РазноеПоликристаллические и монокристаллические солнечные батареи отличия – Монокристаллические и поликристаллические солнечные панели. Какие лучше? Характеристики, КПД и сравнение | Интернет журнал: Eco-Energetics

Поликристаллические и монокристаллические солнечные батареи отличия – Монокристаллические и поликристаллические солнечные панели. Какие лучше? Характеристики, КПД и сравнение | Интернет журнал: Eco-Energetics

Монокристаллические солнечные панели и поликристаллические: что лучше

Стремясь сэкономить семейный бюджет, многие люди обращаются к альтернативным источникам энергии. Одним из таких источников являются солнечные батареи. Но в продаже представлен большой ассортимент. Как определиться с выбором? Что лучше: монокристаллические солнечные панели или поликристаллические?

Чтобы понять, какие солнечные батареи лучше, необходимо выяснить, что представляет собой каждая из моделей.

Панели из монокристаллов

Понять, что перед вами монокристаллические солнечные панели, очень просто. Их поверхность составляет большое число квадратов, которые имеют срезанные уголки. Монокристаллы с такой формой получаются в процессе изготовления, а объясняется это структурой кристаллической решетки кремния.

Из названия ясно, что при производстве используется один кремниевый кристалл. Чтобы его изготовить, запускают процесс выращивания из расплава, используя чистый кремний. В результате выходит кристаллический элемент в форме цилиндра, который в дальнейшем нарезают тонкими пластинками, и они получают форму срезанных квадратов.

Монокристалл

Такая форма позволяет предотвратить нерациональное использование полезных площадей. Монокристаллическая панель отличается однородным цветом и структурой. Это свидетельствует о высокой чистоте кремния (до 99,99 %).

Отдельные квадратные детали складывают в единую панель, окруженную по периметру оболочкой из пластика. После этого солнечный модуль готов к функционированию.

Достоинства

Монокристаллические солнечные батареи обладают рядом преимуществ:

  1. Имеют наилучший коэффициент полезного действия среди всех современных моделей.
  2. Хорошо функционируют в условиях низких температур.
  3. Обладают длительным сроком эксплуатации (до 25 лет).
  4. Требуют меньше места по сравнению с другими аналогами при одной и той же отдаче тепла.

Панели из монокристаллов

Панели из поликристаллов

Поликристаллические солнечные батареи имеют в своем составе элементы с большим числом кристаллов. Какие же отличия в процессе производства поликристаллов? Их не выращивают дорогим и  долгим по времени способом, как монокристаллические. Расплавленный кремний постепенно охлаждается и затвердевает, в результате выходит заготовка из поликристаллов кремния в виде прямоугольника. Готовый материал нарезают на тончайшие пластинки (менее 1 мм).

По структурной однородности и чистоте эта модель уступает монопанелям. Сырьем могут служить отработавшие свой срок солнечные панели.

Поликристалл

Подготовленные поликристаллические элементы наклеиваются на сплошное основание и заключаются в алюминиевую рамку, которую покрывают черной краской. На заключительном этапе делают герметизацию рамки, ламинируют всю поверхность для предотвращения порчи от воздействия внешней среды (осадки, перепады температур). Именно от этого этапа зависит, как долго солнечная батарея сможет проработать.

Достоинства

  1. Процесс производства более дешевый и простой. Это сказывается на стоимости товара.
  2. Хорошая результативность при функционировании в облачных погодных условиях, этому способствует неравномерная поверхность панели.
  3. Поликристаллические солнечные панели отличаются более разнообразными параметрами по размерам и формам.
  4. Более устойчивы к перепадам температуры окружающей среды.

