РазноеПанели солнечные производство – Производство солнечных панелей — как открыть бизнес нового поколения: технология, необходимое оборудование и станок для завода

Панели солнечные производство – Производство солнечных панелей — как открыть бизнес нового поколения: технология, необходимое оборудование и станок для завода

Содержание

Такое ли «зеленое» производство электроэнергии солнечными модулями?: engineering_ru — LiveJournal


SF:Болтовня об экологической опасности или безопасности производства солнечных панелей на уровне «слышал» и «мне сказал эксперт» достала поэтому с радостью прочитал сие:

HRImaginechinaCorbis4230427566-1408396569396
Photo: Imaginechina/Corbis.
Контроль качества на китайском предприятии.

Производство электроэнергии солнечными модулями совсем не такое «зеленое» как многие думают.

Источник.

Солнечные панели мерцающие на солнце являются иконой для всех «зеленых». Но является ли генерация электроэнергии с помощью солнечных батарей действительно более щадящей для окружающей среды, чем сжигание ископаемого топлива? Несколько инцидентов загрязнения окружающей среды связаны с производством этих сияющих символов «зеленых». И оказывается, что время, необходимое для компенсации энергии и парниковых газов, затрачиваемой и выбрасываемых в производстве панелей существенно варьируется в зависимости от технологии и географии.

(SF: в статье (см. ссылку) указывается, что минимальная эмиссия у CdTe и главное, что по меньшей мере 89% вредных выбросов могут быть сокращены при производстве электроэнергии применением фотовольтаики.)

Это была плохая новость. Хорошей новостью является то, что промышленность может легко устранить многие из побочных эффектов, которые существуют. Это возможно отчасти потому, что, начиная с 2008 года, производство фотовольтаики переехало из Европы, Японии и Соединенных Штатов Америки в Китай, Малайзию, на Филиппины и Тайвань. Сегодня почти половина солнечных модулей в мире производится в Китае. В результате, хотя в целом послужной список в отрасли хорош, те страны которые сегодня производят основную массу, как правило, меньше всего заботятся о защите окружающей среды и рабочих на производстве.

Чтобы понять в чем именно проблемы, и как они могут быть решены, необходимо знать кое-что о том, как фотоэлектрические панели изготовлены. В то время как солнечная энергия может быть получена с помощью различных технологий, подавляющее большинство солнечных батарей сегодня берут начало с получения кварца, как наиболее распространенной формы кремнезема (диоксида кремния), которая перерабатывается в кремний. На этом этапе возникает первая проблема: кварц добывается из шахт, где шахтеры рискуют приобрести силикоз легких.

В начале переработки кварц превращается в металлургический кремний, вещество используемое в основном для упрочнения стали и других металлов. Это происходит в гигантских печах, и держать их горячими требует большого количества энергии (подробности — ниже). К счастью, на этом этапе выбросы, в основном диоксида углерода и диоксида серы, не могу навредить людям, работающим на таких заводах или находящимся вблизи предприятий.

Следующим шагом является переработка металлургического кремния в более чистый – поликремний. В ходе процесса производится кремниевый тетрахлорид — очень токсичное соединение кремния. Процесс очистки включает реакцию соляной кислоты с металлургическим кремнием, чтобы получить трихлорсилан. Трихлорсилан затем реагирует с водородом, получая поликремний вместе с жидким кремниевым тетрахлоридом — три или четыре тонны тетрахлорида на каждую тонну поликремния.

Большинство производителей перерабатывают эти отходы, чтобы произвести больше поликремния. Получение кремния из тетрахлорида кремния требуется меньше энергии, чем его получение из сырого диоксида кремния, таким образом утилизация этих отходов помогает сэкономить деньги производителеям. Но такое оборудование может стоить десятки миллионов долларов. Таким образом, побочный продукт часто просто выбрасывается. При взаимодействии с водой, а это трудно предотвратить, в окружающей среде оказываются: соляная кислата и вредные испарения.

Когда промышленность фотовольтаики была меньше, производители солнечных элементов приобретали кремний у производителей микроэлектроники, которые отбраковывали этот кремний в связи с недостаточной чистотой. Но бум в солнечной энергетике потребовал болше кремния, и большое количество производства поликремния были построено в Китае. Немногие страны в то время имели строгое законодательство, требуещего хранения и утилизации тетрахлорида кремния, и Китай не стал исключением, как это обнаружили репортеры Washington Post.

Расследование газеты, опубликованное в марте 2008 года, о китайском производителе поликремния, принадлежащий High-Technology Co., и расположенный недалеко от реки Хуанхэ в провинции Хэнань. Этот объект поставляет поликремний в Suntech Power Holdings, крупнейшему в мире производителю солнечных элементов, а также ряда других громким компаниям в этом бизнесе.

После публикации в Washington Post, цены на акции компаний упали. Инвесторы опасались, что откровения подорвут доверие к отрасли. В конце концов, защита окружающей среды это то, что привлекает привлекает поддержку общественности и следовательно поощряется например такми документами как Residential Renewable Energy Tax Credit в Соединенных Штатах. Те, кто приобретает для дома солнечные системы могут сократить свои налоговые отчисления на 30 процентов до 2016 года.

Чтобы защитить репутацию отрасли, производители «солнечных» панелей начали «давить» в области природоохранной деятельности на поставщиков поликристаллического кремния. Следовательно, в настоящее время ситуация улучшается. В 2011 Китай устанавил стандарты требующие, чтобы компании перерабатывать по меньшей мере 98,5 процента выбросов кремниевого тетрахлорида. Новые правила легко осуществить если заводы установят соответствующее оборудование. Тем не менее, нам еще предстоит увидеть, насколько хорошо проводится в жизнь эти стандарты.

Проблема может полностью исчезнуть в будущем. Так, исследователи из Национальной лаборатории возобновляемых источников энергии (NREL) в Голден, штат Колорадо ищут способы, чтобы получать поликремний при реакции с этанолом вместо применения химических веществ на основе хлора, что позволяет избежать создания кремния тетрахлорида в целом.

Борьба за превращение фотовольтаики в истинно «зеленую» отрасль на этом не заканчивается. Производители солнечных элементов формируют куски поликристаллического кремния для формирования квадратообразных слитков, а затем режут слитки на пластины. Затем они легируют кремниевые пластины, создавая необходимую архитектуру солнечной батареи.

Все эти шаги требуют участия опасных химических веществ. Например, производители используют HF (фтористоводородная или плавиковая кислота) для очистки пластин, удаления дефектов, полировки и текстуризации. Плавиковая кислота прекрасно подходит для всех этих вещей, но однако это весьма агрессивная жидкость которая при контакте с человеческим телом разрушает ткани и декальцифицирует кости. Работа с плавиковой кислотой требует крайней осторожности, и она должна быть утилизированы должным образом.

Но несчастные случаи случаются, и, чаще всего, в местах, которые имеют ограниченный опыт изготовления полупроводников или имеют не достаточно жесткие стандарты связанные с охраной окружающей среды. В августе 2011 года завод в китайской провинции Чжэцзян, принадлежащей Jinko Solar Holding Co., одиной из крупнейших компаний в мире, сбросил плавиковую кислоту в находящуюся рядом реку, погибла рыба. Фермеры, обрабатывающие соседние земли, использовали загрязненную воду — случайно погибли десятки свиней.

При исследовании мертвых животных, китайские власти обнаружили, что уровни фтористоводородной кислоты в реке в 10 раз превышали допустимый предел, и вероятно эти значения получены уже после того как основная масса фтористоводородной кислоты ушла вниз по течению. Сотни местных жителей, в бешенстве из-за инцидента, штурмовали и временно заняли производственные мощности. Опять же, инвесторы отреагировали негативно: когда СМИ сообщили о происшествии, акции Jinko упали более чем на 40 процентов.

Процессы на основе HF — это угроза для окружающей среды. Исследователи Rohm & Haas Electronic Materials, дочерняя компания Dow Chemical, предложили заменитель фтористоводородной кислоты, используемой в производстве солнечных элементов. Хорошим кандидатом является гидроксид натрия (NaOH). Хотя NaOH сам довольно едкий химикат, он легче при обработке и утилизации и персонал поджержен гораздо более низкому риску. Кроме того, сточные воды с NaOH гораздо легче в очистке.

Хотя более 90 процентов «солнечных» панелей, сделанных сегодня производятся из поликремния, давно существует новый подход: тонкопленочная технология солнечных элементов. Доля таких модулей, скорее всего, будет расти на рынке в течение следующего десятилетия, потому что они могут быть столь же эффективным, как на основе кремния, но дешевле в производстве, так как они потребляют меньше энергии и материалов.

Создатели тонкопленочных модулей осаждают слои полупроводникового материала непосредственно на подложку из стекла, металла или даже пластика вместо нарезки пластин из слитка кремния. Это означает меньше отходов и полностью исключает такие операции как плавка и нарезка кремния которые используются, чтобы сделать традиционные солнечные модули. В сущности, кусок стекла поступает на «вход» такого завода и полностью функционирующий модуль «выходит».

Переход к тонкопленочным солнечным элементам устраняет многие риски связанные с традиционным производством, потому что нет необходимости в проблемных — химических веществах: нет плавиковой кислоты и нет соляной кислоты. Но это вовсе не означает, что вы можете автоматически маркировать тонкопленочные солнечные батареи, как «зеленые».

Сегодня доминирующие технологии в этой области -это на основе теллуридакадмия CdTe и более поздний конкурент на основе полупроводника из меди, индия иселенида галлия (CIGS). В первом случае один полупроводниковый слой изготовлен из теллурида кадмия, а второй из сульфида кадмия. В последнем случае основной полупроводниковый материал CIGS, но второй слой, как правило, это сульфид кадмия. Таким образом, в каждой из этих технологий используются соединения, содержащие тяжелый металл — кадмий, который является одновременно канцерогенным и может привести к наследуемым мутациям.


У таких производителей как First Solar есть большой опыт защиты работников от воздействия кадмия в процессе производства. Но есть информация о риске для работников, занятых кадмием на ранних стадиях обработки, в частности на рудниках, откуда поступает бОльшая часть кадмия. Воздействие кадмия после утилизации солнечных панелей также вызывает беспокойство. Большая часть теллурида кадмия которую надо обезвредить из-за поломок или дефектов изготовления, утилизируются в безопасных, контролируемых условиях. Фирма активно обеспечивает сбор и переработку в Европе старых и сломаных панелей. Отдельные компании также разработали схожие программы утилизации. Но многое еще предстоит сделать — не каждый потребитель имеет доступ к бесплатной программе по возврату, да и многие потребители даже не знают о том, что утилизация таких панелей дело не простое.

the-solar-scorecard-graphf1b-1408461198302

Солнечные модули производятся благодаря энергии, которая в свою очередь ведет к выбросам СО2. Т.к. китайская энергетика больше полагается на производство энергии за счет угля  выбросы СО2 гораздо выше чем в Европе.

Лучший способ избежать риска отравления для работников и окружающей среды кадмием это минимизировать количество или не использовать кадмий вообще. Уже два основных CIGS производителей-Avancis и Solar Frontier заявили об использовании сульфида цинка, намного менее токсичного материала, вместо сульфида кадмия. Исследователи из University of Bristol и University of Bath, в Англии, Калифорнийский университет в Беркли и многие другие научные и государственные лаборатории пытаются разработать тонкопленочных элементы которые не требуют токсичных веществ, таких как кадмий или редких элементов, таких как теллур. First Solar тем временем неуклонно уменьшает количество кадмия, используемого в его солнечных батареях.

Но дело не только в токсичности. Создание солнечных батарей требует много энергии. К счастью, продукт вырабатывает электроэнергию которой он оплачивает обратно первоначальные инвестиции энергии. Большинство из модулей «расчитываются» уже после двух лет эксплуатации, а некоторые компании сообщают об «энергоокупаемости» (SF: EROI) в шесть месяцев.

Аналитики часто сравнивают затраты энергии, необходимой, чтобы произвести солнечную панель и количество углерода, образующихся в производстве этой энергии — величина которая может изменяться в широких пределах. Чтобы сделать это, нужно представить энергию как значение в виде килограммов выбросов CO2 полученого при генерации киловатт-часа. Страна, которая в значительной степени зависят от угля и имеет наибольший показатель СО2/кВтч- это Китай. В Китае этот показатель почти в два раза выше чем в США. Это согласуется с результатами исследователей в штате Иллинойс Аргоннской национальной лаборатории и Северо-западного университета. В докладе, опубликованном в июне этого года, они обнаружили, что СО2/кВтч фотоэлектрических панелей, сделанных в Китае вдвое выше, чем те, которые производятся в Европе.

