворять. Будь то строительство экологически чистого солнечного дома или установка коллектора на участке – это в любом случае даст свой результат и будет выгодным вложением.

Солнечная электростанция как источник энергии

Солнечная электростанция как источник энергии

Что такое солнечная электростанция? Это специально организованное инженерное сооружение, благодаря которому происходят процессы преобразования солнечной радиации для дальнейшего получения электроэнергии. Конструкции подобных станций могут быть совершенно различными в зависимости от того, какой способ переработки будет применяться.

Разновидности солнечных электростанций:

  • СЭС, в основе сооружения которой находится башня.
  • Станция, сооружающаяся по тарельчатому типу.
  • Основанная на работе фотоэлектрических модулей.
  • Станции, работающие с применением параболоцилиндрических концентраторов.
  • С двигателем Стерлинга, взятым за основу работы.
  • Станции аэростатного типа.
  • Электростанции комбинированного типа.

Как мы видим, солнечная электростанция как источник энергии давно перестала быть частью утопических научно-фантастических романов и активно используется во всем мире для удовлетворения энергетических потребностей общества. В ее работе существуют как явные преимущества, так и недостатки. Но их правильный баланс дает возможность получать необходимый результат.

Плюсы и минусы солнечных электростанций

Достоинства:

  • Солнечная энергия является возобновляемым источником энергии. При этом сама по себе она общедоступная и бесплатная.
  • Солнечные установки достаточно безопасны в использовании.
  • Подобные электростанции являются полностью автономными.
  • Они отличаются экономностью и быстрой окупаемостью. Основные затраты происходят только лишь на необходимое оборудование и в дальнейшем требуют минимальных вложений.
  • Еще одна отличительная черта – это стабильность в работе. На подобных станциях практически не бывает скачков напряжения.
  • Они не прихотливы в обслуживании и достаточно просты в использовании.
  • Также для оборудования СЭС характерный долгий эксплуатационный период.

Недостатки:

  • Как источник энергии солнечной системы очень чувствительны к климату, погодным условиям и времени суток. Подобная электростанция не будет эффективно и продуктивно работать ночью или в пасмурный день.
  • Более низкая продуктивность в широтах с яркой сменой сезонов. Максимально эффективны в местности, где количество солнечных дней в году наиболее близко к 100%.
  • Очень высокая и малодоступная стоимость оборудования для солнечных установок.
  • Потребность в проведении периодических очисток от загрязнений панелей и поверхностей. Иначе меньшее количество радиации поглощается и падает продуктивность.
  • Значительное повышение температуры воздуха в пределах электростанции.
  • Потребность в использовании местности с огромной площадью.
  • Дальнейшие трудности в процессе утилизации составляющих станции, в особенности фотоэлементов, после окончания срока их эксплуатации.

Как и в любой производственной сфере, в переработке и преобразовании солнечной энергии есть свои сильные и слабые стороны. Очень важно, чтобы преимущества перекрывали недостатки, в таком случае работа будет оправдана.

Сейчас большинство разработок в данной отрасли направлены на оптимизацию и улучшение функционирования и использования уже существующих методов и на разработку новых, более безопасных и продуктивных.

Солнечная энергия – энергия будущего

Чем дальше шагает в своем техническом развитии наше общество, тем больше источников энергии может потребоваться с каждым новым этапом. Но традиционных ресурсов становится все меньше, а цена на них растет. Поэтому люди начали активнее задумываться об альтернативных вариантах энергоснабжения. И тут пришли на помощь возобновляемые источники. Энергия ветра, воды или Солнца – это новый виток, позволяющий и дальше развиваться обществу, снабжая его необходимыми ресурсами.

altenergiya.ru

Источник энергии солнца: виды солнечной энергии

Солнечная энергия дает жизнь всему живому на Земле. Под ее воздействием испаряется вода с морей и океанов, превращаясь в водные капли, образуя туманы и облака. В результате, эта влага вновь выпадает на Землю, создавая постоянный круговорот. Поэтому, мы постоянно наблюдает снег, дождь, иней или росу. Создаваемая солнцем огромная система отопления, позволяет наиболее оптимально распределять тепло по поверхности Земли. Чтобы правильно понимать и использовать эти процессы, необходимо представлять себе источник энергии солнца и то, от чего зависит его влияние на нашу планету.

Виды солнечной энергии

Основным видом энергии, выделяемой Солнцем, по праву считается лучистая энергия, оказывающая прямое влияние на все важнейшие процессы, происходящие на Земле. Если сравнивать с ней другие земные энергетические источники, то их запасы бесконечно малы и не позволяют решить всех проблем.