Панели из поликристаллов

Минусы панелей обоих видов

Несмотря на то, какая существует разница в технологическом процессе, у названных солнечных модулей есть одинаковые недостатки, которые преимущественно связаны с характерными особенностями кремния:

  1. Поликристаллические солнечные модули, как и монокристаллические, обладают повышенной хрупкостью. Поэтому располагать их необходимо на твердом ровном основании. Если на поверхности ячейки образуется трещина, то панель не пригодна для дальнейшего использования.
  2. Продуктивность в преобразовании энергии солнца не слишком высока. Поликристаллические панели имеют КПД до 15-18 %, а монокристаллические – 22 %. Даже панели, задействованные в космических технологиях, выдают КПД не более 38 %.
  3. Производительность и тех, и других батарей полностью зависит от солнечной погоды. То есть наибольшая эффективность будет в южных областях, где солнце светит дольше и количество ясных дней преобладает над пасмурными.
  4. Чтобы обеспечить работу солнечных батарей (моно- или поли-), понадобится электростанция или аккумулятор для преобразования энергии и стабилизации напряжения на выходе.
  5. Процессу старения одинаково поддаются как поли-, так и монокристаллы. Монокристаллические элементы за четверть века теряют эффективность работы на 20 %, поликристаллические за такой же период теряют до 30 %. Несмотря на бесперебойность поступления энергии, солнечная панель со временем нуждается в обновлении.
  6. Стоимость изделия с использованием энергосберегающих технологий достаточно высока по сравнению с ценой обычных товаров.

Рабочий

Читайте также:
О характеристиках солнечных батарей

Советы по выбору

Зная все плюсы и минусы, которыми обладают поликристаллические или подобные им монокристаллические солнечные батареи, можно определиться с их выбором:

  1. Прежде всего, стоит отталкиваться от своих потребностей. Нужно высчитать объем тепла, который вам понадобится. Наиболее рациональным считается, если солнечная батарея сможет выдавать от 40 до 80 % необходимого тепла.
  2. Приобретаемая панель должна соответствовать вашему жилью. Следует принимать во внимание климатическую зону, продолжительность светового дня: для этого делаются специальные расчеты с использованием карты освещенности.
  3. При выборе батареи нужно выяснить ее КПД, материал, из которого она изготовлена, период, на который рассчитана работа изделия.

При установке солнечных батарей лучше проконсультироваться со специалистами, которые, исходя из конкретных характеристик вашего дома и запросов, помогут подобрать самый оптимальный вариант по цене и производительности.

Рабочий Загрузка…

Поликристаллические или монокристаллические солнечные батареи

Для освещения дома, сада, беседки или для зарядки электрических приборов можно использовать солнечную энергию. Солнечные батареи широко используются в бытовых и промышленных целях. Для более серьезных целей сооружают солнечные станции, они способны обеспечить энергией крупные объекты. Данная разработка используется на земле, на воде и даже в космосе.

Что такое монокристаллическая батарея

Что такое монокристаллическая батарея

Устройство солнечных пластин несложное и состоит из корпуса, фотоэлемента и проводов. Фотоэлемент чаще всего изготавливают из кремния. Под воздействием солнечного света электроды движутся, и выделяемая энергия через подключенные с обеих сторон провода поступает к подсоединенному прибору или аккумулятору. Кремний используется как в монокристаллических, так и в поликристаллических пластинах.

Внешний вид монокристаллической пластины напоминает квадрат, но имеет округленные углы. монокристаллическая батарея

Такая форма получается при выращивании монокристаллов. Поверхность батареи однородная и имеет насыщенный синий цвет. За счет однородности пластины достигается очень высокий КПД, так как солнечная энергия не рассеивается, а лучи равномерно освещают всю поверхность. Попадая на поверхность батарей, они проходят через переход в полупроводниковых пластинах на большой площади.

Монокристаллические батареи лучше поликристаллических, так как намного эффективнее и имеют ряд положительных моментов:

  1. Монобатареи можно крепить на неровную поверхность, они гибкие и при волновом размещении не портятся и не теряют своих свойств.
  2. Гибкие солнечные батареи превзошли поликристаллические и по эффективности работы в непогоду, монокристаллические модели могут работать и в тени.
  3. Для зимы также лучше подойдут монокристаллические панели, они могут выдержать минусовую температуру.


К минусу солнечных батарей с монокристаллами можно отнести цену, она будет примерно на 10% выше цены батареи на поликристаллах.

Главное при покупке – тщательно осмотреть панель. Она не должна иметь повреждений, царапин или сколов.

Поликристаллы и применение солнечных батарей

Монокристаллические пластины усовершенствованы и превосходят поликристаллы. Из-за гибкого строения их можно размещать на кровле дома или беседки.

Монокристаллическая батарея применение

Поликристаллические элементы хороши для уличной станции, так как их устанавливают только на ровную поверхность, для них необходимо присмотреть отдельное место на садовом участке. При размещении в беседке не допускается застекление панелей, так как от этого происходит снижение КПД.  Коэффициент полезного действия у серийно выпускающихся панелей составляет примерно 18%, что ниже монокристаллических. Поликристаллические пластины несут потери КПД в основном из-за неоднородности поверхности.

Гибкую монокристаллическую пластину удобно использовать при выездах на пикник, от нее может работать радио и заряжаться мобильные телефоны и ноутбуки. Расположить батарею можно на крыше автомобиля, а перевозить в багажнике, аккуратно закрепив и обезопасив от повреждений.

Монокристаллические солнечные батареи и поликристаллические

Содержание:

  1. Физические характеристики кристаллического кремния
  2. Производство кремниевых кристаллов
  3. Солнечные панели из монокристаллов
  4. Особенности поликристаллических модулей
  5. Видео: Сравнение поликристаллической и монокристаллической солнечной батареи

Солнечные панели в качестве альтернативного источника электроэнергии завоевывают все большую популярность среди широких слоев населения. Из дорогостоящих устройств с низкой эффективностью они превратились в достойную замену стационарным электрическим сетям. Среди них следует отметить монокристаллические солнечные батареи и поликристаллические, используемые на различных объектах. Эффективность таких приборов зависит от правильного выбора. Для этого нужно в целом иметь представление о конструкции, принципе работы, параметрах и технических характеристиках этих устройств.

Физические характеристики кристаллического кремния

Элементы для солнечных панелей изготавливаются из полупроводниковых материалов. Среди них несомненным лидером является кремний, который служит основным материалом для производства панелей.

По своим физическим свойствам кремний бывает монокристаллический, поликристаллический, мультикристаллический и аморфный. Такое разнообразие структур дает ему несомненное преимущество перед другими видами полупроводников, и делает незаменимым в производстве микроэлектроники и электронной техники. То же самое в полной мере касается и солнечной энергетики.

Кремний относится к наиболее распространенным химическим элементом, а его запасы практически неограниченны. Данный материал отличается доступностью, дешевизной и экологической чистотой. В природе он известен как двуокись кремния, а в натуральном виде представлен речным и кварцевым песком, кремнем, кварцем и кварцитами. Кристаллическая решетка кремния похожа на алмазную, поэтому он очень хрупкий и приобретает пластичность лишь при температуре свыше 800 градусов.

При идеальной кристаллической структуре и отсутствии примесей, в температурных условиях абсолютного нуля, кремний можно рассматривать как изолятор. При повышении температуры в нем возникает явление так называемой собственной проводимости. В этом случае электрический ток возникает за счет свободных электронов или дырок, представляющих электронную или дырочную проводимость.

Помещенный в комнатную температуру, чистый кремний ведет себя как химически инертное вещество. Однако, если температура повышается, он начинает вступать в активную реакцию с другими элементами. Особую активность данный материал проявляет в расплавленном виде, создавая серьезные проблемы при его очистке до требуемого уровня.

Солнечные элементы на основе кремния изготавливаются из тонких кремниевых пластинок, нарезаемых на установленную толщину. Предварительно они подвергаются различным видам обработки, и в результате сложных технологических процессов получается нужный материал.