Если фотоэлектрические панели, изготовленные в Китае были бы установлены в Китае, то из-за высокого СО2/кВтч, эффект компенсации выброса СО2 производством энергии солнечной панелью и энергоокупаемость совпадают по времени. Но это не то, что происходило в последнее время. Производства в основном расположены в Китае, а панели часто устанавливают в Европе или в Соединенных Штатах. В этом случае для компенсации высокого китайского СО2/кВтч требуется в два раза больше времени, чтобы компенсировать выбросы парниковых газов, чем для энергоокупаемости.

the-solar-scorecard-graphf2-620-1414762803876
Source: Silicon Valley Toxics Coalition
Silicon Valley Toxics Coalition оценила производителей солнечных панелей в области защиты персонала и защиты окружающей среды.

Конечно, если вы производите панели из энергии с низким СО2/кВтч (например, завод получающий энергию от солнечных панелей) и установаете их в области с высоким СО2/кВтч, время «окупаемости» парниковых газов будет меньше, чем «энергоокупаемость». Так что, возможно, когда-нибудь, питание таких заводов «зеленой» энергией снимет обеспокоенность выбросами СО2.

Расход воды является еще одним важным вопросом. Производители используют много воды: в том числе для охлаждения, как химический реагент и контроля загрязненности атмосферного воздуха (фильтруют). Самый большой расход воды приходится на очистку оборудования во время установки и в ходе производства. Для производство на 230- 550 МВт в год может потребоваться до 1,5 млрд литров воды для борьбы с пылью в процессе строительства и еще 26 миллионов литров в год для мытья панелей. Тем не менее, количество воды, используемой для получения, установки и эксплуатации фотоэлектрических панелей значительно ниже, чем требуется для охлаждения обычных электростанций и АЭС.

Выбор инвесторов и потребителей может, в принципе, иметь большое влияние на производителей солнечных модулей. Но чаще всего трудно сказать, насколько эти компании отличаются в экологичности. Солнечная энергетика не имеет формального экологического стандарта, как в случае этикеток на бытовую технику и электронику, которые помогают покупателям определить энергоэффективность продуктов. И большинство людей не покупают солнечные модули сами. Они делают это через фирмы сторонних инсталляторов. Таким образом, даже если бы схема таких наклеек была, многое будет зависеть от готовности монтажников.

В настоящее время, потребители могут заставить производителей улучшить их экологичность и безопасность, требуя от монтажников больше информации о модулях, которые они используют. Это, в свою очередь, заставит монтажников надавить на производителей для получения дополнительной информации.

Исследователи из National Photovoltaics Environmental Research Center в Брукхейвенской национальной лаборатории в Аптон, Нью-Йорк, уже давно публикации исследования о возможных экологических проблемах при производстве фотовольтаики. Недавно, официальные рейтинги экологической эффективности для солнечной энергетики начали появляться.

Организации, как Center for International Earth Science Information Network, пытаются установить некоторые средства мониторинга окружающей среды, здоровья и техники безопасности у производителей в развивающихся странах. Эта группа, в которую входят ученые из Йельского и Колумбийского, предлагает такой параметр как китайский индекс экологической деятельности, который будет работать на провинциальном уровне, чтобы помочь Китаю отслеживать прогресс в достижении целей экологической политики.

Между тем, “Solar Energy Industries Association» и национальная торговая организация США предложили новые экологические «рамки» для промышленности в документе под названием «Solar Industry Environment & Social Responsibility Commitment», направленного на предотвращение профессиональных травм и заболеваний, предотвращение загрязнения, а также сокращения природных ресурсов используемых в производстве. Документ призывает компании требовать от поставщиков представить информацию о безопасности производства и о выбросах парниковых газов.

Кроме того, Silicon Valley Toxics Coalition, которая оценивает экологическую эффективность компании в области электроники, исследовала и оценила экологичность производства работающие в Китае, Германии, Малайзии, на Филиппинах и в Соединенных Штатах. Участие является добровольным и до сих пор включает в себя такие крупные производители, как First Solar, SolarWorld, SunPower, Suntech, Trina, и Yingli; Китайские производители Trina и Yingli последовательно входит в число трех ведущих мировых наиболее экологически ответственных компаний. Sharp, SolarWorld и SunPower тщательно отслеживают количество выбрасываемых парниковых газов, и химических веществ, используемых в производстве своих панелей в течение нескольких лет.

Такие инициативы не преждевременн. Многие люди сегодня видят солнечную энергетику как панацею от наших энергетических бед, учитывая то, какой грязной предстает сегодня традиционная энергетика. Но это не значит, что мы должны закрывать глаза на темную сторону этой новой технологии. В самом деле, мы должны рассматривать нововведения очень тщательно. И только, с постоянными усилиями со стороны потребителей, производителей, исследователей в один прекрасный день технология будет по-настоящему, а не символически, зеленой.

Статья оппубликована 12.11.2014 в Solar’s Green Dilemma.

Автор D. Mulvaney.

Солнечная батарея — Википедия

Солнечная батарея — объединение фотоэлектрических преобразователей (фотоэлементов) — полупроводниковых устройств, прямо преобразующих солнечную энергию в постоянный электрический ток, в отличие от солнечных коллекторов, производящих нагрев материала-теплоносителя.

Различные устройства, позволяющие преобразовывать солнечное излучение в тепловую и электрическую энергию, являются объектом исследования гелиоэнергетики (от гелиос греч. Ήλιος, Helios — Солнце). Производство фотоэлектрических элементов и солнечных коллекторов развивается в разных направлениях. Солнечные батареи бывают различного размера: от встраиваемых в микрокалькуляторы до занимающих крыши автомобилей и зданий.

В 1842 году Александр Эдмон Беккерель открыл эффект преобразования света в электричество. Чарльз Фриттс (англ. Charles Fritts) начал использовать селен для превращения света в электричество. Первые прототипы солнечных батарей были созданы итальянским фотохимиком Джакомо Луиджи Чамичаном.

25 марта 1948 года, специалисты компании Bell Laboratories заявили о создании первых солнечных батарей на основе кремния для получения электрического тока. Это открытие было произведено тремя сотрудниками компании — Кельвином Соулзером Фуллером (Calvin Souther Fuller), Дэрилом Чапин (Daryl Chapin) и Геральдом Пирсоном (Gerald Pearson). Уже через 4 года, 17 марта 1958 года, в США был запущен спутник с использованием солнечных батарей — «Авангард-1». 15 мая 1958 года в СССР также был запущен спутник с использованием солнечных батарей — «Спутник-3».

Портативная электроника[править | править код]

Зарядное устройство

Для обеспечения электричеством и/или подзарядки аккумуляторов различной бытовой электроники — калькуляторов, плееров, фонариков и т. п.

Электромобили[править | править код]

На крыше автомобиля Prius, 2008

Для подзарядки электромобилей.

Авиация[править | править код]

Одним из проектов по созданию самолёта, использующего исключительно энергию солнца, является Solar Impulse.

Энергообеспечение зданий[править | править код]

Солнечная батарея на крыше дома

Солнечные батареи крупного размера, как и солнечные коллекторы, широко используются в тропических и субтропических регионах с большим количеством солнечных дней. Особенно популярны в странах Средиземноморья, где их помещают на крышах домов.

Новые дома Испании с марта 2007 года оборудованы солнечными водонагревателями, чтобы самостоятельно обеспечивать от 30 % до 70 % потребностей в горячей воде, в зависимости от места расположения дома и ожидаемого потребления воды. Нежилые здания (торговые центры, госпитали и т. д.) должны иметь фотоэлектрическое оборудование[1].

В настоящее время переход на солнечные батареи вызывает много критики среди людей. Это обусловлено повышением цен на электроэнергию, загромождением природного ландшафта. Противники перехода на солнечные батареи критикуют такой переход, так как владельцы домов и земельных участков, на которых установлены солнечные батареи и ветровые электростанции, получают субсидии от государства, а обычные квартиросъемщики — нет. В связи с этим Федеральное министерство экономики Германии разработало законопроект который позволит в ближайшем будущем ввести льготы для арендаторов, проживающих в домах, которые обеспечиваются энергией, поступающей от фотовольтаических установок или блочных тепловых электростанций. Наряду с выплатой субсидий владельцам домов, которые используют альтернативные источники энергии, планируется выплачивать дотации проживающим в этих домах квартиросъемщикам.[2]

Энергообеспечение населённых пунктов[править | править код]

Солнечно-ветровая энергоустановка

Дорожное покрытие[править | править код]

Солнечные батареи как дорожное покрытие:

  • В 2014 году в Нидерландах открылась первая в мире велодорожка из солнечных батарей.
  • В 2016 году министр экологии и энергетики Франции Сеголен Руаяль заявила о планах построить 1000 км автодорог со встроенными ударо- и термостойкими солнечными панелями. Предполагается, что 1 км такой дороги сможет обеспечивать электроэнергетические потребности 5000 людей (без учёта отопления)[3][неавторитетный источник?] .
  • В феврале 2017 года в нормандской деревне Tourouvre-au-Perche французским правительством была открыта дорога из солнечных батарей. Километровый участок дороги оборудован 2880 солнечными панелями. Такое дорожное покрытие обеспечит электроэнергией уличные фонари деревни. Панели каждый год будут вырабатывать 280 мегаватт час электроэнергии. Строительство отрезка дороги обошлось в 5 миллионов евро.[4]
  • Также используется для питания автономных светофоров на дорогах[5]

Использование в космосе[править | править код]

Солнечная батарея на МКС

Солнечные батареи — один из основных способов получения электрической энергии на космических аппаратах: они работают долгое время без расхода каких-либо материалов, и в то же время являются экологически безопасными, в отличие от ядерных и радиоизотопных источников энергии.

Однако при полётах на большом удалении от Солнца (за орбитой Марса) их использование становится проблематичным, так как поток солнечной энергии обратно пропорционален квадрату расстояния от Солнца. При полётах же к Венере и Меркурию, напротив, мощность солнечных батарей значительно возрастает (в районе Венеры в 2 раза, в районе Меркурия в 6 раз).

Использование в медицине[править | править код]

Южнокорейские ученые разработали подкожную солнечную батарею. Миниатюрный источник энергии может быть вживлен под кожу человека с целью бесперебойного обеспечения работы приборов, имплантированных в тело, например, кардиостимулятора. Такая батарея в 15 раз тоньше волоса и может заряжаться, если даже на кожу наносится солнцезащитное средство[6].

Эффективность фотоэлементов и модулей[править | править код]

Мощность потока солнечного излучения на входе в атмосферу Земли (AM0), составляет около 1366 ватт[7] на квадратный метр (см. также AM1, AM1.5, AM1.5G, AM1.5D[8][9]). В то же время, удельная мощность солнечного излучения в Европе в очень облачную погоду даже днём может[10] быть менее 100 Вт/м²[источник не указан 1567 дней]. С помощью распространённых промышленно производимых солнечных батарей можно преобразовать эту энергию в электричество с эффективностью 9—24 %[источник не указан 1567 дней]. При этом цена батареи составит около 1—3 долларов США за Ватт номинальной мощности. При промышленной генерации электричества с помощью фотоэлементов цена за кВт·ч составит 0,25 долл. По мнению Европейской Ассоциации Фотовольтаики (EPIA), к 2020 году стоимость электроэнергии, вырабатываемой «солнечными» системами, снизится до уровня менее 0,10 € за кВт·ч для промышленных установок и менее 0,15 € за кВт·ч для установок в жилых зданиях[11][неавторитетный источник?].

Фотоэлементы и модули делятся в зависимости от типа и бывают: монокристалические, поликристалические, аморфные (гибкие, пленочные).[12]

В 2009 году компания Spectrolab (дочерняя фирма Boeing) продемонстрировала солнечный элемент с эффективностью 41,6 %[13]. В январе 2011 года ожидалось поступление на рынок солнечных элементов этой фирмы с эффективностью 39 %[14]. В 2011 году калифорнийская компания Solar Junction добилась КПД фотоэлемента размером 5,5×5,5 мм в 43,5 %, что на 1,2 % превысило предыдущий рекорд[15].

В 2012 году компания Morgan Solar создала систему Sun Simba из полиметилметакрилата (оргстекла), германия и арсенида галлия, объединив концентратор с панелью, на которой установлен фотоэлемент. КПД системы при неподвижном положении панели составил 26—30 % (в зависимости от времени года и угла, под которым находится Солнце), в два раза превысив практический КПД фотоэлементов на основе кристаллического кремния[16].

В 2013 году компания Sharp создала трёхслойный фотоэлемент размером 4×4 мм на индиево-галлий-арсенидной основе с КПД 44,4 %[17], а группа специалистов из Института систем солнечной энергии общества Фраунгофера, компаний Soitec, CEA-Leti и Берлинского центра имени Гельмгольца создали использующий линзы Френеля фотоэлемент с КПД 44,7 %, превзойдя своё собственное достижение в 43,6 % [18][неавторитетный источник?]. В 2014 году Институт солнечных энергосистем Фраунгофер создали солнечные батареи, в которых благодаря фокусировке линзой света на очень маленьком фотоэлементе КПД составил 46 %[19][неавторитетный источник?][20].

В 2014 году испанские учёные разработали фотоэлектрический элемент из кремния, способный преобразовывать в электричество инфракрасное излучение Солнца[21].

Перспективным направлением является создание фотоэлементов на основе наноантенн, работающих на непосредственном выпрямлении токов, наводимых в антенне малых размеров (порядка 200—300 нм) светом (то есть электромагнитным излучением частоты порядка 500 ТГц). Наноантенны не требуют дорогого сырья для производства и имеют потенциальный КПД до 85 %[22][23].

Также, в 2018 году, с открытием флексо-фотовольтаического эффекта, обнаружена возможность увеличения КПД фотоэлементов[24]., а также за счёт продления жизни горячих носителей (электронов) теоретический предел их эффективности поднялся с 34 сразу до 66 процентов[25].

В 2019 году российские учёные из Сколковского института науки и технологий (Сколтеха), Института неорганической химии им. А.В. Николаева Сибирского отделения Российской академии наук (СО РАН) и Института проблем химической физики РАН получили принципиально новый полупроводниковый материал для солнечных батарей, лишённый большинства недостатков материалов, применяемых сегодня[26]. Группа российских исследователей опубликовала в журнале Journal of Materials Chemistry A[en][27] результаты работы по применению для солнечных батарей нового разработанного ими полупроводникового материала — комплексного полимерного йодида висмута ({[Bi3I10]} и {[BiI4]}), структурно подобного минералу перовкситу (природному титанату кальция), который показал рекордный коэффициент преобразования света в электроэнергию.[27][28] Та же группа учёных создала второй аналогичный полупроводник на основе комплексного бромида сурьмы с перовкситоподобной структурой.[29][30]

Максимальные значения эффективности фотоэлементов и модулей,
достигнутые в лабораторных условиях[31][неавторитетный источник?]
Тип Коэффициент фотоэлектрического преобразования, %
Кремниевые 24,7
Si (кристаллический)
Si (поликристаллический)
Si (тонкопленочная передача)
Si (тонкопленочный субмодуль) 10,4
III-V
GaAs (кристаллический) 25,1
GaAs (тонкопленочный) 24,5
GaAs (поликристаллический) 18,2
InP (кристаллический) 21,9
Тонкие плёнки халькогенидов
CIGS (фотоэлемент) 19,9
CIGS (субмодуль) 16,6
CdTe (фотоэлемент) 16,5
Аморфный/Нанокристаллический кремний
Si (аморфный) 9,5
Si (нанокристаллический) 10,1
Фотохимические
На базе органических красителей 10,4
На базе органических красителей (субмодуль) 7,9
Органические
Органический полимер 5,15
Многослойные
GaInP/GaAs/Ge 32,0
GaInP/GaAs 30,3
GaAs/CIS (тонкопленочный) 25,8
a-Si/mc-Si (тонкий субмодуль) 11,7

Факторы, влияющие на эффективность фотоэлементов[править | править код]

Особенности строения фотоэлементов вызывают снижение производительности панелей с ростом температуры.

Частичное затемнение панели вызывает падение выходного напряжения за счёт потерь в неосвещённом элементе, который начинает выступать в роли паразитной нагрузки. От данного недостатка можно избавиться путём установки байпаса на каждый фотоэлемент панели. В облачную погоду при отсутствии прямых солнечных лучей крайне неэффективными становятся панели, в которых используются линзы для концентрирования излучения, так как исчезает эффект линзы.

Из рабочей характеристики фотоэлектрической панели видно, что для достижения наибольшей эффективности требуется правильный подбор сопротивления нагрузки. Для этого фотоэлектрические панели не подключают напрямую к нагрузке, а используют контроллер управления фотоэлектрическими системами, обеспечивающий оптимальный режим работы панелей.

Недостатки солнечной электроэнергетики[править | править код]

  • Необходимость использования больших площадей;
  • Солнечная электростанция не работает ночью и недостаточно эффективно работает в вечерних сумерках, в то время как пик электропотребления приходится именно на вечерние часы;
  • Несмотря на экологическую чистоту получаемой энергии, сами фотоэлементы содержат ядовитые вещества, например, свинец, кадмий, галлий, мышьяк и т. д.[32]

Cолнечные электростанции подвергаются критике из-за высоких издержек, а также низкой стабильности комплексных галогенидов свинца и токсичности этих соединений. В настоящее время ведутся активные разработки бессвинцовых полупроводников для солнечных батарей, например на основе висмута[27] и сурьмы.

Из-за своей низкой эффективности, которая в лучшем случае достигает 20 процентов, солнечные батареи сильно нагреваются. Остальные 80 процентов энергии солнечного света нагревают солнечные батареи до средней температуры около 55 °C. С увеличением температуры фотогальванического элемента на 1°, его эффективность падает на 0,5 %. Эта зависимость нелинейна и повышение температуры элемента на 10° приводит к снижению эффективности почти в два раза. Активные элементы систем охлаждения (вентиляторы или насосы) перекачивающие хладагент, потребляют значительное количество энергии, требуют периодического обслуживания и снижают надёжность всей системы. Пассивные системы охлаждения обладают очень низкой производительностью и не могут справиться с задачей охлаждения солнечных батарей[33].

Очень часто одиночные фотоэлементы не вырабатывают достаточной мощности. Поэтому определённое количество фотоэлементов соединяется в так называемые фотоэлектрические солнечные модули и между стеклянными пластинами монтируется укрепление. Эта сборка может быть полностью автоматизирована[34].

Пятерка крупнейших производителей[править | править код]

Крупнейшие производители фотоэлектрических элементов (по суммарной мощности) в 2016 году.[35]

  1. Jinko Solar[en]
  2. Trina Solar
  3. Hanwha QCELLS
  4. Canadian Solar
  5. JA Solar
  1. ↑ Spain requires new buildings use solar power
  2. ↑ Арендаторам домов с солнечными батареями будет выплачиваться дотация, Germania.one.
  3. ↑ Франция построит 1000 км дорог с солнечными батареями
  4. ↑ Во Франции открыли первую дорогу из солнечных панелей, theUK.one.
  5. ↑ Автономный светофор на солнечных батареях — купить в Москве, цена (неопр.). lumenstar.ru. Дата обращения 5 ноября 2019.
  6. ↑ ТАСС: Наука — Ученые Южной Кореи создали подкожную солнечную батарею
  7. ↑ «Solar Spectra: Air Mass Zero»
  8. ↑ «Solar Photovoltaic Technologies» (неопр.) (недоступная ссылка). Дата обращения 7 февраля 2012. Архивировано 26 мая 2012 года.
  9. ↑ «Reference Solar Spectral Irradiance: Air Mass 1.5»
  10. ↑ По материалам: www.ecomuseum.kz (недоступная ссылка)
  11. ↑ «Конкурентоспособность энергетики» Архивная копия от 14 ноября 2007 на Wayback Machine // Photon Consulting
  12. ↑ Виды солнечных батарей (неопр.).
  13. ↑ Австралийцы установили новый рекорд КПД солнечных батарей (рус.). Membrana. Membrana (28 августа 2009). Дата обращения 6 марта 2011.
  14. ↑ На рынок выходят солнечные батареи с рекордным КПД (рус.). Membrana. Membrana (25 ноября 2010). Дата обращения 6 марта 2011.
  15. ↑ Solar Junction Breaks Concentrated Solar World Record with 43,5 % Efficiency
  16. ↑ Как сконцентрировать солнечный свет без концентраторов
  17. ↑ Sharp разработала концентрирующий фотоэлемент с кпд 44,4 % (неопр.) (недоступная ссылка). Дата обращения 11 июля 2013. Архивировано 30 марта 2014 года.
  18. ↑ Новый рекорд КПД фотоэлемента: 44,7 %
  19. ↑ УЧЁНЫЕ ИЗ ИНСТИТУТА СОЛНЕЧНЫХ ЭНЕРГОСИСТЕМ ФРАУНГОФЕРА РАЗРАБОТАЛИ СОЛНЕЧНЫЕ БАТАРЕИ С КПД 46 % И ЭТО НОВЫЙ МИРОВОЙ РЕКОРД
  20. ↑ New world record for solar cell efficiency at 46 % — Fraunhofer ISE
  21. ↑ All-silicon spherical-Mie-resonator photodiode with spectral response in the infrared region
  22. Б. Берланд. Фотоэлементы уходят за горизонт: Оптические ректенны солнечных батарей (англ.). Национальная лаборатория возобновляемых источников энергии США (2003). Дата обращения 4 апреля 2015.
  23. Краснок А Е, Максимов И С, Денисюк А И, Белов П А, Мирошниченко А Е, Симовский К Р, Кившарь Ю С. Оптические наноантенны // Успехи физических наук. — 2013. — Т. 183, № 6. — С. 561–589. — DOI:10.3367/UFNr.0183.201306a.0561.
  24. Александр Дубов. Физики выдавили из солнечных батарей дополнительную энергию (неопр.). nplus1.ru. Дата обращения 25 апреля 2018.
  25. Александр Дубов. Химики продлили жизнь горячим электронам в перовскитных батареях (неопр.). nplus1.ru. Дата обращения 20 июня 2018.
  26. Софья Алимова. Российские ученые разработали новый материал для солнечных батарей (неопр.). Народные Новости России. Дата обращения 14 мая 2019.
  27. 1 2 3 Pavel A. Troshin, Vladimir P. Fedin, Maxim N. Sokolov, Keith J. Stevenson, Nadezhda N. Dremova. Polymeric iodobismuthates {[Bi3I10} and {[BiI4]} with N-heterocyclic cations: promising perovskite-like photoactive materials for electronic devices] (англ.) // Journal of Materials Chemistry A. — 2019-03-12. — Vol. 7, iss. 11. — P. 5957–5966. — ISSN 2050-7496. — DOI:10.1039/C8TA09204D.
  28. ↑ В России разработали новый полупроводник для солнечных батарей. Он не токсичный и очень эффективный! — Хайтек (рус.). hightech.fm. Дата обращения 14 мая 2019.
  29. ↑ В России создали новый полупроводниковый материал для солнечных батарей (неопр.). ТАСС. Дата обращения 14 мая 2019.
  30. ↑ Ученые Сколтеха разработали новые полупроводниковые материалы для электроники (неопр.). naked-science.ru. Дата обращения 14 мая 2019.
  31. ↑ Максимальные значения КПД фотоэлементов и модулей, достигнутые в лабораторных условиях (неопр.) (недоступная ссылка). Nitol Solar Limited. Архивировано 17 июля 2008 года.
  32. Лапаева Ольга Федоровна. Трансформация энергетического сектора экономики при переходе к энергосберегающим технологиям и возобновляемым источникам энергии (рус.) // Вестник Оренбургского государственного университета. — 2010. — Вып. 13 (119).
  33. David Szondy. Stanford researchers develop self-cooling solar cells. (англ.). gizmag.com (25 July 2014). Дата обращения 6 июня 2016.
  34. ↑ Производство фотоэлектрического солнечного модуля (неопр.). Архивировано 25 июня 2012 года.
  35. ↑ Bloomberg New Energy Finance Tier 1 module maker list, Q2 2016

Производство солнечных модулей (панелей)

Приветствуем вас на страницах официального сайта компании Aurinko!

Острый дефицит природных ресурсов чувствуется уже сейчас, что приводит к постоянному росту их стоимости. Запасы нефти и газа истощаются, а потому с каждым днем все более актуальным становится освоение альтернативных источников энергии. В будущем именно энергии ветра, приливов/отливов и солнца станут главенствующими.

Cолнечные модули Aurinko помогут вам получить возобновляемый и экологически чистый источник энергии для своего дома, офиса, производства. В финском языке «aurinko» означает «солнце». Именно с этим небесным светилом древние люди ассоциировали жизнь и все, что с ней связано. Наша компания с солнцем связывает будущее человечества, а также те технологии, которые сделают его более комфортным и безопасным.

Мы наладили производство солнечных панелей в России с учетом специфики их применения именно в нашей стране. Солнечные электростанции не всегда учитывают особенности нашего климата, а потому могут быть недостаточно эффективны. Модули солнечных батарей, производство которых налажено в Aurinko, извлекут максимум пользы из той энергии, что поступает к ним. Специальные технологии дают возможность превращать в электричество как прямой солнечный луч, так и косвенный. Даже в непогоду панели будут функционировать и вырабатывать электричество при низкой освещенности.

Почему стоит выбрать Aurinko?

Солнце – неисчерпаемый источник энергии. Он мало зависит от деятельности человека, а потому предельно надежен. Производство солнечных батарей и их дальнейшая эксплуатация позволяют превращать энергию солнца в электрическую энергию без дополнительных затрат. Компания Aurinko поможет вам собрать максимально эффективный солнечный модуль по разумной цене.

Наши преимущества:

  • 12-летняя гарантия на продукцию и в целом продолжительный срок службы. Солнечные модули Aurinko сохраняют рабочие характеристики долгие годы. Можете не сомневаться, что приобретение окупится прежде, чем вам придется его заменить.

  • Усиленный профиль. Наше производство солнечных панелей для России налажено с учетом тех фактов, что электростанциям придется выдерживать сильный ветер, перепады температуры, атмосферные осадки и другие разрушительные факторы.

  • Эстетичный внешний вид. Солнечные модули Aurinko выполнены в классическом черном цвете, что подчеркивает универсальность.

  • Положительное значение толеранса. Толеранс – это отклонение реальной мощности модуля от паспортной. Его положительное значение указывает на то, что вы всегда будете обладать высокой выходной мощностью без переплат.

  • Хорошая герметичность модулей. Aurinko использует высоко адгезионный герметик, а также герметизирующую пленку, что позволяет сохранять целостность всех солнечных элементов предельно долго.

  • Автоматизированная пайка. Современное оборудование защищает солнечные модули и от образования трещин, и от наличия не пропаянных участков.

Разберем пару популярных вопросов, с которыми сталкиваются будущие потребители солнечной энергии.

В России мало солнца, часто пасмурная погода и идут дожди

Технологии совершенствуются, а значит, сегодня современные солнечные модули aurinko® позволяют генерировать электричество даже в пасмурную погоду, так как они преобразовывают в электричество не только прямые солнечные лучи, но и косвенные.

Россия обладает довольно высоким уровнем инсоляции, которой вполне достаточно, чтобы солнечные модули aurinko® могли обеспечить не только бытовые нужды, но и промышленные.

Со временем солнечные системы теряют свою эффективность, при этом выработка электроэнергии становится меньше

Конечно, на это влияет не только деградация солнечных модулей, но и  остальных элементов солнечной системы, однако нас в данном вопросе интересует именно деградация солнечных модулей. Деградация солнечных модулей традиционно обусловлена двумя причинами. В первую очередь, это нарушение герметичности модуля из-за разрушения пленки и герметика, которые защищают солнечные элементы от попадания влаги. Вторая причина — замутнение защитной пленки из между элементами и защитным стеклом.

Опираясь на это знание, мы создали солнечные модули aurinko®, которые в меньшей степени подвержены деградации и служат свыше 20-25 лет. Широкий диапазон рабочих температур этиленвинилацетатной пленки и герметика с высокой адгезией сделали солнечные модули aurinko® долговечнее.

Солнечная энергетика с каждым днем всё больше и  больше проникает в нашу повседневную жизнь. Поэтому очень важна технологичность солнечных модулей aurinko®, ведь чем доступнее энергия и высокие технологии, тем выше уровень жизни общества.

При использовании солнечных модулей aurinko® каждый найдет для себя индивидуальные особенности

О пользе и выгодах использования солнечной энергетики уже даже и не спорят, с каждым днем солнечная энергетика становится серьезной альтернативой сырьевой энергетике и, по прогнозам специалистов, вытеснит сырьевую энергетику к 2050-му году.
Зачем так долго ждать? Свяжитесь с нашими специалистами, и они помогут вам рассчитать солнечную систему с использованием солнечных модулей aurinko®.


Компания Aurinko открыта к сотрудничеству с монтажными и торговыми компаниями сферы солнечной энергетики, ведь именно вы оказываете сервис для наших потребителей при реализации проектов по обустройству солнечных систем.

Солнечная батарея высокой мощности: ее место в промышленности

Солнечные панелиКак всем известно, солнечные батареи представляют собой фотоэлектрические элементы, которые под воздействием солнечных лучей генерируют электрическую энергию. И не важно, где используются эти панели, на приусадебном участке или крупном предприятии, принцип их работы не изменится, различие между ними состоит лишь в размере и количестве вырабатываемого электричества, то есть для работы предприятий необходимы более мощные солнечные батареи.

 

Стоит отметить, что многие мировые производители специализируются именно на промышленных энергетических системах, наиболее известные из них Naps Systems Oy и Kyocera Solar. Объясняется это нехваткой основных источников энергии (газ, нефть, уголь), особенно заметно это в Испании, Германии, США, Объединенных Арабских Эмиратах – в странах, где солнечная энергетика уже давно развивается стремительными темпами. В России же на сегодняшний день солнечные батареи скорее редкость, чем правило, но продвижения все же есть, и очень даже заметные.

В чем выгода использования?

  1. За время эксплуатации (а это более 20-25 лет) солнечные батареи генерируют электроэнергии в денежном эквиваленте гораздо больше, чем было потрачено на их изготовление и установку.
  2. В странах с высокими тарифами на электрическую энергию срок окупаемости фотоэлектрических панелей составляет до 3-4 лет.
  3. Удобство размещения. Солнечные панели можно разместить практически на любой поверхности, что позволит Вам сэкономить немалые площади, ведь каждый метр лишнего пространства обходится предпринимателям совсем недешево.
  4. Отсутствие каких-либо расходных материалов и топлива, а также технического обслуживания и ремонта.

Области распространения солнечных батарей

На метеостанциях всегда солнечноВ России наибольшее распространение солнечные батареи получили в малом бизнесе, например, в фермерских хозяйствах. Причина этого заключается в удаленности от центральной энергосети, ведь зачастую предпринимателям гораздо выгоднее установить фотоэлектрические батареи, чем прокладывать линии электропередач. Если же рассматривать крупные промышленные энергетические системы в России, то наиболее ярким примером выступают метеостанции, которые в рамках реализации проекта «Модернизация и техническое перевооружение сети метеостанций РФ» оснащаются солнечными панелями производства Naps Systems Oy. Помимо прочего солнечные батареи можно встретить:

  • на очистных сооружениях;
  • на автозаправочных станциях в различных мировых странах, в том числе и в России на одной из АЗС ЛУКОЙЛ в Красной Поляне;
  • на промышленных складах и телекоммуникационных системах;
  • в газовой и нефтяной промышленности на системах катодной защиты;
  • на железных дорогах и т.д.

Как Вы видите, солнечные батареи могут эффективно использоваться в различных областях, но, несмотря на это, говорить о повсеместном использовании альтернативных источников энергии на крупных предприятиях пока еще рано.

Как дела обстоят в других странах…?

Солнечный бассейн в ИзраилеШвеция, Финляндия, Италия, Греция, Германия, Австрия – вот лишь некоторые из стран, которые активно пользуются энергией солнца и экономят при этом немалые деньги. К примеру, в Хельсинки на заводе АВВ солнечная энергосистема мощностью 181 кВт используется для зарядки батареи грузоподъемников, а в Италии солнечные панели разместились на крышах промышленных складов. Но лидирующие позиции занимает все-таки Германия. Немцы с их врожденной бережливостью экономят каждый Ватт. Примером может служить так называемое пассивное офисное здание nZEB, все его инженерные системы работают за счет энергии, генерируемой установленными на крыше солнечными батареями.

Как Вы уже поняли в Европе и США солнечные батареи уже давно в массовом использовании, а вот страны Средней Азии или наши соседи – дело другое. У кого-то альтернативная энергетика находится в самом зародыше, а у кого-то есть неплохие продвижения в этой области.

Так, в Узбекистане проводится широкая программа по переходу крупных хозяйственных объединений и промышленных предприятий на солнечные батареи и коллекторы с целью снижения расхода первичных топливно-энергетических ресурсов. По официальным данным за 2013 год в республике было введено в эксплуатацию 29 солнечных коллекторов и 9 фотоэлектрических станций, в нынешнем же году ведутся работы по запуску еще 88 солнечных коллекторов и 60 фотоэлектрических станций. Но это лишь «капля в море», ведь для масштабного перехода на альтернативные источники энергии требуются более высокие мощности. Хотя начало положено, а это главное!

Катодная защита с солнечными батареями в ТуркменистанеЕсть чем похвастаться и Украине. Не зря говорят: «Худа без добра не бывает», «сработала» эта поговорка и в отношении наших соседей. Регулярные перебои с другими видами топлива подвигли украинское правительство к широкому внедрению фотоэлектрических панелей в массы. Помимо крупных заводов, производящих солнечные батареи, велика доля и их использования. Например, в Одессе многие санатории, предприятия общественного питания, здравницы уже давно перешли на энергию Солнца. Чем не повод для гордости?!

Мировая практика показывает, что солнечные батареи нужно рассматривать не как коротко срочный проект, о котором скоро все забудут, а наоборот, как передовые технологии, за которыми будущее. Полезные ископаемые истощаются с каждым днем, не за горами то время, когда они иссякнут полностью, и тогда останется надежда лишь на солнце. Так зачем ждать этого времени, стоит задуматься о проблемах топливного кризиса уже сейчас.

Статью подготовила Абдуллина Регина

Рижская солнечная электростанция вырабатывает электричество для нужд завода:

Производство солнечных батарей и панелей Sunspare оптом

Возобновляемая природная энергия является наиболее перспективной и выгодной в современном мире, где уже очень активно ощущается нехватка различных ресурсов, цены на них растут и обычным людям все сложнее позволять себя даже основные и необходимые вещи. В связи с этим компания «Сорокопут» разработала уникальный проект по производству солнечных батарей Sunspare, подходящих для домашнего использования.

Производство солнечных модулей это сложный и технически затратный процесс, однако, результат превосходит все ожидания, ведь в итоге вы получаете универсальный источник энергии, за который вам нужно заплатить лишь раз, а необходимую вам энергию вы сможете получать в течение многих лет полностью автономно.

Производство солнечных панелей – внимание к деталям

Для того чтобы добиться оптимальных результатов, мы уделяем огромное внимание процессу производства своей продукции. Наши солнечные панели создаются на профессионально оборудованном заводе в Китае, где работают опытные специалисты и действует многоуровневая система контроля качества. Также производство солнечных модулей базируется на тщательном подборе расходных материалов. Для работы мы выбираем только высококачественный алюминий из которого делаются корпуса, и дорогостоящий монокристаллический кремний А класса.

Благодаря этому наши солнечные батареи отличаются высочайшей прочностью и долговечностью. Они отлично выдерживают любые внешние воздействия, резкие перепады температур, дождь, снег и даже град. Минимальная гарантия на наши панели – 5 лет, притом, что даже по истечению гарантийного периода, их эффективность снижается лишь на 10 процентов.

Если вы также хотели бы сэкономить и получить энергетическую независимость, то в нашем интернет-магазине сможете приобрести солнечные батареи оптом с очень приятными скидками. Среди нашего ассортимента вы легко отыщите подходящие вам варианты по размеру и форме, а адекватная стоимость станет дополнительным фактором в пользу покупки.

Отправить ответ

avatar
  Подписаться  
Уведомление о