Из всех звезд, Солнце расположено к Земле ближе всего. По своей структуре оно является газовым шаром, многократно превышающим диаметр и объем нашей планеты. Поскольку размеры газового шара достаточно условны, то его границами считается видимый с Земли солнечный диск.

Источник и физические свойства солнечной энергии

Все процессы, происходящие на Солнце, можно наблюдать лишь на его поверхности. Однако, основные реакции протекают в его внутренней части. По сути, это гигантская атомная станция с давлением примерно 100 млрд. атмосфер. Здесь, в условиях сложных ядерных реакций, происходит превращение водорода в гелий. Именно эти реакции образуют основной источник энергии солнца. Внутренняя температура составляет, в среднем, приблизительно 16 млн. градусов.

Газ, бушующий внутри Солнца, имеет не только сверхвысокую температуру, но и является чрезвычайно тяжелым, обладающим плотностью, многократно превышающей среднюю солнечную плотность. Одновременно, происходит возникновение рентгеновских лучей, которые, по мере приближения к Земле, увеличивают длину своих волн и уменьшают частоту колебаний. Таким образом, они постепенно становятся видимым и ультрафиолетовым светом.

При отдалении от центра, характер лучистой энергии изменяется, оказывая влияние и на температуру. Происходит ее постепенное снижение сначала до 150 тыс. градусов. С Земли хорошо видна только внешняя солнечная оболочка, так называемая фотосфера. Ее толщина составляет примерно 300 км, а температура верхнего слоя снижается до 5700 градусов.

Над фотосферой расположена солнечная атмосфера, состоящая из двух частей. Нижний слой носит название хромосферы, а верхний слой, не имеющий границ, представляет собой солнечную корону. Здесь газы разогреваются до нескольких миллионов градусов под действием ударных волн чудовищной силы.

electric-220.ru

Солнце и солнечная энергия. Строение Солнца. Характеристики Солнца.



Солнце играет исключительную роль в жизни Земли. Весь органический мир нашей планеты обязан Солнцу своим существованием. Солнце – это не только источник света и тепла, но и первоначальный источник многих других видов энергии (энергии нефти, угля, воды, ветра).

С момента появления на земле человек начал использовать энергию солнца. По археологическим данным известно, что для жилья предпочтение отдавали тихим, закрытым от холодных ветров и открытых солнечным лучам местам.

Пожалуй, первой известной гелиосистемой можно считать статую Аменхотепа III, относящуюся к XV веку до н.э. Внутри статуи располагалась система воздушных и водяных камер, которые под солнечными лучами приводили в движение спрятанный музыкальный инструмент. В Древней Греции поклонялись Гелиосу. Имя этого бога сегодня легло в основу многих терминов, связанных с солнечной энергетикой.

Проблема обеспечения электрической энергией многих отраслей мирового хозяйства, постоянно растущих потребностей населения Земли становится сейчас все более насущной.

Общие сведения о Солнце

Солнце – центральное тело Солнечной системы, раскаленный плазменный шар, типичная звезда-карлик спектрального класса G2.

Характеристики Солнца

  • Масса MS~2*1023 кг
  • RS~629 тыс. км
  • V= 1,41*1027 м3, что почти в 1300 тыс. раз превосходит объем Земли,
  • средняя плотность 1,41*103 кг/м3,
  • светимость LS=3,86*1023 кВт,
  • эффективная температура поверхности (фотосфера) 5780 К,
  • период вращения (синодический) изменяется от 27 сут на экваторе до 32 сут. у полюсов,
  • ускорение свободного падения 274 м/с2 (при таком огромном ускорении силы тяжести человек массой 60 кг весил бы более 1,5 т.).

Строение Солнца

В центральной части Солнца находится источник его энергии, или, говоря образным языком, та “печка”, которая нагревает его и не даёт ему остыть. Эта область называется ядром (см. рис.1). В ядре, где температура достигает 15 МК, происходит выделение энергии. Ядро имеет радиус не более четверти общего радиуса Солнца. Однако в его объёме сосредоточена половина солнечной массы и выделяется практически вся энергия, которая поддерживает свечение Солнца.

Сразу вокруг ядра начинается зона лучистой передачи энергии, где она распространяется через поглощение и излучение веществом порций света – квантов. Кванту требуется очень много времени, чтобы просочиться через плотное солнечное вещество наружу. Так что если бы печка внутри Солнца вдруг погасла, то мы узнали бы об этом только миллионы лет спустя.

На своём пути через внутренние солнечные слои поток энергии встречает такую область, где непрозрачность газа сильно возрастает. Это конвективная зона Солнца. Здесь энергия передаётся уже не излучением, а конвекцией. Конвективная зона начинается примерно на расстоянии 0,7 радиуса от центра и простирается практически до самой видимой поверхности Солнца (фотосферы), где перенос основного потока энергии вновь становится лучистым.

Фотосфера – это излучающая поверхность Солнца, которая имеет зернистую структуру, называемую грануляцией. Каждое такое зерно размером почти с Германию и представляет собой поднявшийся на поверхность поток горячего вещества. На фотосфере часто можно увидеть относительно небольшие темные области — солнечные пятна. Они на 1500˚С холоднее окружающей их фотосферы, температура которой достигает 5800˚С. Из-за разницы температур с фотосферой эти пятна и кажутся при наблюдении в телескоп совершенно черными. Над фотосферой расположен следующий, более разряженный слой, называемый хромосферой, то есть окрашенной сферой. Такое название хромосфера получила благодаря своему красному цвету. И, наконец, над ней находится очень горячая, но и чрезвычайно разреженная часть солнечной атмосферы — корона.

Солнце – источник энергии

Наше Солнце – это огромный светящийся газовый шар, внутри которого протекают сложные процессы и в результате непрерывно выделяется энергия. Энергия Солнца является источником жизни на нашей планете. Солнце нагревает атмосферу и поверхность Земли. Благодаря солнечной энергии дуют ветры, осуществляется круговорот воды в природе, нагреваются моря и океаны, развиваются растения, животные имеют корм. Именно благодаря солнечному излучению на Земле существуют ископаемые виды топлива. Солнечная энергия может быть преобразована в теплоту или холод, движущую силу и электричество.

Солнце испаряет воду с океанов, морей, с земной поверхности. Оно превращает эту влагу в водяные капли, образуя облака и туманы, а затем заставляет её снова падать на Землю в виде дождя, снега, росы или инея, создавая, таким образом, гигантский круговорот влаги в атмосфере.

Солнечная энергия является источником общей циркуляции атмосферы и циркуляции воды в океанах. Она как бы создаёт гигантскую систему водяного и воздушного отопления нашей планеты, перераспределяя тепло по земной поверхности.

Солнечный свет, попадая на растения, вызывает у него процесс фотосинтеза, определяет рост и развитие растений; попадая на почву, он превращается в тепло, нагревает её, формирует почвенный климат, давая тем самым жизненную силу находящимся в почве семенам растений, микроорганизмам и населяющим её живым существам, которые без этого тепла пребывали бы в состоянии анабиоза (спячки).

Солнце излучает огромное количество энергии — приблизительно 1,1×1020 кВт·ч в секунду. Киловатт·час — это количество энергии, необходимое для работы лампочки накаливания мощностью 100 ватт в течение 10 часов. Внешние слои атмосферы Земли перехватывают приблизительно одну миллионную часть энергии, излучаемой Солнцем, или приблизительно 1500 квадрильонов (1,5 x 1018) кВт·ч ежегодно. Однако только 47% всей энергии, или приблизительно 700 квадрильонов (7 x 1017) кВт·ч, достигает поверхности Земли. Остальные 30% солнечной энергии отражается обратно в космос, примерно 23% испаряют воду, 1% энергии приходится на волны и течения и 0,01% — на процесс образования фотосинтеза в природе.

Исследование солнечной энергии

Почему Солнце светит и не остывает уже миллиарды лет? Какое «топливо» дает ему энергию? Ответы на этот вопрос ученые искали веками, и только в начале XX века было найдено правильное решение. Теперь известно, что, как и другие звезды, светит благодаря протекающим в его недрах термоядерным реакциям.

Если ядра атомов лёгких элементов сольются в ядро атома более тяжелого элемента, то масса нового окажется меньше, чем суммарная масса тех, из которых оно образовалось. Остаток массы превращается в энергию, которую уносят частицы, освободившиеся в ходе реакции. Эта энергия почти полностью переходит в тепло. Такая реакция синтеза атомных ядер может происходить только при очень высоком давлении и температуре свыше 10 млн. градусов. Поэтому она и называется термоядерной.

Основное вещество, составляющее Солнце, — водород, на его долю приходится около 71% всей массы светила. Почти 27% принадлежит гелию, а остальные 2% — более тяжелым элементам, таким как углерод, азот, кислород и металлы. Главным «топливом» Солнца служит именно водород. Из четырех атомов водорода в результате цепочки превращений образуется один атом гелия. А из каждого грамма водорода, участвующего в реакции, выделяется 6×1011 Дж энергии! На Земле такого количества энергии хватило бы для того, чтобы нагреть от температуры 0ºC до точки кипения 1000 м3 воды.

Потенциал солнечной энергии

Солнце обеспечивает нас в 10 000 раз большим количеством бесплатной энергии, чем фактически используется во всем мире. Только на мировом коммерческом рынке покупается и продается чуть меньше 85 триллионов (8,5 x 1013) кВт·ч энергии в год. Поскольку невозможно проследить за всем процессом в целом, нельзя с уверенностью сказать, сколько некоммерческой энергии потребляют люди (например, сколько древесины и удобрения собирается и сжигается, какое количество воды используется для производства механической или электрической энергии). Некоторые эксперты считают, что такая некоммерческая энергия составляет одну пятую часть всей используемой энергии. Но даже если это так, то общая энергия, потребляемая человечеством в течение года, составляет только приблизительно одну семитысячную часть солнечной энергии, попадающей на поверхность Земли в тот же период.

В развитых странах, например, в США, потребление энергии составляет примерно 25 триллионов (2.5 x 1013) кВт·ч в год, что соответствует более чем 260 кВт·ч на человека в день. Данный показатель является эквивалентом ежедневной работы более чем ста лампочек накаливания мощностью 100 Вт в течение целого дня. Среднестатистический гражданин США потребляет в 33 раза больше энергии, чем житель Индии, в 13 раз больше, чем китаец, в два с половиной раза больше, чем японец и вдвое больше, чем швед.



www.gigavat.com

Солнечная энергия – решение будущего. Солнечные электростанции.

солнечная энергияЛюди уже не представляют себе жизнь без электричества, и с каждым годом потребность в энергии все больше растет, в то время как запасы энергоресурсов таких нефть, газ, уголь стремительно сокращаются.  У человечества не остается других вариантов, как использование альтернативных источников энергии. Одним из способов получения электроэнергии является преобразование солнечной энергии с помощью фотоэлементов. То, что можно использовать энергию солнца люди узнали относительно давно, но активно развивать начали лишь в последние 20 лет.  За последние годы благодаря не прекращающимся исследованиям, использованию новейших материалов и креативных конструкторских решений удалось значительно увеличить производительность солнечных батарей. Многие полагают, что в будущем человечество сможет отказаться от традиционных способов получения электроэнергии в пользу солнечной энергии и получать ее с помощью солнечных электростанций.

Солнечная энергетика один из источников получения электроэнергии не традиционным способом, поэтому относится к альтернативным источникам энергии. Солнечная энергетика использует солнечное излучение и преобразовывает его в электричество или в другие виды энергии. Солнечная энергия является не только экологически чистым источником энергии, т.к. при преобразовании солнечной энергии не выделяется вредных побочных продуктов, но еще энергия солнца самовосстанавливающийся источник альтернативной энергии.

Теоретически рассчитать, сколько можно получить энергии от потока солнечной энергии несложно, давно известно, что пройдя расстояние от Солнца до Земли и падая на поверхность площадью 1 м² под углом 90°, солнечный поток на входе в атмосферу несет в себе энергетический заряд равный 1367 Вт/м², это так называемая солнечная постоянная. Это идеальный вариант при идеальных условиях, которых как мы знаем добиться практически не возможно. Таким образом после прохождения атмосферы максимальный поток который можно получить будет на экваторе и будет составлять 1020 Вт/м², но среднесуточное значение которое мы сможем получить будет в 3 раза меньше из-за смены дня и ночи и изменения угла падения солнечного потока. А в умеренных широтах к смене дня и ночи прибавляется еще и смена времен года, а с ним и изменение длительности светового дня, поэтому в умеренных широтах количество получаемой энергии сократится еще в 2 раза.

солнечная энергия

Как мы все знаем, в последние несколько лет развитие солнечной энергетики с каждым годом все больше набирает темпы, но давайте попробуем проследить динамику развития.  В далеком 1985 году мировые мощности, использующие солнечную энергию, составляли всего лишь 0,021 ГВт. В 2005 году они уже составляли 1,656 ГВт. 2005 год считают переломным в развитии солнечной энергетике, именно с этого года люди началось активно интересоваться исследованиями и развитием электросистем работающих на солнечной энергии.  Далее динамика не оставляет сомнений (2008г-15,5 ГВт, 2009-22,8 ГВт, 2010-40 ГВт, 2011-70 ГВт, 2012-108 ГВт, 2013-150 ГВт, 2014-203 ГВт). Пальму первенства в использовании солнечной энергии держат страны Евросоюза и США, в производственной и эксплуатационной сфере только в США и Германии заняты больше 100 тыс. людей в каждой. Также своими достижениями в освоении солнечной энергии могут похвастаться Италия, Испания и, конечно же, Китай, который если и не является лидером в эксплуатации солнечных элементов то, как производитель фотоэлементов из года в год наращивает темпы производства.

Достоинства: 1) экологичность-не загрязняет окружающую среду; 2) доступность-фотоэлементы доступны в продаже не только для промышленного использования, но и для создания частных мини солнечных электростанций; 3) неисчерпаемость и само восстанавливаемость источника энергии; 4) постоянно снижающаяся себестоимость  производства электроэнергии.
Недостатки: 1) влияние на производительность погодных условий и времени суток; 2) для сохранения энергии необходимо аккумулировать энергию; 3) меньшая производительность в умеренных широтах из-за смены времен года; 4)значительный нагрев воздуха над солнечной электростанцией; 5) потребность периодически очищать поверхность фотоэлементов от загрязнения, а это проблематично из за огромных площадей, занимаемых под установку фотоэлементов; 6) также можно сказать об относительно высокой стоимости оборудования, хоть с каждым годом себестоимость снижается, пока говорить о дешевой  солнечной энергии не приходится.

На сегодняшний день развитию солнечной энергетики пророчат большое будущее, с каждым годом все больше строятся новые солнечные электростанции, которые поражают своими масштабами и техническими решениями. Также не прекращаются научные исследования, направленные на увеличение КПД фотоэлементов. Ученые посчитали, что если покрыть сушу планеты Земля на 0,07%, с КПД фотоэлементов в 10%, то энергии хватит более чем на 100% обеспечения всех потребностей человечества. На сегодняшний день уже используются фотоэлементы с  КПД в 30%. По исследовательским данным известно, что амбиции ученых обещают довести его до 85%.

Солнечные электростанции это сооружения задачей, которых является преобразовывать потоки солнечной энергии в  электрическую энергию.  Размеры солнечных электростанций могут быть различными, начиная от частных мини электростанций с несколькими солнечными панелями и заканчивая огромными, занимающими площади свыше 10 км².

Со времени постройки первых солнечных электростанций прошло довольно много времени, за которое было осуществлено множество проектов и применено немало интересных конструкционных решений. Принято делить все солнечные электростанции на несколько типов:
1.    Солнечные электростанции башенного типа.
2.    Солнечные электростанции, где солнечные батарей представляют собой фотоэлементы.
3.    Тарельчатые солнечные электростанции.
4.    Параболические солнечные электростанции.
5.    Солнечные электростанции солнечно-вакуумного типа.
6.    Солнечные электростанции смешанного типа.

Очень распространенный тип конструкции электростанции. Представляет собой высокую башенную конструкцию на вершине, которой расположен резервуар, с водой выкрашенный в черный цвет для  лучшего притягивания отраженного солнечного света.  Вокруг башни по кругу расположены большие зеркала площадью свыше 2 м², они все подключены к единой системе управления, которая следит за изменением угла наклона зеркал, что бы они всегда отражали солнечный свет и направляли его прямиком на резервуар с водой расположенный на верхушке башни. Таким образом, отраженный солнечный свет нагревает воду, которая образует пар, а затем этот пар с помощью насосов подается на турбогенератор где и происходит выработка электроэнергии. Температура нагрева бака может достигать 700 °C. Высота башни зависит от размеров и мощности солнечной электростанции и, как правило, начинается от 15 м, а высота самой большой на сегодняшний день составляет 140 м. Такой тип солнечных электростанций очень распространен и  предпочитается многими странами за свой высокий КПД в 20%.

солнечные электростанции башенного типа

Используют для преобразования солнечного потока в электричество фотоэлементы (солнечные батареи). Данный тип электростанций стал очень популярным благодаря возможности использования солнечных батарей небольшими блоками, что позволяет применять солнечные батареи для обеспечения электричеством, как частных домов, так и крупных промышленных объектов.  Тем более что КПД с каждым годом растет и на сегодняшний день уже существуют фотоэлементы с КПД 30%.

солнечные электростанции фотоэлементного типа

Данный тип солнечной электростанции имеет вид огромных спутниковых антенн, внутренняя сторона которых покрыта зеркальными пластинами. Принцип, по которому происходит преобразование энергии, похож с башенными станциями с небольшим отличием, параболическая форма зеркал обусловливает, что солнечные лучи, отражаясь от  всей поверхности зеркала, концентрируются в центре, где расположен приемник с жидкостью, которая нагревается, образуя пар, который в свою очередь и является движущей силой для небольших генераторов.

параболические солнечные электростанции

Принцип работы и способ получения электроэнергии идентичен солнечным электростанциям  башенного и параболического типа. Отличие составляет лишь конструктивные особенности. На стационарной конструкции немного похожей на гигантское металлическое дерево, на котором развешены круглые плоские зеркала, которые концентрируют солнечную энергию на приемнике.

тарельчатые солнечные электростанции

Это очень необычный способ использования энергии солнца и разности температур. Конструкция электростанции состоит из покрытого стеклянной крышей участка земли круглой формы с башней в центре. Башня внутри полая, в ее основании расположены несколько турбин, которые вращаются благодаря возникающему из-за разности температур потоку воздуха.  Через стеклянную крышу солнце нагревает землю и воздух внутри помещения, а с внешней средой  здание сообщается трубой и так как вне помещения температура воздух значительно ниже, то создается воздушная тяга, которая увеличивается с  ростом разницы температур. Таким образом, ночью турбины вырабатывают электроэнергии больше чем днем.

солнечные электростанции солнечно-вакуумного типа

Это когда на солнечных электростанциях определенного типа в качестве вспомогательных элементов используют, например солнечные коллекторы для обеспечения объектов горячей водой и теплом или возможно использование одновременно на электростанции башенного типа участков фотоэлементов.

Солнечная энергетика развивается высокими темпами, люди, наконец, то всерьез задумались об альтернативных источниках энергии, что бы предупредить неизбежно надвигающийся энергетический кризис и экологическую катастрофу.  Хоть лидерами в солнечной энергетике по-прежнему остаются США и Евросоюз, но все остальные мировые державы постепенно начинают перенимать и использовать опыт и технологии производства и использования солнечных электростанций. Можно не сомневаться, что рано или поздно солнечная энергия станет основным источником энергии на Земле.

1sovetnik.net

Солнечная энергия — как преобразуют в электрическую, практическое применение

Здесь вы узнаете:

Солнечная энергия — восполнимый и бесплатный ресурс, который в последние годы особенно активно осваивается. Существуют солнечные электростанции, гелиотермальные электростанции и небольшие бытовые солнечные батареи.

Что такое солнечная энергия

Солнце – это звезда, внутри которой, в непрерывном режиме, происходят термоядерные реакции. Результатом происходящих процессов, с поверхности солнца выделяется колоссальное количество энергии, часть которой нагревает атмосферу нашей планеты.

Солнечная энергия — это источник жизни на планете Земля. Наша планета, и все живые организмы, существующие на ней, получает энергию солнца в виде солнечного света и тепла.

Солнечная энергия является источником возобновляемой и экологически чистой энергии.

Как можно оценить величину солнечной энергии

Специалисты используют для оценки такую величину, как солнечная постоянная. Она равна 1367 ватт. Именно столько энергии солнца приходится на квадратный метр планеты. В атмосфере теряется примерно четверть. Максимальное значение на экваторе – 1020 ватт на квадратный метр. С учётом дня и ночи, изменения угла падения лучей, эту величину следует уменьшить ещё в три раза.

4-9-300x211.jpg

Распределение солнечного излучения на карте планеты

Версии об источниках солнечной энергии высказывались самые разные. На данный момент специалисты утверждают, что энергии высвобождается в результате превращения четырёх атомов h3 в ядро He. Процесс протекает с выделением существенного количества энергии. Для сравнения представьте, что энергия превращения 1 грамма h3 сопоставима с той, что выделяется при сжигании 15 тонн углеводородов.

Преобразование солнечной энергии в электричество

8581c8d75b8e44a89b1e4233d92ffe6b.png

Фотоэлектрические (PV) панели и концентрация солнечной энергии (CSP) объектов захвата солнечного света могут превратить его в полезную электроэнергию. Крыши PV панели делают солнечную энергию жизнеспособной практически в каждой части Соединенных Штатов. В солнечных местах, таких как Лос-Анджелес или Феникс, система 5 киловатт производит в среднем 7000 до 8000 киловатт-часов в год, что примерно эквивалентно использованию электроэнергии типичного домохозяйства США.

В 2015 году почти 800 000 фотоэлектрических систем были установлены на крышах домов по всей территории Соединенных Штатов. Крупномасштабные PV проекты используют фотоэлектрические панели для преобразования солнечного света в электричество. Эти проекты часто имеют выходы в диапазоне сотен мегаватт, а это миллионы солнечных панелей, установленных на большой площади земли.

Фотовольтарика

В этом случае электрический ток появляется вследствие фотовольтарического эффекта. Принцип такой: солнечный свет попадает на фотоэлемент, электроны поглощают энергию фотонов (частиц света) и приходят в движение. В итоге мы получаем электрическое напряжение.

Именно такой процесс происходит в солнечных панелях, основу которых составляют элементы, преобразующие солнечное излучение в электричество.
sostavlyayushhie-solnechnoy-paneli.jpg

Сама конструкция фотовольтарических панелей достаточно гибкая и может иметь разные размеры. Поэтому в использовании они очень практичны. К тому же панели имеют высокие эксплуатационные свойства: устойчивы к воздействию осадков и перепадам температур.

А вот как устроен отдельный модуль солнечной панели:

ustroysvo-modulya-solnechnoy-paneli.jpg

Гелиотермальная энергетика

Тут подход немного другой, т.к. солнечное излучение используется для нагревания сосуда с жидкостью. Благодаря этому она превращается в пар, который вращает турбину, что приводит в выработке электричества.

По такому же принципу работают тепловые электростанции, только жидкость нагревается посредством сжигания угля.

Самый наглядный пример использования данной технологии – это станция Иванпа Солар в пустыне Мохаве. Она является крупнейшей в мире солнечной гелиотермальной электростанцией.

geliotermalnaya-stantsiya-ivanpa-solar.jpg

Работает она с 2014 года и не использует никакого топлива для производства электричества – только экологически чистая солнечная энергия.

Котёл с водой располагается в башнях, которые Вы можете видеть в центре конструкции. Вокруг расположено поле из зеркал, направляющих солнечные лучи на вершину башни. При этом компьютер постоянно поворачивает эти зеркала в зависимости от расположения солнца.

geliotremalnaya-elektrostatntsiya.jpg
Солнечный свет концентрируется на башне

Под воздействием концентрированной солнечной энергии вода в башне нагревается и становится паром. Так возникает давление, и пар начинает вращать турбину, вследствие чего выделяется электричество. Мощность этой станции – 392 мегаватт, что вполне можно сопоставить со средней ТЭЦ в Москве.

Интересно, что подобные станции могут работать и ночью. Это возможно благодаря помещению части разогретого пара в хранилище и постепенном его использовании для вращения турбины.

Солнечные аэростатные электростанции

Это оригинальное решение хоть и не получило широкого применения, но всё же имеет место быть.

Сама установка состоит из 4 основных частей:

  • Аэростат – располагается в небе, собирая солнечное излучение. Внутрь шара поступает вода, которая быстро нагревается, становясь паром.
  • Паропровод – по нему пар под давлением спускается к турбине, заставляя её вращаться.
  • Турбина – под воздействием потока пара она вращается, вырабатывая электрическую энергию.
  • Конденсатор и насос – пар, прошедший через турбину, конденсируется в воду и поднимается в аэростат с помощью насоса, где снова разогревается до парообразного состояния.

solnechnaya-aerostatnaya-elektrostantsiya-ustroystvo.jpg

Плюсы и минусы солнечных электростанций

Достоинства:

  • Солнечная энергия является возобновляемым источником энергии. При этом сама по себе она общедоступная и бесплатная.
  • Солнечные установки достаточно безопасны в использовании.
  • Подобные электростанции являются полностью автономными.
  • Они отличаются экономностью и быстрой окупаемостью. Основные затраты происходят только лишь на необходимое оборудование и в дальнейшем требуют минимальных вложений.
  • Еще одна отличительная черта – это стабильность в работе. На подобных станциях практически не бывает скачков напряжения.
  • Они не прихотливы в обслуживании и достаточно просты в использовании.
  • Также для оборудования СЭС характерный долгий эксплуатационный период.

Недостатки:

  • Как источник энергии солнечной системы очень чувствительны к климату, погодным условиям и времени суток. Подобная электростанция не будет эффективно и продуктивно работать ночью или в пасмурный день.
  • Более низкая продуктивность в широтах с яркой сменой сезонов. Максимально эффективны в местности, где количество солнечных дней в году наиболее близко к 100%.
  • Очень высокая и малодоступная стоимость оборудования для солнечных установок.
  • Потребность в проведении периодических очисток от загрязнений панелей и поверхностей. Иначе меньшее количество радиации поглощается и падает продуктивность.
  • Значительное повышение температуры воздуха в пределах электростанции.
  • Потребность в использовании местности с огромной площадью.
  • Дальнейшие трудности в процессе утилизации составляющих станции, в особенности фотоэлементов, после окончания срока их эксплуатации.

Как и в любой производственной сфере, в переработке и преобразовании солнечной энергии есть свои сильные и слабые стороны. Очень важно, чтобы преимущества перекрывали недостатки, в таком случае работа будет оправдана.

Сейчас большинство разработок в данной отрасли направлены на оптимизацию и улучшение функционирования и использования уже существующих методов и на разработку новых, более безопасных и продуктивных.

Проблемы использования солнечной энергии

Применение солнечной энергии имеет и некоторые проблемы. Основными из них являются отсутствие Солнца в ночное время и возможность возникновения облачности, осадков и прочих неблагоприятных погодных условий. Есть и еще важная и существенная проблема — низкая эффективность оборудования, в сочетании с высокой ценой. Эта проблема считается разрешимой, многие ученые и инженеры постоянно работают над ее решением.

Использование солнечной энергии в быту

ispolzovanie-solnechnoy-energii-v-bytu.jpeg

Говоря о том, что солнечная энергия помогает экономить на применении традиционных ресурсов, стоит заметить, что подобное преимущество станет действительно полезным людям, обладающим своими частными участками. Собственный дом дает возможность установить оборудование для преобразования энергии, которое сможет удовлетворять, даже если и не полностью, хотя бы часть энергетических потребностей. Это поможет значительно снизить потребление централизованного энергоснабжения и уменьшить расходы.

Солнечная энергия – это отличный источник для таких процессов:

  • Пассивный обогрев и охлаждение дома. Не следует забывать о том, что Солнце и так греет все, что существует на Земле, и ваш дом не исключение. Поэтому можно усилить благотворное воздействие, внеся на этапе строительства определенные поправки, и использовав специальные техники. Таким образом, вы получите дом с гораздо более комфортной теплорегуляцией без особых вложений.
  • Нагрев воды с помощью солнечной энергии. Применение энергии солнечных лучей для подогрева воды – это самый простой и дешевый способ, доступный человеку. Подобное оснащение можно купить по адекватным ценам. При этом они смогут окупить себя достаточно быстро, ощутимо снизив расходы на централизованное энергоснабжение.
  • Освещение улиц. Это самый простой и дешевый способ использования солнечной энергии. Специальные устройства, которые поглощают за день солнечную радиацию, а в темное время суток освещают участки, очень популярны среди владельцев частных домов и сейчас.

Использование солнечной энергии в химическом производстве

Солнечная энергия может применяться в различных химических процессах. Например:

  • Израильский Weizmann Institute of Science в 2005 году испытал технологию получения не окисленного цинка в солнечной башне. Оксид цинка в присутствии древесного угля нагревался зеркалами до температуры 1200 °С на вершине солнечной башни. В результате процесса получался чистый цинк. Далее цинк можно герметично упаковать и транспортировать к местам производства электроэнергии. На месте цинк помещается в воду, в результате химической реакции получается водород и оксид цинка. Оксид цинка можно ещё раз поместить в солнечную башню и получить чистый цинк. Технология прошла испытания в солнечной башне канадского Institute for the Energies and Applied Research.
  • Швейцарская компания Clean Hydrogen Producers (CHP) разработала технологию производства водорода из воды при помощи параболических солнечных концентраторов. Площадь зеркал установки составляет 93 м². В фокусе концентратора температура достигает 2200°С. Вода начинает разделяться на водород и кислород при температуре более 1700 °С. За световой день 6,5 часов (6,5 кВт·ч/кв.м.) установка CHP может разделять на водород и кислород 94,9 литров воды. Производство водорода составит 3800 кг в год (около 10,4 кг в день).

Водород может использоваться для производства электроэнергии, или в качестве топлива на транспорте.

Электротранспорт на солнечных батареях

Постепенно идёт внедрение солнечных батарей на автомобильном транспорте. Образцы, которые целиком работают от солнечных батарей, пока ещё существуют только в виде концепт-каров. Использование их в массовом масштабе на данный момент невозможно.

В них гелиопанели устанавливаются на поверхность кузова и заряжают аккумуляторы. Те, в свою очередь, обеспечивают питание электромотора. Использование батарей в серийных моделях ограничивается тем, что их используют для питания отдельных узлов автомобиля. Подробнее читайте в статье «Солнечная энергия в автомобилестроении». 

Перспективы развития

Энергия Солнца на Земле неиссякаема. Это дает основания прочить постоянное развитие и продвижение технологий получения и переработки солнечной энергии, появление более эффективной аппаратуры, увеличение доли солнечной энергии в общем потреблении человечества. Статистика показывает, что за последние 10 лет в этом направлении сделан гигантский скачок, поэтому будущее у гелиоэнергетики во всех смыслах слова блестящее.

remont-system.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о