Производство кремниевых кристаллов

Производство солнечных панелей начинается с изготовления моно- или поликристаллических кремниевых элементов. Монокристаллический кремний требует более сложной и трудоемкой технологии.

Его создание осуществляется в несколько этапов:

  • Многоступенчатая очистка кварцевого песка, содержащего большое количество диоксида кремния. В результате очистки из него удаляется кислород. Этот процесс выполняется при высокой температуре, обеспечивающей плавление и последующий синтез материала с другими химическими веществами.
  • Далее, из очищенного кремния выращиваются кристаллы. Вначале отдельные куски чистого материала закладываются в тигель, внутри которого они разогреваются и плавятся. В расплавленную массу помещается затравка, используемая в качестве основы будущего кристалла. Атомы кремния, оседая слоями на этой затравке, постепенно принимают четкую упорядоченную структуру. Конечным результатом этого продолжительного действия становится крупный однородный кристалл.
  • На следующем этапе монокристалл измеряется, калибруется и обрабатывается до требуемой формы. На выходе он получается в форме цилиндра, не совсем удобной для последующей обработки. Поэтому заготовка в сечении превращается в квадрат с закругленными углами. Затем, готовый монокристалл при помощи стальных нитей разрезается на отдельные тонкие пластинки. После этого выполняется их очистка, проверка качества и работоспособность.
  • Способность вырабатывать электроэнергию появляется у кремния после добавления в него бора и фосфора. Сторона п-типа покрыта фосфором, обеспечивающим получение свободных электронов. На стороне р-типа располагается слой бора с дырочной проводимостью. Таким образом, между двумя элементами создается р-п-переход. При попадании на ячейку солнечного света, из атомной решетки начнется усиленный выход электронов и дырок. Они распространяются по всему электрическому полю и устремляются к своему заряду. Сбор полученного тока осуществляется с помощью проводников, припаянных с каждой стороны пластины.
  • На завершающей стадии пластинки соединяются в цепочки, после чего они собираются в более крупные блоки. Мощность батареи зависит от количества ячеек. При их последовательном соединении возникает определенное значение напряжения, а при параллельном – сила тока. Для защиты от внешних воздействий ячейки покрываются пленкой, переносятся на стекло и устанавливаются в рамку прямоугольной формы. В конце сборки проверяются вольтамперные характеристики, после чего панель готова к эксплуатации.

Солнечные панели из монокристаллов

Характерной особенностью монокристаллических солнечных панелей является однородный цвет фотоэлементов, создающий точно такой же внешний вид у всей конструкции. Цветовая гамма определяется размерами зерен выращенного монокристалла. Выращивание кремниевых слитков осуществляется из природного кремния, после чего кристаллическая решетка материала приобретает необходимую структуру и частоту.

Монокристаллические солнечные батареи считаются наиболее эффективными и применяются на различных объектах. Они имеют свои плюсы и минусы, которые следует учитывать при выборе той или иной конструкции.

Среди положительных качеств можно отметить следующие:

  • Высокая эффективность изделий, благодаря высокому качеству структуры материала. Это позволяет довести коэффициент полезного действия до 17-22%.
  • Возможность уменьшения размеров солнечных панелей без потерь мощности по сравнению с другими типами батарей с такими же техническими характеристиками. Таким образом, чтобы получить электроэнергию в количестве 10 ватт, потребуется монокремниевая панель с меньшими размерами.
  • Максимальный срок эксплуатации, превышающий этот показатель у других изделий. При условии соблюдения всех правил и норм, батарея прослужит не менее 25 лет.

Серьезным недостатком этих конструкций является их высокая стоимость. Для многих пользователей данный фактор имеет решающее значение при выборе изделия, несмотря на все положительные качества. Поэтому нередко выбираются более дешевые поликристаллические панели, хотя и не такие эффективные.

При незначительной загрязненности или недостаточном освещении, когда отдельные элементы перестают участвовать в процессе, наступает резкая потеря производительности всей системы. В связи с этим рекомендуется использовать инверторы, способные выровнять параметры цепи и ликвидировать последствия неравномерного освещения.

Особенности поликристаллических модулей

Солнечные панели с поликристаллическими кремниевыми элементами используются уже много лет. Их производство заметно отличается и обходится без дорогостоящих сложных процессов с применением высоких технологий. В результате, кристаллическая решетка получается не упорядоченной, а расположенной хаотично.

Исходный материал подвергается плавке, после чего он заливается в формы. После остывания заготовки разрезаются на стандартные пластинки квадратной формы. Готовые модули получаются недорогими и простыми в эксплуатации.

Многие останавливают свой выбор именно на этих изделиях, поскольку использование такого оборудования позволяет сэкономить значительные денежные средства. В результате низкой материалоемкости производства значительно упрощается дальнейшая утилизация отходов этих изделий. Бракованной продукции на выходе получается меньше.

Однако, у поликристаллических солнечных панелей имеется ряд недостатков, которых намного больше, чем у конструкций с монокристаллами. При выборе конкретного изделия рекомендуется учитывать следующие факторы:

  • Поликристаллические солнечные батареи обладают более низкой устойчивостью к высоким температурам. Под их влиянием наступает снижение производительности панели, уменьшение срока эксплуатации. Это происходит не быстро, поэтому данный фактор не оказывает существенного влияния на общую функциональность конструкции.
  • Коэффициент полезного действия находится в пределах 14-18%, то есть, он ниже, чем у монокристаллических панелей.
  • Для получения мощности, аналогичной монокристаллам, потребуется большая площадь фотоэлементов. То есть, пространство используется менее эффективно.
  • Внешний вид конструкции имеет ярко выраженную неоднородную структуру. Этот недостаток устраняется специальными просветляющими покрытиями, устанавливаемыми сверху.

Таким образом, рассмотрев преимущества, недостатки и отличия различных типов солнечных панелей, можно сделать вывод, что для всей системы не существует принципиальной разницы, какие из них будут использоваться. Значение основных параметров – мощности и напряжения, не зависят от конструктивных особенностей той или иной батареи.

Определяющим фактором является производительность конкретной панели, ее параметры и технические характеристики. Остается лишь сделать привязку к стоимости и окончательно выбрать наиболее подходящий вариант.

Поликристаллические и монокристаллические солнечные батареи их отличия

Солнечные батареи – технология будущего

На протяжении длительного времени люди пытались понять, как можно использовать энергию Солнца себе во благо. Многие ученые, в том числе и известный физик Альберт Эйнштейн, занимались изучением этого вопроса.

История создания

В средине XIX века был открыт фотоэлектрический эффект. Это процесс преобразования солнечной энергии в электрический ток. Эта находка стала настоящим прорывом, повлекшим за собой создание солнечных батарей. Это произошло в XX столетии. Первые солнечные панели были разработаны на основе кремния и до сих пор данный материал, является основой для производства лучших фотомодулей.

Разновидности

Современные солнечные батареи делятся на кристаллические с использованием моно и поли кристаллов кремния и тонкопленочные, изготавливаемые из: диселенида индия и меди, теллурида кадмия, а также аморфного кремния. Первый вид более популярный и востребованный среди потребителей. Говоря о его разновидностях, нужно сказать, что на сегодняшний день существуют поликристаллические и монокристаллические солнечные батареи.

Основные отличия между этими видами следующие:

Цена

Монокристаллические солнечные батареи стоят дороже, чем поликристаллические, для солнечных электростанций с одинаковыми характеристиками.

Эффективность

Поликристаллические солнечные панели имеют КПД 15,5-18%, а у монокристаллических этот показатель составляет от 18,5-23,5%. Также следует отметить, что КПД экспериментальных аналогов монопанелей составляет около 43,6%. Кроме того, как мы уже упоминали существуют тонкопленочные элементы из аморфного кремния, но их коэффициент полезного действия равен всего 9-11%.

