РазноеСистема охлаждения двигателя внутреннего сгорания – Система охлаждения автомобиля: назначение,виды,описание,фото,устройство. | НЕМЕЦКИЕ АВТОМАШИНЫ

Система охлаждения двигателя внутреннего сгорания – Система охлаждения автомобиля: назначение,виды,описание,фото,устройство. | НЕМЕЦКИЕ АВТОМАШИНЫ

Содержание

Система охлаждения двигателя внутреннего сгорания

Система охлаждения двигателя внутреннего сгорания — совокупность устройств, обеспечивающих подвод охлаждающей среды к нагретым деталям двигателя и отвод от них в атмосферу лишней теплоты, которая должна обеспечивать наивыгоднейшую степень охлаждения и возможность поддержания в требуемых пределах теплового состояния двигателя при различных режимах и условиях работы.

В период сгорания рабочей смеси температура в цилиндре достигает 2000 °C и более. Система охлаждения предназначена для поддержания оптимального теплового состояния двигателя в пределах 80-90°C. Сильный нагрев может вызвать нарушения нормальных рабочих зазоров и, как следствие, усиленный износ, заклинивание и поломку деталей, а также снижение мощности двигателя, за счёт ухудшения наполнения цилиндров горючей смесью, самовоспламенения и детонации. Для обеспечения нормальной работы двигателя необходимо охлаждать детали, соприкасающиеся с горячими газами, отводя от них тепло в атмосферу непосредственно, либо при помощи промежуточного тела (воды, низкозамерзающей жидкости). При чрезмерно сильном охлаждении рабочая смесь, попадая на холодные стенки цилиндра конденсируется и стекает в картер двигателя, где разжижает моторное масло. Как следствие этого мощность двигателя уменьшается, а износ увеличивается. При понижении температуры масло густеет. Это является причиной того, что масло хуже подается в цилиндры и увеличивается расход топлива, уменьшается мощность. Поэтому система охлаждения должна ограничивать температурные пределы, обеспечивая наилучшие условия работы двигателя.

Типы систем охлаждения

Существует три типа систем охлаждения двигателей внутреннего сгорания: воздушная, жидкостная и гибридная.

« Термические двигатели для А. требуют охлаждения цилиндров. Только для слабых, велосипедных газолиновых двигателей достаточно воздушного охлаждения при помощи рубцов, прилитых к поверхности цилиндра; для более сильных необходима циркуляция воды с помощью насоса между двойными стенками цилиндров, охлаждаемой в особом трубчатом приборе, помещаемом впереди А. и обдуваемом струей встречного воздуха. »

Воздушное охлаждение

» 6-цилиндровый двигатель с естественным охлаждением на мотоцикле (Honda CBX1000, 105лс)»
Авиамодельный двигатель O.S. (1,7см3). Pratt and Whitney R-4360 — 28-цилиндровый авиационный двигатель с естественным воздушным охлаждением (3500лс).

Воздушное охлаждение может быть естественным и принудительным. Естественное воздушное охлаждение является самым простым видом охлаждения. Тепло от двигателя с такой системой охлаждения передаётся в окружающую среду через развитое оребрение на внешней поверхности цилиндров. Недостаток системы заключается в том, что она из-за низкой теплоёмкости воздуха не позволяет равномерно отводить от двигателя большое количество тепла и, соответственно, создавать компактные мощные силовые установки. Неравномерность обдува требует дополнительных мер для исключения локальных перегревов — более развитого оребрения в аэродинамической тени, обращения более нагретых выпускных каналов вперёд по потоку, а холодных впускных — назад и т.п. Естественное воздушное охлаждение распространено на двигателях лёгкой высокоподвижной техники: мотоциклы, мопеды, авиа- и автомодели. С систематическим ростом форсировки моторов мотоциклов на наиболее совершенных моделях воздушное охлаждение уступает место жидкостному. По причине малой массы естественное воздушное охлаждение широко применялось и на поршневых авиационных двигателях, где близкие к цилиндрическим и имевшие малую окружную скорость комли лопастей винта практически не работали как вентилятор, но скорость набегающего на самолёт потока была сама по себе очень высока.

» Универсальный «стационарный» двигатель воздушного охлаждения, установленный на газонокосилке.

Стационарные или плотно закапотированные двигатели оснащают системой

принудительного воздушного охлаждения. В них с помощью вентилятора создаётся поток воздуха, который обдувает рёбра охлаждения. Вентилятор и оребрённые поверхности, как правило, закрыты направляющим кожухом. Достоинства такого двигателя аналогичны двигателям с естественным охлаждением: простота конструкции, малый вес, отсутствие охлаждающей жидкости. Однако такие двигатели отличаются повышенным шумом при работе, большими габаритами. Кроме того, при проектировании таких двигателей возникают проблемы с охлаждением отдельных элементов конструкции двигателя из-за неравномерного обдува. На легковых автомобилях, производимых в Европе, воздушное охлаждение широко применялось в 1950-х — 1970-х годах. В основном это небольшие машины типа Volkswagen Kafer, Fiat 500, Citroën 2CV; особняком стоит представительская Tatra 613. В СССР самым известным автомобилем с воздушным охлаждением был «Запорожец». Выпускались грузовые автомобили с дизелями воздушного охлаждения (например грузовики под маркой «Татра» с момента начала выпуска и до начала 2010 годов оснащались исключительно такими двигателями). Двигатели с воздушным охлаждением имеют многие трактора (иногда — тяжёлые, например Т-330; чаще — малые, от обычных пропашных до мини-тракторов мелких частных хозяйств), для которых характерны установившиеся режимы работы двигателя и специфические требования к простоте обслуживания. В настоящее время (2015-е) принудительное воздушное охлаждение применяется на большинстве скутеров, моторизованном инструменте (бензопилы, газонокосилки и пр.), двигателях малогабаритных генераторных установок, на мотоблоках и прочих самоходных и стационарных малых сельскохозяйственных и коммунальных машинах. Для последних очень распространены унифицированные ряды простых одно-двухцилиндровых двигателей воздушного охлаждения, одинаковые у различных производителей (Briggs & Stratton
ru
en, Honda, Subaru, китайские), в виде компактного законченного блока с креплением на горизонтальную плоскость.

Жидкостное охлаждение

Жидкостное охлаждение морских судов открытого типа

Системы охлаждения классифицируются в соответствии со способом использования теплоносителя в системе.

Замкнутые — в таких системах жидкость-теплоноситель циркулирует по герметичному контуру, нагреваясь от источника тепла (нагревателя) и остывая в охлаждающем контуре (охладителе). В зависимости от устройства системы, теплоноситель может закипать или полностью испаряться, вновь конденсируясь в охладителе. Незамкнутые — в незамкнутых (проточных) системах теплоноситель подается извне, нагревается у источника тепла и направляется во внешнюю среду. В этом случае она играет роль охладителя, предоставляя необходимые объем теплоносителя нужной температуры на входе и принимая нагретый на выходе. Открытые — системы, в которых нагреватель помещен в некоторый объем теплоносителя, а тот заключен в охладителе, если таковой предусмотрен конструкцией. Например, открытая система с маслом в качестве теплоносителя используются для охлаждения мощных электротрансформаторов.

К «чисто жидкостным» системам охлаждения можно отнести лишь открытые системы охлаждения речных и морских судов, где для охлаждения используется забортная вода. В некоторых стационарных двигателях начала XX века мог отсутствовать радиатор, вместо этого имелся расширительный бак большого объёма — отчасти тепло рассеивалось за счёт испарения воды, отчасти — через стенки бака, а отчасти за счёт большого объёма воды, который не успевал достаточно прогреться за время работы двигателя.

Замкнутая система (Гибридный тип)

Тип сочетает вышеуказанные системы: тепло от цилиндров отводится жидкостью, после чего она, на удалении от теплонагруженной части двигателя, охлаждается в радиаторах воздухом. Внутренние и наружные части цилиндров испытывают различный нагрев и обычно выполняются из отдельных частей:

  • внутренняя — рабочая втулка или гильза цилиндра;
  • наружная — рубашка (у двигателей воздушного охлаждения рубашка имеет рёбра для эффективного отвода тепла).

Пространство между ними называется зарубашечным, в двигателе с водяным охлаждением тут циркулирует охлаждающая жидкость.


Система охлаждения состоит из рубашки охлаждения блока цилиндров, головки блока цилиндров, одного или нескольких радиаторов, вентилятора принудительного охлаждения радиатора, жидкостного насоса, термостата, расширительного бачка, соединительных патрубков и датчика температуры. Этот тип используется на всех современных автомобилях. Охлаждающая жидкость прокачивается насосом через рубашку охлаждения двигателя, забирая от неё тепло, а затем охлаждается сама в радиаторе. В этой системе существует два круга циркуляции жидкости — большой и малый.

Большой круг составляют рубашка охлаждения двигателя, водяной насос, радиаторы (в том числе — отопителя салона), термостат. В малый круг входит рубашка охлаждения двигателя, водяной насос, термостат (иногда радиатор отопителя салона входит именно в малый круг). Регулировка количества жидкости между кругами циркуляции жидкости осуществляется термостатом. Малый круг охлаждения предназначен для быстрого введения двигателя в эффективный тепловой режим. При этом охлаждающая жидкость фактически не охлаждается, так как не проходит через радиатор. Как только она нагреется до оптимальной температуры, термостат открывается, и охлаждающая жидкость начинает циркулировать также и через радиатор, где непосредственно и охлаждается набегающим потоком воздуха (а в случае длительной стоянки — принудительно вентилятором). При этом, чем сильнее нагревается охлаждающая жидкость, тем сильнее открывается термостат, и тем сильнее жидкость охлаждается в радиаторе. Это и есть принцип поддержания оптимальной температуры двигателя 85-90 °C.

Очень опасным явлением является перегрев двигателя (кипение двигателя)[источник не указан 262 дня]. При этом охлаждающая жидкость в прямом смысле вскипает в рубашке охлаждения, что очень часто приводит к серьёзным последствиям и дорогостоящему ремонту. Для предупреждения перегрева двигателя логично применять жидкости с высокой температурой кипения, однако проще всего оказалось держать всю систему под некоторым избыточным давлением (около 1,1 атм), при котором повышается температура кипения охлаждающей жидкости (около 110 °C и 120 °C для воды и антифриза соответственно). Кроме того, при превышении температуры охлаждающей жидкости более 105 °C, включается принудительный обдув радиатора вентилятором.

Основные части жидкостной системы охлаждения

В жидкостных системах охлаждения поршневых двигателей наземного и воздушного транспорта, а также стационарных установок охлаждающая жидкость циркулирует по замкнутому контуру, а тепло рассеивается в окружающую среду с помощью обдуваемого воздухом радиатора.

Основные части жидкостной системы охлаждения:

  • Рубашка охлаждения (1) представляет собой полость, огибающую части двигателя, требующие охлаждения. Циркулирующая по рубашке охлаждения жидкость отбирает у них тепло и переносит его к радиатору.
  • Насос охлаждающей жидкости, или помпа (5) — обеспечивает циркуляцию жидкости по контуру охлаждения. В некоторых двигателях, например мини-тракторов, может применяться термосифонная система охлаждения — то есть система с естественной циркуляцией охлаждающей жидкости, в которой этот насос отсутствует. Может приводиться в движение либо через ременную передачу от вала двигателя, либо от отдельного электродвигателя.
  • Термостат (2) — предназначен для поддержания рабочей температуры двигателя. Термостат перенаправляет охлаждающую жидкость по малому кругу — в обход радиатора, если температура не достигла рабочей.
  • Радиатор (3) имеет развитую поверхность, обдуваемую снаружи набегающим потоком воздуха. Радиатор изготавливается из материалов, хорошо проводящих тепло, чаще всего из алюминия (радиатор для охлаждения масла чаще всего делают из меди).
  • Вентилятор (4) создаёт дополнительный поток воздуха для обдува радиатора, в том числе во время остановок и при движении на малой скорости. Может приводиться ременной передачей от вала двигателя, но в современных автомобилях, за исключением крупных грузовиков, он работает от электродвигателя.
  • Расширительный бак содержит запас охлаждающей жидкости. С атмосферой расширительный бак сообщается через клапан, поддерживающий избыточное давление охлаждающей жидкости при работе, что позволяет двигателю работать при большей температуре, не допуская кипения охлаждающей жидкости, которое может привести к повреждению двигателя. Автомобили начала-середины XX века часто не имели расширительных бачков. В них запас охлаждающей жидкости находился в верхнем бачке радиатора. Это было вполне допустимо, так как в основном в системе охлаждения использовалась вода, и её расширение при нагреве было небольшим. С распространением антифризов на основе этиленгликоля использование расширительного бака стало обязательным. Полупрозрачный бак, расположенный в доступном месте в верхней точке системы, облегчает также контроль уровня жидкости.

В поршневой авиации также применяются двигатели, в которых цилиндры охлаждаются непосредственно набегающим воздухом, а головки цилиндров — с использованием жидкостной системы охлаждения. Такое решение позволяет снизить массу двигателя и одновременно более эффективно охлаждать головки цилиндров, которые являются наиболее теплонагруженными частями двигателя.

Охлаждение масла

В дополнение к основной системе охлаждения в двигателях большой мощности (на грузовиках и тепловозах), а также на двигателях с воздушным охлаждением применяется охлаждение масла. Охлаждение масла необходимо также потому, что оно поступает к па́рам трения — самым чувствительным к перегреву местам двигателя. Масло может охлаждаться охлаждающей жидкостью, либо окружающим воздухом от отдельного радиатора.

Испарительная система охлаждения

Также существует подвид системы охлаждения, называемый испарительной системой охлаждения. Главное отличие её от обычных водяных или этиленгликолевых — доведение температуры охлаждающей жидкости (воды) выше точки кипения, в результате чего при испарении от теплонагруженных деталей отводится большое количество тепла. Пар конденсируется в жидкость в радиаторе и цикл повторяется. Подобные системы использовались в авиастроении в 30-х годах XX века.[1] Кроме того в Китае по состоянию на 2014 год продолжают выпускаться дизели мощностью от 8 до 24 л.с. с испарительным охлаждением, предназначенные для мотоблоков и минитракторов.

См. также

Układ chłodzenia silnika spalinowego.svg

Примечания

Ссылки

Система охлаждения двигателя внутреннего сгорания — Википедия

Система охлаждения двигателя внутреннего сгорания — совокупность устройств, обеспечивающих подвод охлаждающей среды к нагретым деталям двигателя и отвод от них в атмосферу лишней теплоты, которая должна обеспечивать наивыгоднейшую степень охлаждения и возможность поддержания в требуемых пределах теплового состояния двигателя при различных режимах и условиях работы.

Функции системы охлаждения

В период сгорания рабочей смеси температура в цилиндре достигает 2000 °C и более. Система охлаждения предназначена для поддержания оптимального теплового состояния двигателя в пределах 80-90°C. Сильный нагрев может вызвать нарушения нормальных рабочих зазоров и, как следствие, усиленный износ, заклинивание и поломку деталей, а также снижение мощности двигателя, за счёт ухудшения наполнения цилиндров горючей смесью, самовоспламенения и детонации. Для обеспечения нормальной работы двигателя необходимо охлаждать детали, соприкасающиеся с горячими газами, отводя от них тепло в атмосферу непосредственно, либо при помощи промежуточного тела (воды, низкозамерзающей жидкости). При чрезмерно сильном охлаждении рабочая смесь, попадая на холодные стенки цилиндра конденсируется и стекает в картер двигателя, где разжижает моторное масло. Как следствие этого мощность двигателя уменьшается, а износ увеличивается. При понижении температуры масло густеет. Это является причиной того, что масло хуже подается в цилиндры и увеличивается расход топлива, уменьшается мощность. Поэтому система охлаждения должна ограничивать температурные пределы, обеспечивая наилучшие условия работы двигателя.

Система охлаждения, кроме основной функции охлаждения двигателя, выполняет ряд других функций, к которым относятся:

  • нагрев воздуха в системе отопления, вентиляции и кондиционирования;
  • охлаждения масла в системе смазки;
  • охлаждения отработанных газов в системе рециркуляции отработавших газов;
  • охлаждения воздуха в системе турбонаддува ;
  • охлаждения рабочей жидкости в автоматической коробке передач.

Типы систем охлаждения

Существует три типа систем охлаждения двигателей внутреннего сгорания: воздушная, жидкостная и гибридная.

Термические двигатели для А. требуют охлаждения цилиндров. Только для слабых, велосипедных газолиновых двигателей достаточно воздушного охлаждения при помощи рубцов, прилитых к поверхности цилиндра; для более сильных необходима циркуляция воды с помощью насоса между двойными стенками цилиндров, охлаждаемой в особом трубчатом приборе, помещаемом впереди А. и обдуваемом струей встречного воздуха.

Воздушное охлаждение

6-цилиндровый двигатель с естественным охлаждением на мотоцикле (Honda CBX1000, 105лс) Авиамодельный двигатель O.S. (1,7см3). Pratt and Whitney R-4360 — 28-цилиндровый авиационный двигатель с естественным воздушным охлаждением (3500лс).

Воздушное охлаждение может быть естественным и принудительным. Естественное воздушное охлаждение является самым простым видом охлаждения. Тепло от двигателя с такой системой охлаждения передаётся в окружающую среду через развитое оребрение на внешней поверхности цилиндров. Недостаток системы заключается в том, что она из-за низкой теплоёмкости воздуха не позволяет равномерно отводить от двигателя большое количество тепла и, соответственно, создавать компактные мощные силовые установки. Неравномерность обдува требует дополнительных мер для исключения локальных перегревов — более развитого оребрения в аэродинамической тени, обращения более нагретых выпускных каналов вперёд по потоку, а холодных впускных — назад и т.п. Естественное воздушное охлаждение распространено на двигателях лёгкой высокоподвижной техники: мотоциклы, мопеды, авиа- и автомодели. С систематическим ростом форсировки моторов мотоциклов на наиболее совершенных моделях воздушное охлаждение уступает место жидкостному. По причине малой массы естественное воздушное охлаждение широко применялось и на поршневых авиационных двигателях, где близкие к цилиндрическим и имевшие малую окружную скорость комли лопастей винта практически не работали как вентилятор, но скорость набегающего на самолёт потока была сама по себе очень высока.

Универсальный «стационарный» двигатель воздушного охлаждения, установленный на газонокосилке.

Стационарные или плотно закапотированные двигатели оснащают системой принудительного воздушного охлаждения. В них с помощью вентилятора создаётся поток воздуха, который обдувает рёбра охлаждения. Вентилятор и оребрённые поверхности, как правило, закрыты направляющим кожухом. Достоинства такого двигателя аналогичны двигателям с естественным охлаждением: простота конструкции, малый вес, отсутствие охлаждающей жидкости. Однако такие двигатели отличаются повышенным шумом при работе, большими габаритами. Кроме того, при проектировании таких двигателей возникают проблемы с охлаждением отдельных элементов конструкции двигателя из-за неравномерного обдува. На легковых автомобилях, производимых в Европе, воздушное охлаждение широко применялось в 1950-х — 1970-х годах. В основном это небольшие машины типа Volkswagen Kafer, Fiat 500, Citroën 2CV; особняком стоит представительская Tatra 613. В СССР самым известным автомобилем с воздушным охлаждением был «Запорожец». Выпускались грузовые автомобили с дизелями воздушного охлаждения (например грузовики под маркой «Татра» с момента начала выпуска и до начала 2010 годов оснащались исключительно такими двигателями). Двигатели с воздушным охлаждением имеют многие трактора (иногда — тяжёлые, например Т-330; чаще — малые, от обычных пропашных до мини-тракторов мелких частных хозяйств), для которых характерны установившиеся режимы работы двигателя и специфические требования к простоте обслуживания. В настоящее время (2015-е) принудительное воздушное охлаждение применяется на большинстве скутеров, моторизованном инструменте (бензопилы, газонокосилки и пр.), двигателях малогабаритных генераторных установок, на мотоблоках и прочих самоходных и стационарных малых сельскохозяйственных и коммунальных машинах. Для последних очень распространены унифицированные ряды простых одно-двухцилиндровых двигателей воздушного охлаждения, одинаковые у различных производителей (Briggs & Strattonruen, Honda, Subaru, китайские), в виде компактного законченного блока с креплением на горизонтальную плоскость.

Жидкостное охлаждение

Жидкостное охлаждение морских судов открытого типа

Системы охлаждения классифицируются в соответствии со способом использования теплоносителя в системе.

Замкнутые — в таких системах жидкость-теплоноситель циркулирует по герметичному контуру, нагреваясь от источника тепла (нагревателя) и остывая в охлаждающем контуре (охладителе). В зависимости от устройства системы, теплоноситель может закипать или полностью испаряться, вновь конденсируясь в охладителе. Незамкнутые — в незамкнутых (проточных) системах теплоноситель подается извне, нагревается у источника тепла и направляется во внешнюю среду. В этом случае она играет роль охладителя, предоставляя необходимые объем теплоносителя нужной температуры на входе и принимая нагретый на выходе. Открытые — системы, в которых нагреватель помещен в некоторый объем теплоносителя, а тот заключен в охладителе, если таковой предусмотрен конструкцией. Например, открытая система с маслом в качестве теплоносителя используются для охлаждения мощных электротрансформаторов.

К «чисто жидкостным» системам охлаждения можно отнести лишь открытые системы охлаждения речных и морских судов, где для охлаждения используется забортная вода. В некоторых стационарных двигателях начала XX века мог отсутствовать радиатор, вместо этого имелся расширительный бак большого объёма — отчасти тепло рассеивалось за счёт испарения воды, отчасти — через стенки бака, а отчасти за счёт большого объёма воды, который не успевал достаточно прогреться за время работы двигателя.

Замкнутая система (Гибридный тип)

Тип сочетает вышеуказанные системы: тепло от цилиндров отводится жидкостью, после чего она, на удалении от теплонагруженной части двигателя, охлаждается в радиаторах воздухом. Внутренние и наружные части цилиндров испытывают различный нагрев и обычно выполняются из отдельных частей:

  • внутренняя — рабочая втулка или гильза цилиндра;
  • наружная — рубашка (у двигателей воздушного охлаждения рубашка имеет рёбра для эффективного отвода тепла).

Пространство между ними называется зарубашечным, в двигателе с водяным охлаждением тут циркулирует охлаждающая жидкость.


Система охлаждения состоит из рубашки охлаждения блока цилиндров, головки блока цилиндров, одного или нескольких радиаторов, вентилятора принудительного охлаждения радиатора, жидкостного насоса, термостата, расширительного бачка, соединительных патрубков и датчика температуры. Этот тип используется на всех современных автомобилях. Охлаждающая жидкость прокачивается насосом через рубашку охлаждения двигателя, забирая от неё тепло, а затем охлаждается сама в радиаторе. В этой системе существует два круга циркуляции жидкости — большой и малый. Большой круг составляют рубашка охлаждения двигателя, водяной насос, радиаторы (в том числе — отопителя салона), термостат. В малый круг входит рубашка охлаждения двигателя, водяной насос, термостат (иногда радиатор отопителя салона входит именно в малый круг). Регулировка количества жидкости между кругами циркуляции жидкости осуществляется термостатом. Малый круг охлаждения предназначен для быстрого введения двигателя в эффективный тепловой режим. При этом охлаждающая жидкость фактически не охлаждается, так как не проходит через радиатор. Как только она нагреется до оптимальной температуры, термостат открывается, и охлаждающая жидкость начинает циркулировать также и через радиатор, где непосредственно и охлаждается набегающим потоком воздуха (а в случае длительной стоянки — принудительно вентилятором). При этом, чем сильнее нагревается охлаждающая жидкость, тем сильнее открывается термостат, и тем сильнее жидкость охлаждается в радиаторе. Это и есть принцип поддержания оптимальной температуры двигателя 85-90 °C.

Очень опасным явлением является перегрев двигателя (кипение двигателя)[источник не указан 273 дня]. При этом охлаждающая жидкость в прямом смысле вскипает в рубашке охлаждения, что очень часто приводит к серьёзным последствиям и дорогостоящему ремонту. Для предупреждения перегрева двигателя логично применять жидкости с высокой температурой кипения, однако проще всего оказалось держать всю систему под некоторым избыточным давлением (около 1,1 атм), при котором повышается температура кипения охлаждающей жидкости (около 110 °C и 120 °C для воды и антифриза соответственно). Кроме того, при превышении температуры охлаждающей жидкости более 105 °C, включается принудительный обдув радиатора вентилятором.

Основные части жидкостной системы охлаждения

В жидкостных системах охлаждения поршневых двигателей наземного и воздушного транспорта, а также стационарных установок охлаждающая жидкость циркулирует по замкнутому контуру, а тепло рассеивается в окружающую среду с помощью обдуваемого воздухом радиатора.

Основные части жидкостной системы охлаждения:

  • Рубашка охлаждения (1) представляет собой полость, огибающую части двигателя, требующие охлаждения. Циркулирующая по рубашке охлаждения жидкость отбирает у них тепло и переносит его к радиатору.
  • Насос охлаждающей жидкости, или помпа (5) — обеспечивает циркуляцию жидкости по контуру охлаждения. В некоторых двигателях, например мини-тракторов, может применяться термосифонная система охлаждения — то есть система с естественной циркуляцией охлаждающей жидкости, в которой этот насос отсутствует. Может приводиться в движение либо через ременную передачу от вала двигателя, либо от отдельного электродвигателя.
  • Термостат (2) — предназначен для поддержания рабочей температуры двигателя. Термостат перенаправляет охлаждающую жидкость по малому кругу — в обход радиатора, если температура не достигла рабочей.
  • Радиатор (3) имеет развитую поверхность, обдуваемую снаружи набегающим потоком воздуха. Радиатор изготавливается из материалов, хорошо проводящих тепло, чаще всего из алюминия (радиатор для охлаждения масла чаще всего делают из меди).
  • Вентилятор (4) создаёт дополнительный поток воздуха для обдува радиатора, в том числе во время остановок и при движении на малой скорости. Может приводиться ременной передачей от вала двигателя, но в современных автомобилях, за исключением крупных грузовиков, он работает от электродвигателя.
  • Расширительный бак содержит запас охлаждающей жидкости. С атмосферой расширительный бак сообщается через клапан, поддерживающий избыточное давление охлаждающей жидкости при работе, что позволяет двигателю работать при большей температуре, не допуская кипения охлаждающей жидкости, которое может привести к повреждению двигателя. Автомобили начала-середины XX века часто не имели расширительных бачков. В них запас охлаждающей жидкости находился в верхнем бачке радиатора. Это было вполне допустимо, так как в основном в системе охлаждения использовалась вода, и её расширение при нагреве было небольшим. С распространением антифризов на основе этиленгликоля использование расширительного бака стало обязательным. Полупрозрачный бак, расположенный в доступном месте в верхней точке системы, облегчает также контроль уровня жидкости.

В поршневой авиации также применяются двигатели, в которых цилиндры охлаждаются непосредственно набегающим воздухом, а головки цилиндров — с использованием жидкостной системы охлаждения. Такое решение позволяет снизить массу двигателя и одновременно более эффективно охлаждать головки цилиндров, которые являются наиболее теплонагруженными частями двигателя.

Охлаждение масла

В дополнение к основной системе охлаждения в двигателях большой мощности (на грузовиках и тепловозах), а также на двигателях с воздушным охлаждением применяется охлаждение масла. Охлаждение масла необходимо также потому, что оно поступает к па́рам трения — самым чувствительным к перегреву местам двигателя. Масло может охлаждаться охлаждающей жидкостью, либо окружающим воздухом от отдельного радиатора.

Испарительная система охлаждения

Также существует подвид системы охлаждения, называемый испарительной системой охлаждения. Главное отличие её от обычных водяных или этиленгликолевых — доведение температуры охлаждающей жидкости (воды) выше точки кипения, в результате чего при испарении от теплонагруженных деталей отводится большое количество тепла. Пар конденсируется в жидкость в радиаторе и цикл повторяется. Подобные системы использовались в авиастроении в 30-х годах XX века.[1] Кроме того в Китае по состоянию на 2014 год продолжают выпускаться дизели мощностью от 8 до 24 л.с. с испарительным охлаждением, предназначенные для мотоблоков и минитракторов.

См. также

Примечания

Ссылки

Система охлаждения двигателя автомобиля

Внимание
Система охлаждения двигателя выполняет одну из самых важных функций в ДВС, поэтому выход из строя всей системы или какого-либо элемента может привести к перегреву и выходу из строя двигателя. Движение и эксплуатация транспортного средства с неисправной системой охлаждения нежелательна или запрещена.

Назначение и действие системы охлаждения

Принципиальная схема системы охлаждения двигателя
Рисунок 4.31 Принципиальная схема системы охлаждения двигателя.

Система охлаждения служит для принудительного отвода тепла от цилиндров двигателя и передачи его окружающему воздуху. Необходимость в системе охлаждения вызвана тем, что детали двигателя, соприкасающиеся с раскаленными газами, при работе сильно нагреваются. Если не охлаждать внутренние детали двигателя, то вследствие перегрева может произойти выгорание слоя смазки между деталями и заедание движущихся деталей вследствие чрезмерного их расширения.

Системы охлаждения практически всех современных автомобилей не отличаются друг от друга. Принципиальная, обобщенная схема работы системы охлаждения приведена на рисунке 4.31, где красным цветом отмечена жидкость нагретая от деталей двигателя и синим – охлажденная в радиаторе системы.

В систему водяного охлаждения с принудительной циркуляцией жидкости входят водяные рубашки соответственно головки и блока цилиндров (о рубашках мы писали выше, изучая одноцилиндровый двигатель), радиатор, нижний и верхний соединительные патрубки со шлангами и водяной насос с водораспределительной трубой, вентилятор и термостат.

При работе двигателя, приводимый от него в действие водяной насос (он же —помпа) создает круговую циркуляцию воды через водяную рубашку, патрубки и радиатор. По водораспределительной трубе вода в первую очередь направляется к наиболее нагреваемым местам блока. Проходя по водяной рубашке блока и головки, вода омывает стенки цилиндров и камер сгорания, охлаждая двигатель. Нагретая вода по верхнему патрубку поступает в радиатор, где, разветвляясь по трубкам на тонкие струйки, охлаждается воздухом, который просачивается мимо трубок под действием тяги, создаваемой вращающимися лопастями вентилятора. Охлажденная вода вновь поступает в водяную рубашку двигателя.

Схема системы охлаждения
Рисунок 4.32 Схема системы охлаждения.

Основные элементы системы охлаждения

 Радиатор

Радиатор
Рисунок 4.33 Радиатор.

Представляет собой набор тонких трубок, на которые нанизаны тонкие пластины для увеличения площади поверхности, предназначенной для отвода тепла. Вся работа радиатора заключается в том, чтобы охлаждать жидкость, которая циркулирует в его трубках.

На рисунке 4.34 приведен пример участка радиатора с различными вариантами исполнения.

Варианты исполнения радиатора системы охлаждения
Рисунок 4.34 Варианты исполнения радиатора системы охлаждения.

На верхней и нижней частях радиатора могут быть бачки, к которым подсоединены верхний и нижний патрубки системы охлаждения соответственно. Если есть бачки, то в верхнем, обычно расположена горловина для заливания охлаждающей жидкости. Если бачков нет, то горловина располагается прямо на радиаторе.

Для лучшего охлаждения жидкости трубки делают плоскими и располагают рядами в шахматном порядке. Поперек трубок установлены в большом количестве тонкие латунные пластины, называемые охлаждающими ребрами, которые увеличивают поверхность охлаждения сердцевины и способствуют более интенсивной отдаче тепла от воды воздуху, проходящему через сердцевину.

В системе охлаждения закрытого типа горловину радиатора плотно закрывают специальной пробкой с двойным паровоздушным клапаном (смотрите рисунок 4.35). Воздушный клапан пробки нагружен слабой пружиной и пропускает внутрь радиатора атмосферный воздух, устраняя возможность возникновения в бачке радиатора разрежения, появляющегося при конденсации паров воды. Паровой клапан нагружен более сильной пружиной и открывается для выпуска пара только тогда, когда давление в радиаторе превышает атмосферное и доходит до 1,28—1,38 кг/см2.

Крышка радиатора
Рисунок 4.35 Крышка радиатора.

 Водяной насос

Водяной насос (он же помпа) заставляет охлаждающую жидкость циркулировать по системе. Тип насоса – центробежный. Вращается насос при помощи приводного ремня, установленного на шкив коленчатого вала.

Насос представляет собой довольно простую конструкцию: вал, на одном конце которого установлена крыльчатка (показана на рисунке 4.36), а на втором – шкив для приводного ремня. Вал опирается на подшипник, установленный в крышке помпы. Зачастую корпусом для насоса служит полость или прилив в блоке цилиндров. Вода по подводящему патрубку поступает внутрь корпуса и подводится к центру вращающейся крыльчатки. При этом вода увлекается крыльчаткой, приобретает вращательное движение, под действием центробежной силы отбрасывается к стенкам корпуса и через выходной канал под напором поступает в водяную рубашку двигателя.

Водяной насос, крыльчатка
Рисунок 4.36 Водяной насос. Крыльчатка.

 Вентилятор

В былые времена вентилятор устанавливался на одной оси с валом водяного насоса, жестко крепился к приводному шкиву и гнал воздух для дополнительного охлаждения радиатора постоянно, пока работал двигатель, так как привод был от коленчатого вала. Летом это, может, и хорошо, а вот зимой, когда температуры окружающего воздуха и так достаточно для охлаждения, дополнительное охлаждение не на пользу. Так же при движении на автомобиле летом, когда часто приходится стоять в пробках, а двигателю работать на низких оборотах, охлаждение будет недостаточное ввиду отсутствия нормального потока воздуха от вентилятора.

Примечание
Здесь стоит отметить важность определенного (довольно узкого) диапазона рабочей температуры двигателя вне зависимости от времени года или нагрузки при работе. Как вывод: перегрев плохо, но и переохлаждение далеко не на пользу.

Но прогресс не стоял и не стоит на месте, потому, поняв, что в постоянно «включенном» вентиляторе пользы ни зимой, ни летом нет, решили установить вентилятор с электромотором, который включается по команде датчика температуры. Удобно – автомобиль быстро прогревается, а при достижении определенной температуры, начинает работать электровентилятор. В современных автомобилях у электровентилятора еще и два режима работы: быстрый и медленный. Управляет этим электроника.

Но есть и еще один способ заставить без электроники работать вентилятор в заданных режимах работы – установить вяскостную муфту. Эта муфта приводится во вращения ремнем от шкива коленчатого вала. Вентилятор «сидит» на оси и при отсутствии надобности в нем не вращается. Как только возникает необходимость в охлаждении, муфта срабатывает и вентилятор начинает вращаться, как бы соединяясь через приводной ремень с коленчатым валом.

 Термостат

Термостат — это клапан, установленный в корпус, который открывается при прогреве охлаждающей жидкости до нормальной рабочей температуры. Пример устройства и работы термостата приведен на рисунке 4.37. Система охлаждения двигателя устроена так, что имеет два круга обращения – малый и большой. Когда клапан термостата закрыт, охлаждающая жидкость при помощи водяного насоса циркулирует только в пределах головки и блока цилиндров, таким образом она быстро прогревается (малый круг). По мере прогрева охлаждающей жидкости, в частности, и двигателя в целом, начинает открываться клапан термостата, пуская охлаждающую жидкость циркулировать через радиатор – большой круг.

Примечание
При чрезмерном перегреве охлаждающей жидкости мощность двигателя и его экономичность снижаются. Если же охлаждающая жидкость, а следовательно, и двигатель, не прогреваются, то увеличивается конденсация топлива, вызывающая смывание смазки со стенок цилиндров и разжижение ее в картере, а также возрастают тепловые потери, что ведет к снижению мощности двигателя и увеличению расхода топлива.

Работа термостата
Рисунок 4.37 Работа термостата.

Автомобильный радиатор системы жидкостного охлаждения

Радиатор является одним из ключевых и наиболее важных элементов жидкостной системы охлаждения. Основной задачей становится рассеивание в атмосферу тепла, которое было отведено от двигателя охлаждающей жидкостью. Радиатор системы охлаждения двигателя можно считать важнейшей деталью самого силового агрегата.

Устройства, похожие на современный радиатор, устанавливались на самых ранних версиях автомобилей с ДВС, так как без указанного элемента охлаждения работа силовой установки становится попросту невозможной.  Это устройство напрямую отвечает за поддержание нормальной рабочей температуры двигателя в строго отведенных рамках. Такая защита бережет мотор от перегрева, который неминуемо выведет практически любой двигатель внутреннего сгорания из строя.

Читайте в этой статье

История создания радиатора

Водяная система охлаждения появилась на заре двигателестроения. Впервые концепцию радиатора применили на первом серийном автомобиле под названием Benz Velo, который оказался в свободной продаже в 1886 году. Данную идею устройства продолжил развивать Вильгельм Майбах, который сконструировал изделие с сотами. Разработка нашла применение в конструкции модели Mercedes 35HP.  За последующие десятилетия и до наших дней устройство радиатора не претерпело глобальных изменений, оставшись практически в том же самом виде, что и во времена Майбаха.

Первые жидкостные системы охлаждения двигателя не имели водяного насоса (помпы), который заставлял охлаждающую жидкость (в самом начале это была простая вода) принудительно циркулировать в системе. Ранние разработки системы охлаждения ДВС опирались на эффект термосифона.

Благодаря такому эффекту охлаждающая жидкость попадала в радиатор. Эффект термосифона основывается на том, что плотность воды понижается при нагреве. Разогретая вода благодаря этому свойству устремляется вверх. В итоге нагретая жидкость оказывалась в устройстве, проникая туда посредством прохода через верхний патрубок.

Внутри радиатора происходило охлаждение воды, плотность жидкости снова возрастала. Это приводило к тому, что вода опускалась в нижнюю часть радиатора, а уже оттуда проникала обратно в рубашку двигателя через нижний патрубок. Главным недостатком систем с эффектом термосифона стало то, что они не могли обеспечить должного охлаждения на фоне постоянно растущей мощности ДВС. Такие системы достаточно быстро вытеснили решения, которые основывались на применении центробежного водяного насоса (помпы).

Радиатор в системе жидкостного охлаждения

Главной задачей элемента является отвод тепла от силовой установки в атмосферу путем охлаждения жидкости, которая проходит внутри по каналам. Для обеспечения лучшего отвода тепла устройство монтируется в таком месте, где отмечен наилучший обдув встречным воздушным потоком в процессе движения автомобиля. Типичным местом установки в подкапотном пространстве является область за радиаторной решеткой спереди автомобиля. Стоит отметить, что даже в автомобилях с задним расположением ДВС радиатор зачастую устанавливается спереди. Отличием становится прокладывание более длинных магистралей системы охлаждения к двигателю.

Существуют и другие места для монтажа устройства охлаждения, но встречаются реже. Автомобили с заднемоторной компоновкой могут иметь радиатор, который установлен вдоль боковой стенки. Такое решение можно встретить на спортивных автомобилях, которые имеют сразу два радиатора охлаждения, расположенные вдоль обеих стенок моторного отсека. Эффективный обдув воздухом реализован путем использования воздухозаборников. Указанный воздухозаборник располагают в задней части машины на боковых стенках.

 Устройство радиатора

а – устройство; б – паровой клапан открыт; в – воздушный клапан открыт.

  • Радиатор конструктивно имеет верхний (1) и нижний (7) бачок.  Эти бачки соединены между собой трубками (5) из латуни или алюминия. К этим трубкам посредством пайки прикреплены пластины (6), которые увеличивают площадь поверхностного охлаждения элемента. Через эту поверхность тепло отводится от охлаждающей жидкости и отдается в окружающую среду.
  • Верхний бачок имеет заливную горловину для заправки охлаждающей жидкостью. Горловина перекрывается пробкой (3). В этой пробке имеются паровой (11) и воздушный (12) клапаны.
  • Верхний бачок также имеет патрубок (2) для того, чтобы соединить радиатор с рубашкой охлаждения мотора. Такое соединение реализовано посредством резинового шланга.  Дополнительно имеется пароотводная трубка (4), а также датчик  электрического термометра (13).
  • Нижний бачок (7) имеет патрубок (8) для соединения устройства с насосом (помпой). Еще имеется  дополнительный кран, который способен обеспечить слив охлаждающей жидкости. На раме автомобиля радиатор крепится специальными крепежными деталями (9).

Так называемые сердцевины (пластины радиатора)  являются основными элементами теплообмена. В зависимости от типа сердцевины выделяют следующие типы радиаторов:

  1. трубчатые;
  2. пластинчатые;
  3. трубчато-ленточные и т.д.

Бачки радиатора могут быть изготовлены из пластика или металла. Если взглянуть на устройство более детально, тогда  основная часть сердцевины, по сути, является набором бесшовных алюминиевых или латунных трубок. Трубки, соединяющие верхний и нижний патрубки, имеют толщину стенок до 0,15 миллиметра. Жидкость, проходящая через сердцевину радиатора охлаждения, расходится на большое количество микропотоков. Каждая такая трубка покрывается своеобразными ребрами, которые являются тонкой гофрированной медной или алюминиевой лентой.

Изделия из алюминия имеют меньший вес сравнительно с другими материалами изготовления, но склонны к ускоренному разрушению. Дело в том, что возникает ряд существенных сложностей при попытке сварки этого металла, а также алюминий плохо противостоит механическим повреждениям.

Для того чтобы алюминиевый продукт приблизился по качеству охлаждения к латунной конструкции,  его необходимо изготавливать большим по размеру и увеличивать толщину элемента. В начале эпохи автомобилестроения активно использовались сотовые радиаторы. Такое устройство было выполнено из небольших отрезков латунных трубок, которые имели пятиугольное сечение. Жидкость внутри таких трубок не циркулировала принудительно, а весь процесс охлаждения осуществлялся посредством контакта металлических ребер со встречным потоком воздуха. 

Вернемся к устройству современного радиатора. Паровой клапан, изображенный на рисунке, нагружается специальной пружиной (10). Пружина имеет упругость 1250—2000 г. Это позволяет нарастить давление в радиаторе охлаждения и повысить температуру закипания охлаждающей жидкости в жидкостной охлаждающей системе до отметки 110-119°С. Такое решение обеспечивает уменьшение объема охлаждающей жидкости во всей системе, что означает параллельное снижение массы двигателя. При этом сохраняется необходимая интенсивность охлаждения силового агрегата. Еще одним плюсом становится уменьшение потерь, под которыми следует понимать испарение охлаждающей жидкости. 

Воздушный клапан также нагружают пружиной, но более слабой по силе противодействия. Упругость такой пружины находится на отметке 50-100 г. Задачей воздушного клапана является пропуск воздуха внутрь устройства в том случае, если произошла конденсация охлаждающей жидкости после того, как она закипела и была охлаждена.

Другими словами, внутри системы за счет явления парообразования может возникнуть избыточное давление. Точка кипения охлаждающей жидкости соответственно ему повышается, при этом нет зависимости от атмосферного давления, так как давление сброса задается клапаном в крышке. Такое свойство системы охлаждения незаменимо в процессе езды по горной местности. По причине пониженного атмосферного давления в горах охлаждающая жидкость закипает быстрее, чем в обычных условиях. Данное решение установки воздушного клапана позволяет таким образом предотвратить разрушение радиатора. который может быть попросту раздавлен атмосферным давлением.

Пробка, оснащенная клапанами, обеспечивает открытие выпускного клапана в случае закипания охлаждающей жидкости внутри системы и возникновения избыточного давления, которое приблизительно находится на отметке 0,5 кг/см2. Пар выводится в пароотводную трубку. Впускной клапан обеспечивает доступ воздуха тогда, когда давление внутри оказывается ниже атмосферного давления (ниже 1 кг/см2), что возникает в устройстве при остывании охлаждающей жидкости.

Таким образом, устройство пробки полностью изолирует систему охлаждения от внешней атмосферы. По этой причине описанную систему называют системой охлаждения закрытого типа.

В закрытой системе охлаждения для слива охлаждающей жидкости нужно открыть сливные краны и извлечь пробку радиатора. Чтобы спустить жидкость из водяной рубашки двигателя, в нижней части блока отдельно предусмотрен соответствующий кран для слива. Существует также система охлаждения открытого типа. В открытой системе горловина устройства охлаждения закрыта пробкой без клапанов. В такой системе вода закономерно кипит при температуре 100°С.

Регулировка температуры охлаждающей жидкости

За поддержание постоянной температуры в системе охлаждения  двигателя отвечает термостат. Данный элемент распределяет движение охлаждающей жидкости по контурам. Эти контуры называются малый и большой круг. Рубашку двигателя можно считать малым кругом, движение потока через радиатор-большой круг. Возникает такая ситуация, когда охлаждения  наружным воздухом при движении ОЖ по большому кругу в жаркую погоду или при нагрузках  оказывается недостаточно. Чтобы обеспечить эффективный отвод нагретого воздуха и поддерживать постоянную температуру охлаждающей жидкости дополнительно устанавливается один или целый ряд вентиляторов. Такие вентиляторы  могут иметь механический привод (вискомуфту) или электрический привод. 

 Регулирование теплового режима «шторкой»

Жидкостная система охлаждения двигателя внутреннего сгорания может быть оснащена двойным регулированием теплового режима. Первым регулятором выступает термостат, о котором мы уже говорили. Вторым терморегулирующим элементом становится шторка-жалюзи.

Устройства с двойным регулированием конструктивно имеют жалюзи, установленные непосредственно перед радиатором. Благодаря такому решению в сильные морозы радиатор можно прикрыть, уменьшив интенсивность обдува наружным воздухом. Отвод тепла снизится, а само тепло можно более эффективно использовать для поддержания рабочей температуры ДВС и интенсивного отопления салона автомобиля.

Жалюзи представляют собой пластины из металла, которые соединены между собой шарнирами. Эти шторки могут иметь вертикальное или горизонтальное расположение перед устройством. Управление таким решением осуществляется рукояткой из салона автомобиля, а также может быть реализовано автоматически в отдельных конструкциях. Принцип действия механического устройства заключается в том, что задвигая или вытягивая рукоять в салоне, водитель осуществляет поворот пластин. Происходит изменение щели между жалюзи и происходит регулировка интенсивности обдува радиатора воздушными потоками. Результатом становится воздействие на температуру охлаждающей жидкости.

В условиях предельно низких температур на капот и радиаторную решетку дополнительно крепят специальный утеплительный чехол. Такой чехол изготовлен из водонепроницаемой пожаробезопасной ткани. Указанные меры способствуют поддержанию рабочего теплового режима двигателя в необходимых рамках.

Установка дополнительного радиатора

Появление мощных высокофорсированных атмосферных и турбодвигателей, которые работают в самых разных режимах нагрузки,  поставило перед разработчиками задачу установить дополнительные устройства охлаждения. Инженеры реализовали параллельную установку дополнительного радиатора. Такое решение получило свой отдельный электрический вентилятор. Не стоит путать дополнительный радиатор охлаждения с интеркулером, который устанавливается для охлаждения сжатого воздуха в системах с турбонагнетателем.

Принцип работы 

Для правильного функционирования современные жидкостные системы охлаждения в процессе работы учитывают множество важнейших параметров. Специальные датчики снимают показания температуры двигателя, температуры охлаждающей жидкости и моторного масла, температуры за бортом и т.д.

Если вкратце описывать принцип работы системы охлаждения, тогда  за точку отсчета стоит принять жидкостной насос. Этот элемент заставляет охлаждающую жидкость постоянно двигаться  и циркулировать по кругу. При этом проход через рубашку охлаждения двигателя (малый круг) позволяет жидкости омывать горячие стенки головки блока и цилиндров.  Когда температура охлаждающей жидкости растет, тогда при определенных показателях срабатывает термостат и открывает доступ жидкости в большой круг (радиатор). Так удается избежать перегрева двигателя и эффективно отдать жидкости избыточное тепло от нагретых деталей мотора. Когда горячая жидкость попадает в устройство охлаждения, от неё происходит отвод тепла в окружающую атмосферу. Полный цикл заканчивается, а охлажденная жидкость движется аналогично по новому циклу.

Вполне очевидно, что радиатор является своеобразным теплообменником, который обеспечивает эффективное охлаждение не самого мотора, а охлаждающей жидкости. Установка дополнительного вентилятора или жалюзи позволяет поддерживать температуру жидкости на оптимальном для работы мотора уровне как в экстремальный  холод, так и в сильную жару.

Диагностика и ремонт неисправностей радиатора своими руками

Главной диагностической процедурой является периодический контроль системы охлаждения двигателя на предмет утечек и снижения объема охлаждающей жидкости в расширительном бачке. Контролировать количество жидкости можно визуально. Так как жидкость постоянно нагревается и охлаждается, со временем входящая в состав любой ОЖ вода частично выпаривается, что и приводит к общему снижению объема.

Если говорить о неисправностях радиатора, тогда основной является загрязнение его сот и каналов, а также их разрушение. Загрязнение приводит к тому, что циркуляция жидкости внутри устройства ухудшается, ОЖ при движении по большому кругу не успевает остыть. В таких условиях мощности вентилятора перестает хватать, так что перегрев двигателя неминуем.

Начинать ремонт радиатора охлаждения двигателя с загрязненными сотами стоит начинать с обычной промывки сердцевины проточной водой. Необходимо отсоединить нижний патрубок, а далее через горловину начинать заливать воду. Крайне желательно осуществлять промывку сот устройства охлаждения водой под давлением. В ряде случаев, когда радиатор сильно забит, его можно распаять и произвести демонтаж верхнего и нижнего бачков. После демонтажа становится возможным осуществить чистку сердцевины механическим способом.

В процессе эксплуатации верхний или нижний бачок, а также и сами соты начинают течь. Это происходит по причине использования низкосортных охлаждающих жидкостей, механических повреждений и т.д. Если подтекание незначительное, тогда можно попытаться засыпать или залить в радиатор специально предназначенное для временного устранения таких дефектов решение из автомагазина. К «дедовским» методам относят добавку большой порции горчичного порошка, который размокает и затягивает трещину. Как первый, так и второй способ не ремонтирует устройство полностью, а только позволяет устранить течь на время дороги до СТО и постановки автомашины на ремонт.

Помните, что когда двигатель горячий, открывать пробку радиатора опасно! Можно получить сильный ожог паром и горячей охлаждающей жидкостью. Перед тем как открыть пробку на горловине, нужно максимально широко накрыть саму пробку и область вокруг неё тканевым материалом, а уже потом отворачивать.

Что касается расширительного бачка, то пробку на нем при разогретом моторе нужно отвинчивать с аналогичной осторожностью. Слегка прокрутите пробку, но не до конца. Вы услышите характерный звук вырывающегося воздуха, похожий на тот, что возникает при открытии крышки на бутылке газированной воды. После такого стравливания крышку бачка можно постепенно открывать полностью и осуществлять контроль или долив охлаждающей жидкости.

Читайте также

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *