Солнечные батареи Hevel — Микроморфные и гетероструктурные солнечные модули
Российский завод «Хевел» (HEVEL) — крупнейший отечественный производитель солнечных батарей (солнечных панелей, солнечных модулей) на основе микроморфной (тонкопленочной технологии). Весной 2017 года запущено производство передовых гетероструктурных солнечных модулей по новейшей технологии, обладающей высоким КПД.
Преимуществами микроморфной тонкопленочной технологии являются низкая стоимость производства, экологичность, возможность улавливания рассеянного света, что существенно увеличивает выработку электроэнергии даже в условиях средней полосы России, а также возможность применять фотоэлектрические модули при строительстве и реконструкции объектов коммерческого, жилого строительства и объектов социального назначения в целях экономии электроэнергии, потребляемой из сети, а также автономного или резервного энергоснабжения.
Технология производства компании базируется на применении микроморфных покрытий – «тонких пленок» на основе кремния, являющихся следующим поколением технологии, уже зарекомендовавшей себя на рынке – фотоэлектрических модулей на основе аморфного кремния. Типичная конструкция гетероструктурного солнечного элемента на основе аморфного и микроморфного кремния отличается от технологии прошлого поколения – аморфного кремния наличием наноструктурированного «микроморфного слоя», позволяющего преобразовывать более широкий спектр длин волн излучения, падающего на фотоэлектрический модуль, увеличивая тем самым КПД модуля.
smartsystems21.ru
Особенности микроморфных солнечных модулей | AUTO-GL.ru
Современные тенденции в развитии технологий направлены на сохранение природной среды, экономию ресурсов, безопасность для окружения. В условиях постоянно повышающихся цен на основные энергоносители как никогда остро стоит вопрос о поиске дешевой и эффективной альтернативы. На таких принципах как раз и созданы микроморфные солнечные модули. Энергия солнца – это бесплатный и мощный ресурс, опираясь на который разрабатываются современные энергетические технологии.
Содержание статьи
Как устроены батареи
Работа солнечных батарей основана на модифицировании энергии прямых солнечных лучей в электрическую. Главной составляющей являются фотоэлементы, которые и выполняют функцию преобразователя.
Для производства фотоэлементов пользуются кремнием. Это вещество находится в земных недрах и его там достаточно большое количество (около 30%). Кремний перерабатывает солнечный свет, позволяя применять его в энергоснабжении.
Гетероструктурные солнечные батареи – это технологии нового поколения. До того как стать такими, они прошли долгий путь и все продолжают совершенствоваться:
- Первоначально панели для получения энергии из солнечных лучей изготовляли, применяя кремний в чистом виде. Такие батареи получили название
- Для поликристаллических батарей используется поликристаллический кремний. Расходы на производство их значительно меньше, но меньше и КПД таких панелей (18%).
- Самая современная технология – это микроморфные разработки на солнечные модули. Толщина применяемого кремния составляет 1 нанометр. Он наделен редкими характеристиками прозрачности для инфракрасного и видимого спектра волн. Этого удалось достичь переменой направлений структурных элементов в кремниевой кристаллической решетке.
Читайте также:
О характеристиках солнечных батарей
Технологический процесс
Чтобы сделать гетеростуктурный солнечный модуль, используются тонкие пленочные пластины в несколько слоев. Для их получения берут разные полупроводники, у которых имеется разница по широте, там, где находится «запрещенная зона». В результате внутри двух близлежащих слоев возникают переходы. Возникновение гетеропереходов позволяет получать повышенное сосредоточение носителей, нежели это возможно в структурах с одним слоем.
Микроморфный тонкопленочный солнечный модуль состоит из двух слоев полупроводников. В этом и заключается основное отличие от предшествующих моделей, в которых был только аморфный кремний. Благодаря микроморфному кремнию появилась возможность задействовать для преобразования в электричество больший охват световых лучей, что повышает его КПД.
Другими словами, электричество будет вырабатываться солнечными батареями не только в ясную солнечную погоду, но и при рассеянных лучах при облачности неба. Это положительно сказывается на увеличении деятельности панелей. Из приятных моментов стоит отметить их небольшую стоимость и безопасность для окружающей среды. А еще эти солнечные модули являются красивым наружным элементом для отделки строений и при этом служат дополнительным источником энергии.
Выпускаются энергопреобразующие панели компанией Hevel Solar по швейцарским технологиям. При номинальной мощности в 125 Вт батарея выдает напряжение 96,2 В. Температурный режим, при котором она активна, от -40°С до +90°С. Весит модуль около 26 кг.
Как подключать батареи
При установке солнечных батарей своими руками для получения максимальной мощности нужно подготовить провод достаточной длины, чтобы соединить панели с контроллерами.
Соединение панелей друг с другом должно быть последовательным, при этом нужно следить, чтобы они были одной мощности и напряжения. Нельзя допускать скручивания и спаивания проводов, чтобы в данных точках не произошло потерь энергии. При таком виде подключения не применяют соединение панелей, имеющих разное напряжение и мощности.
При параллельном подсоединении нельзя использовать несколько панелей с разными напряжениями, но с разными мощностями разрешается.
Правильно подобранные солнечные батареи, контроллеры, аккумуляторные кислотные батареи (АКБ) для токов панелей, корректно соединенные, даже при небольшом входном напряжении (12 вольт) будут выдавать высокий КПД.
Гетероэлектрик – отечественная инновация
Российские ученые несколько лет назад сделали открытие – гетероэлектрик, который составляет основу «звездной батареи». В ней объединены гетероэлектрический конденсатор с гетероэлектрическим фотоэлементом, работают они в видимых и инфракрасных излучениях. Разница в их работе по сравнению с солнечными модулями в возможности преобразовывать энергию не только при солнечном и рассеянном свете, но и в ночной период.
Гетероэлектрик помогает при управлении магнитным полем, а также при его трансформировании для производства оборудования с различными физическими свойствами.
auto-gl.ru
Микроморфные солнечные модули: подключить гетероэлектрик своими руками
Современные тенденции в развитии технологий направлены на сохранение природной среды, экономию ресурсов, безопасность для окружения. В условиях постоянно повышающихся цен на основные энергоносители как никогда остро стоит вопрос о поиске дешевой и эффективной альтернативы. На таких принципах как раз и созданы микроморфные солнечные модули. Энергия солнца – это бесплатный и мощный ресурс, опираясь на который разрабатываются современные энергетические технологии.
Как устроены батареи
Работа солнечных батарей основана на модифицировании энергии прямых солнечных лучей в электрическую. Главной составляющей являются фотоэлементы, которые и выполняют функцию преобразователя.
Для производства фотоэлементов пользуются кремнием. Это вещество находится в земных недрах и его там достаточно большое количество (около 30%). Кремний перерабатывает солнечный свет, позволяя применять его в энергоснабжении.
Гетероструктурные солнечные батареи – это технологии нового поколения. До того как стать такими, они прошли долгий путь и все продолжают совершенствоваться:
- Первоначально панели для получения энергии из солнечных лучей изготовляли, применяя кремний в чистом виде. Такие батареи получили название монокристаллических. Чтобы получить чистый химический элемент, требуются большие трудозатраты и материальные вложения. Эти факторы отразились и на стоимости изделий. После плавления жидкого кремния и дальнейшего его отвердения материал разрезали на тонкие листы, которые оборудовали тонкими электродами, расположенными на поверхности в виде сетки. Стоимость такой гелиевой батареи высока, но ее КПД достигает 22%, и поэтому расходы на изготовление окупают себя.
- Для поликристаллических батарей используется поликристаллический кремний. Расходы на производство их значительно меньше, но меньше и КПД таких панелей (18%).
- Более совершенные панели стали производить с аморфным кремнием, изготавливая тончайшие пленки. В данном случае кристаллический кремний заменили силаном или кремневодородом. Их КПД измеряется 6%, но производство стоит намного дешевле предыдущих вариантов. Также эти батареи очень гибкие и хорошо работают в облачных погодных условиях.
- Самая современная технология – это микроморфные разработки на солнечные модули. Толщина применяемого кремния составляет 1 нанометр. Он наделен редкими характеристиками прозрачности для инфракрасного и видимого спектра волн. Этого удалось достичь переменой направлений структурных элементов в кремниевой кристаллической решетке.
Читайте также:
О характеристиках солнечных батарей
Технологический процесс
Чтобы сделать гетеростуктурный солнечный модуль, используются тонкие пленочные пластины в несколько слоев. Для их получения берут разные полупроводники, у которых имеется разница по широте, там, где находится «запрещенная зона». В результате внутри двух близлежащих слоев возникают переходы. Возникновение гетеропереходов позволяет получать повышенное сосредоточение носителей, нежели это возможно в структурах с одним слоем.
Микроморфный тонкопленочный солнечный модуль состоит из двух слоев полупроводников. В этом и заключается основное отличие от предшествующих моделей, в которых был только аморфный кремний. Благодаря микроморфному кремнию появилась возможность задействовать для преобразования в электричество больший охват световых лучей, что повышает его КПД.
Другими словами, электричество будет вырабатываться солнечными батареями не только в ясную солнечную погоду, но и при рассеянных лучах при облачности неба. Это положительно сказывается на увеличении деятельности панелей. Из приятных моментов стоит отметить их небольшую стоимость и безопасность для окружающей среды. А еще эти солнечные модули являются красивым наружным элементом для отделки строений и при этом служат дополнительным источником энергии.
Выпускаются энергопреобразующие панели компанией Hevel Solar по швейцарским технологиям. При номинальной мощности в 125 Вт батарея выдает напряжение 96,2 В. Температурный режим, при котором она активна, от -40°С до +90°С. Весит модуль около 26 кг.
Как подключать батареи
При установке солнечных батарей своими руками для получения максимальной мощности нужно подготовить провод достаточной длины, чтобы соединить панели с контроллерами.
Соединение панелей друг с другом должно быть последовательным, при этом нужно следить, чтобы они были одной мощности и напряжения. Нельзя допускать скручивания и спаивания проводов, чтобы в данных точках не произошло потерь энергии. При таком виде подключения не применяют соединение панелей, имеющих разное напряжение и мощности.
При параллельном подсоединении нельзя использовать несколько панелей с разными напряжениями, но с разными мощностями разрешается.
Правильно подобранные солнечные батареи, контроллеры, аккумуляторные кислотные батареи (АКБ) для токов панелей, корректно соединенные, даже при небольшом входном напряжении (12 вольт) будут выдавать высокий КПД.
Гетероэлектрик – отечественная инновация
Российские ученые несколько лет назад сделали открытие – гетероэлектрик, который составляет основу «звездной батареи». В ней объединены гетероэлектрический конденсатор с гетероэлектрическим фотоэлементом, работают они в видимых и инфракрасных излучениях. Разница в их работе по сравнению с солнечными модулями в возможности преобразовывать энергию не только при солнечном и рассеянном свете, но и в ночной период.
Гетероэлектрик помогает при управлении магнитным полем, а также при его трансформировании для производства оборудования с различными физическими свойствами.
batteryk.com
Микроморфные солнечные модули Хевел | Солнечные батареи
Компания «Энергии солнца» является эксклюзивным поставщиком микроморфных фотоэлектрических солнечных модулей в Краснодарском крае, изготовленных по тонкоплёночной технологии.
Эти модули производятся компанией ООО «Хевел» на производственных мощностях безусловного лидера этой отрасли, фирмы «Oerlikon Solar» (Швейцария).
Изобретение и внедрение принципиально нового по своему строению фотоэлемента, стало возможным после изучения опыта эксплуатации солнечных элементов на основе аморфного кремния и разработке способа нанесения слоя кристаллического кремния нанометровой толщины. В результате инновационные фотоэлектрические модули представляют собой гетероструктурную конструкцию, в которой на базовый слой аморфного кремния, наносится слой кристаллического кремния, толщиной 25 нанометров. При этом, целенаправленное изменение ориентации атомов в структуре кристаллической решётки, приводит к уникальному эффекту прозрачности наноморфного кремния, для видимых лучей спектральной области света, но на порядок увеличивает его возможность преобразовывать инфракрасное излучение.
Всё вместе это приводит к повышению КПД на 30% по сравнению с моно- и поликристаллическими модулями, уменьшению нагрева самих модулей и расширению рабочих диапазонов температур.
Преимущества микроморфных солнечных модулей «Хевел»:
1. Ощутимое снижение стоимости. Фотоэлементы, созданные из аморфного кремния, по технологии «тонкой плёнки», в процессе производства используют революционные технологии 3D печати и их себестоимость при значительных объёмах существенно снижается.
2. Модули «Хевел»лишены производственного брака. Любой человек понимает, что делать такое заявление можно только имея веские аргументы. Но этот аргумент всего один. При производстве модулей «Хевел» была принципиально изменена технология самого процесса. Если остальные фотоэлементы производятся в условиях глубочайшего вакуума и космической стерильности, то для создания модулей «Хевел» применяется принципиально другая технология. Создать условия глубочайшего вакуума и идеальной стерильности крайне трудно. Но гораздо затратнее поддерживать их на должном уровне продолжительное время. Любое нарушение ведёт к браку в процессе производства. Поэтому при создании модулей «Хевел» прибегли к качественно иному методу, который можно сравнить с печатью на специальном принтере. Но вместе с принципиальным отсутствием производственного брака, революционно, на 3 (!) порядка, возросла скорость производства.
3. Растущая продолжительность эффективной эксплуатации. Дело в том, что технология, используемая при производстве модулей «Хевел» исключительно новая, прорывная. Самые первые образцы, созданные с использованием технологии «тонкой плёнки», были произведены в лабораториях НАСА 15 лет назад. По сведениям из официальных источников, эти элементы до сих пор работают в режиме повышенной эксплуатационной нагрузки и демонстрируют уникальные результаты.
4. Принципиальное изменение требований к условиям энергоэффективной эксплуатации. К этому привели новые свойства модулей созданных по технологии «тонкой плёнки»:
- Увеличение диапазона температур работы панелей «Хевел» в энергоэффективном режиме более чем на 35%. Такой невиданный прорыв позволил повысить более чем на треть выработку электроэнергии в летний период при использовании фотоэлектрических модулей «Хевел» аналогичной площади.
- Отличное поглощение крайних областей спектра видимого света повысило энергоэффективную работу модулей «Хевел» в условиях частичной и полной затенённости. По сравнению с моно- и поликристаллическими модулями, панели «Хевел» производят на 38% больше энергии при частичном затенении.
- Поверхностное загрязнение не критично снижают эффективность работы модулей «Хевел». Производство солнечных элементов по технологии «тонкой плёнки», использует принципиально новые материалы, которые способные эффективно работать при рассеянном свете. И если снижение эффективности работы моно- и поликристаллических батарей даже при малой загрязнённости было катастрофичным, то для модулей «Хевел» заметить понижение мощности можно только на приборах.
5. Использование в дизайнерских решениях. Применение при производстве фотоэлектрических модулей «Хевел» новейших материалов обладающих удивительными эксплуатационными качествами, открывает широчайшую дорогу в мир наружной отделки и уличных композиций. Модули «Хевел» можно интегрировать в любой вид отделки дома или садового участка. Есть прекрасная возможность скрытого монтажа путём встраивания их в элементы отделки здания (замена окон, остекление стен, и т.п.).
6. Удобство при монтаже. По сравнению с моно- и поликристаллическими модулями, панели «Хевел» не требуют соблюдения определенного угла наклона (30-50 градусов) при монтаже и могут размещаться как в вертикальной так и в горизонтальной плоскости.
7. Большая эффективность — скорейший возврат инвестиций.
Производитель гарантирует снижение мощности в течении первых 10 лет эксплуатации не более чем на 10%. И не более чем на 20% за 25 лет непрерывного использования. На все модули имеются сертификаты Евросоюза и России.
www.sunenergys.ru
Микроморфная солнечная батарея MCPH P7 H (96,2 В)
ОписаниеСолнечная электростанция – непростой комплекс устройств, позволяющих получать доступную электроэнергию с необходимыми показателями. Мы представляем модуль солнечной батареи Pramac.
Что собой представляет устройство Pramac MCPH P7?
Прибор изготавливается по микроморфной тонкопленочной технологии в Швейцарии. Это гарантирует высокую эффективность устройства, а также ускоренный возврат вложенных средств.
Дело в том, что микроморфный модуль осуществляет преобразование не только видимого, но и инфракрасного спектра солнечного излучения. Конструкция является безрамной, применяется осветленное стекло с тандемным покрытием.
Солнечные панели Pramac MCPH P7 обладают рядом преимуществ, если сравнивать с классической технологией изготовления солнечных батарей из кремния:
- Благодаря низкой стоимости производства цена солнечных батарей является доступной. Ведь при изготовлении применяется в двести раз меньше кремния, чем при классической технологии создания устройств. При этом технология имеет большие перспективы развития в отношении увеличения КПД, снижения себестоимости.
- Панели могут функционировать в широком температурном диапазоне – от минус 40 до плюс 85 градусов;
- Даже при затенении модуля происходит незначительное снижение выработки электроэнергии. Затенение происходит фактически всегда в реальных условиях, не только от окружающих объектов, но и от загрязнения поверхности устройства.
- Малый температурный коэффициент: при повышении температуры окружающей среды эффективность почти не снижается.
- Увеличить выработку электроэнергии можно на 10-20 процентов, учитывая условия эксплуатации.
- Экологичность. В конструкции отсутствуют токсичные материалы, поэтому устройство не представляет опасности для окружающей среды. Еще это значит, что особые условия утилизации не требуются.
- Эстетичность. Внешне модуль выглядит достаточно привлекательно. Встроенные в здание, такие устройства в дальнейшем станут частью архитектуры.
Мы предлагаем купить модуль солнечной батареи на выгодных условиях. Самое время воспользоваться всеми преимуществами!
Электрические характеристики*
Тип модуля/ячейки: Тандемный Аморфный и Микрокристаллический Кремний (a-Si/nc-Si)
Класс модулей | Низковольтовые | Высоковольтовые | |||
Погрешность мощности | +/- 2,5 Вт | +/- 2,5 Вт | |||
СТУ спецификации* | —— |
Стабилизированные значения |
Начальные значения | Стабилизированные значения | Начальные значения |
Максимальная мощность | Pm | 125,0 | 138,9 | 125,0 | 138,9 |
Напряжение при номинальной мощности | Vmpp | 56,6 | 58,9 | 96,2 | 100,1 |
Сила тока при номинальной мощности | Impp | 2,21 | 2,36 | 1,30 | 1,39 |
Напряжение открытого контура | Voc | 74,1 | 74,2 | 131,4 | 131,6 |
Сила тока открытого контура | Isc | 2,71 | 2,73 | 1,54 | 1,56 |
Фактор наполнения | FF, % | 62,2 | 68,5 | 62,0 | 67,9 |
Максимальная эффективность модуля | КПД | 8,9% | 9,1% | ||
Specific Power | —— | 87,4 | 87,4 |
СТУ: 1000 Вт/м2, температура модуля 25 С, Атм. масса 1,5
Все электрические параметры с точностью +/- 3%
Механические характеристики:
Ширина | мм | 1300 |
Высота | мм | 1100 |
Толщина стекла | мм | 6,7+/-0,3 |
Ширина активного слоя | мм | 1274 |
Высота активного слоя | мм | 1074 |
Полная толщина с коммутационной коробкой | мм | 26 |
Вес | кг | 24 |
Площадь | м2 | 1,43 |
Герметик | материал | поливинилбутират |
Толщина переднего стекла | мм | 3,2 |
Толщина заднего стекла | мм | 3,2 |
IP65 J-box диодная коробка с обводным диодом и MultiContact MC4 соединители | TUV — certified |
Максимальные значения:
Максимальное напряжение системы | Vsis | (VDC) | 1000 |
Диапазон рабочих температур | T | (C) | -40/+85 |
Ветровое давление на поверхность | P | (kPa) | 2,4 |
Ударопрочность | более 35 мм при 155 км/ч |
Гарантия:
Гарантированная мощность через 25 лет (Pmpp) | (%) | 85 |
Гарантированная мощность через 15 лет (Pmpp) | (%) | 87,5 |
Гарантированная мощность через 10 лет (Pmpp) | (%) | 90 |
Гарантированная мощность через 5 лет (Pmpp) | (%) | 92,5 |
Гарантия от заводских дефектов | —— | 5 лет |
Опциональная гарантия против заводского брака | —— | 10 лет |
www.eko-watt.ru