При этом производительность монокристаллических панелей на 15-20% выше, чем у поликристаллических образцов. Если взять период в 10 лет, монокристаллические солнечные панели произведут на 35-40% больше электроэнергии за счёт более низкого уровня деградации кремния, а также более высоких характеристик работы при низком уровне солнечной инсоляции.

Размер

Поскольку монокристаллические панели более эффективны, их физический размер панелей солнечных батарей меньше, чем у поликристаллических аналогов такой же мощности. Если вы ограничены по площадям и хотите получить максимально возможный КПД, лучше использовать монокристаллические панели.

Внешний вид

С точки зрения внешнего вида монокристаллические панели имеют приятный однородный цвет и имеют более округлую форму. Поликристаллические клетки размещаются квадратами и имеют несоответствия в цветовой гамме, подобной граниту.

Срок службы

Несмотря на то, что монокристаллическая батарея может прослужить до 50 лет, большинство производителей солнечных батарей заявляют гарантийный срок на линейную производительность до 25 лет. Это в свою очередь уравнивает в глазах потребителей моно и поли кристаллические панели.

Особенности производства

Наверняка многие знают, что приставка «моно» означает – один, а «поли» – множество, то есть более чем один. Разница между поликристаллическими и монокристаллическими солнечными панелями начинается ещё в процессе производства.

Монокристалл солнечные батареи изготавливаются из чистого кремния. Для этого используется кварцевый песок. Монокристаллический кремний создается путем медленного вытягивания монокристаллического затравочного кристалла кремния из расплавленного монокристаллического кремния с использованием метода Чохральского для образования слитка кремния. Затравочный кристалл представляет собой небольшой кусочек кремния, который используется в качестве основы для расплавленных молекул. Имея основу, расплавленные молекулы способны быстрее соединяться друг с другом, образуя слиток. Пока затравочный кристалл извлекается, он медленно вращается, и температура постепенно опускается. Это помогает сформировать цилиндрическую форму, пока она не будет иметь необходимый диаметр. После затвердевания кристалл разрезают на тонкие пластины. Поскольку такой процесс достаточно трудоемкий и затратный, на такие панели устанавливается более высокая цена.

Поликристаллические солнечные батареи производятся по менее дорогостоящей технологии и более простым способом. Вместо того, чтобы проходить через медленный и более дорогой процесс создания монокристалла, расплавленный кремний помещается в отливку и охлаждается затравочным кристаллом. Поликристалл имеет неоднородную структуру, поскольку после осаждения молекулы застывают в свободной ориентации.

Предпочтения потребителей

Сегодня каждый человек имеет возможность приобрести поликристаллические и монокристаллические солнечные батареи. Основные отличия, как уже было сказано, состоят в цене продукции и их продуктивности. Поскольку поликристалл панели более доступные, их используют чаще. По статистике, 90% частных солнечных электростанций в мире применяют именно поликристаллические солнечные батареи. Выбирая нужный товар, люди также ориентируются на такое обстоятельство как количество солнечных дней в своей местности. Чем их меньше, тем выгоднее приобретать батареи с монокристаллическим преобразователем.

Поскольку солнечные батареи пользуются спросом у населения, многие компании занимаются поставками этого товара. Выбирая необходимые изделия, следует ознакомиться с ассортиментом многолетних лидеров в этой отрасли. Ведущие производители поликристаллических и монокристаллических солнечных батарей: Jinko Solar, Trina Solar, Yingli Solar, Canadian Solar, Ja Solar, Hanwha Q CELLS. Эти предприятия являются самыми крупными создателями и поставщиками солнечных панелей в мире. Среди их продукции вы обязательно подберете тот, который удовлетворит все ваши требования.

ТМ Природная Энергия

Максим Брозинский
(044) 232 38 85
(067) 401 83 65
[email protected]

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *