РазноеКшм для чего предназначен: Страница не найдена | Устройство автомобиля

Кшм для чего предназначен: Страница не найдена | Устройство автомобиля

Содержание

Назначение и устройство кривошипно-шатунного механизма ДВС

Двигатели внутреннего сгорания, используемые на автомобилях, функционируют за счет преобразования энергии, выделяемой при горении горючей смеси, в механическое действие – вращение. Это преобразование обеспечивается кривошипно-шатунным механизмом (КШМ), который является одним из ключевых в конструкции двигателя автомобиля.

Устройство КШМ

Кривошипно-шатунный механизм двигателя состоит из трех основных деталей:

  1. Цилиндро-поршневая группа (ЦПГ).
  2. Шатун.
  3. Коленчатый вал.

Все эти компоненты размещаются в блоке цилиндров.

ЦПГ

Назначение ЦПГ — преобразование выделяемой при горении энергии в механическое действие – поступательное движение. Состоит ЦПГ из гильзы – неподвижной детали, посаженной в блок в блок цилиндров, и поршня, который перемещается внутри этой гильзы.

После подачи внутрь гильзы топливовоздушной смеси, она воспламеняется (от внешнего источника в бензиновых моторах и за счет высокого давления в дизелях).

Воспламенение сопровождается сильным повышением давления внутри гильзы. А поскольку поршень это подвижный элемент, то возникшее давление приводит к его перемещению (по сути, газы выталкивают его из гильзы). Получается, что выделяемая при горение энергия преобразуется в поступательное движение поршня.

Для нормального сгорания смеси должны создаваться определенные условия – максимально возможная герметичность пространства перед поршнем, именуемое камерой сгорания (где происходит горение), источник воспламенения (в бензиновых моторах), подача горючей смеси и отвод продуктов горения.

Герметичность пространства обеспечивается головкой блока, которая закрывает один торец гильзы и поршневыми кольцами, посаженными на поршень. Эти кольца тоже относятся к деталям ЦПГ.

Шатун

Следующий компонент КШМ – шатун. Он предназначен для связки поршня ЦПГ и коленчатого вала и передает механических действий между ними.

Шатун представляет собой шток двутавровой формы поперечного сечения, что обеспечивает детали высокую устойчивость на изгиб. На концах штока имеются головки, благодаря которым шатун соединяется с поршнем и коленчатым валом.

По сути, головки шатуна представляют собой проушины, через которые проходят валы обеспечивающие шарнирное (подвижное) соединение всех деталей. В месте соединения шатуна с поршнем, в качестве вала выступает поршневой палец (относится к ЦПГ), который проходит через бобышки поршня и головку шатуна. Поскольку поршневой палец извлекается, то верхняя головка шатуна – неразъемная.

В месте соединения шатуна с коленвалом, в качестве вала выступают шатунные шейки последнего. Нижняя головка имеет разъемную конструкцию, что и позволяет закреплять шатун на коленчатом валу (снимаемая часть называется крышкой).

Коленчатый вал

Назначение коленчатого вала — это обеспечение второго этапа преобразования энергии. Коленвал превращает поступательное движение поршня в свое вращение. Этот элемент кривошипно-шатунного механизма имеет сложную геометрию.

Состоит коленвал из шеек – коротких цилиндрических валов, соединенных в единую конструкцию. В коленвале используется два типа шеек – коренные и шатунные. Первые расположены на одной оси, они являются опорными и предназначены для подвижного закрепления коленчатого вала в блоке цилиндров.

В блоке цилиндров коленчатый вал фиксируется специальными крышками. Для снижения трения в местах соединения коренных шеек с блоком цилиндров и шатунных с шатуном, используются подшипники трения.

Шатунные шейки расположены на определенном боковом удалении от коренных и к ним нижней головкой крепится шатун.

Коренные и шатунные шейки между собой соединяются щеками. В коленчатых валах дизелей к щекам дополнительно крепятся противовесы, предназначенные для снижения колебательных движений вала.

Шатунные шейки вместе с щеками образуют так называемый кривошип, имеющий П-образную форму, который и преобразует поступательного движения во вращение коленчатого вала. За счет удаленного расположения шатунных шеек при вращении вала они движутся по кругу, а коренные — вращаются относительно своей оси.

Количество шатунных шеек соответствует количеству цилиндров мотора, коренных же всегда на одну больше, что обеспечивает каждому кривошипу две опорных точки.

На одном из концов коленчатого вала имеется фланец для крепления маховика – массивного элемента в виде диска. Основное его назначение: накапливание кинетической энергии за счет которой осуществляется обратная работа механизма – преобразование вращения в движение поршня. На втором конце вала расположены посадочные места под шестерни привода других систем и механизмов, а также отверстие для фиксации шкива привода навесного оборудования мотора.

Принцип работы механизма

Принцип работы кривошипно-шатунного механизма рассмотрим упрощенно на примере одноцилиндрового мотора. Такой двигатель включает в себя:

  • коленчатый вал с двумя коренными шейками и одним кривошипом;
  • шатун;
  • и комплект деталей ЦПГ, включающий в себя гильзу, поршень, поршневые кольца и палец.

Воспламенение горючей смеси выполняется когда объем камеры сгорания минимальный, а обеспечивается это при максимальном поднятии вверх поршня внутри гильзы (верхняя мертвая точка – ВМТ). При таком положении кривошип тоже «смотрит» вверх. При сгорании выделяемая энергия толкает вниз поршень, это движение передается через шатун на кривошип, и он начинает двигаться по кругу вниз, при этом коренные шейки вращаются вокруг своей оси.

При провороте кривошипа на 180 градусов поршень достигает нижней мертвой точки (НМТ). После ее достижения  выполняется обратная работа механизма. За счет накопленной кинетической энергии маховик продолжает вращать коленвал, поэтому чему кривошип проворачивается и посредством шатуна толкает поршень вверх. Затем цикл полностью повторяется.

Если рассмотреть проще, то один полуоборот коленвала осуществляется за счет выделенной при сгорании энергии, а второй – благодаря кинетической энергии, накопленной маховиком. Затем процесс повторяется вновь.

Ещё кое-что полезное для Вас:

Особенности работы двигателя. Такты

Выше описана упрощенная схема работы КШМ. В действительности чтобы создать необходимые условия для нормального сгорания топливной смеси, требуется выполнение подготовительных этапов – заполнение камеры сгорания компонентами смеси, их сжатие и отвод продуктов горения. Эти этапы получили название «такты мотора» и всего их четыре – впуск, сжатие, рабочий ход, выпуск. Из них только рабочий ход выполняет полезную функцию (именно при нем энергия преобразуется в движение), а остальные такты – подготовительные. При этом выполнение каждого этапа сопровождается проворотом коленвала вокруг оси на 180 градусов.

Конструкторами разработано два типа двигателей – 2-х и 4-тактный. В первом варианте такты совмещены (рабочий ход с выпуском, а впуск – со сжатием), поэтому в таких моторах полный рабочий цикл выполняется за один полный оборот коленвала.

В 4-тактном двигателе каждый такт выполняется по отдельности, поэтому в таких моторах полный рабочий цикл выполняется за два оборота коленчатого вала, и только один полуоборот (на такте «рабочий ход») выполняется за счет выделенной при горении энергии, а остальные 1,5 оборота – благодаря энергии маховика.

Основные неисправности и обслуживание КШМ

Несмотря на то, что кривошипно-шатунный механизм работает в жестких условиях, эта составляющая двигателя  достаточно надежная. При правильном проведении технического обслуживания, механизм работает долгий срок.

При правильной эксплуатации двигателя ремонт кривошипно-шатунный механизма потребуется только из-за износа ряда составных деталей – поршневых колец, шеек коленчатого вала, подшипников скольжения.

Поломки составных компонентов КШМ происходят в основном из-за нарушения правил эксплуатации силовой установки (постоянная работа на повышенных оборотах, чрезмерные нагрузки), невыполнения ТО, использования неподходящих горюче-смазочных материалов. Последствиями такого использования мотора могут быть:

  • залегание и разрушение колец;
  • прогорание поршня;
  • трещины стенок гильзы цилиндра;
  • изгиб шатуна;
  • разрыв коленчатого вала;
  • «наматывание» подшипников скольжения на шейки.

Такие поломки КШМ очень серьезны, зачастую поврежденные элементы ремонту не подлежат их нужно только менять. В некоторых случаях поломки КШМ сопровождаются разрушениями иных элементов мотора, что приводит мотор в полную негодность без возможности восстановления.

Чтобы кривошипно-шатунный механизм двигателя не стал причиной выхода из строя мотора, достаточно выполнять ряд правил:

  1. Не допускать длительной работы двигателя на повышенных оборотах и под большой нагрузкой.
  2. Своевременно менять моторное масло и использовать смазку, рекомендованную автопроизводителем.
  3. Использовать только качественное топливо.
  4. Проводить согласно регламенту замену воздушных фильтров.

Не стоит забывать, что нормальное функционирование мотора зависит не только от КШМ, но и от  смазки, охлаждения, питания, зажигания, ГРМ, которым также требуется своевременное обслуживание.

Тест на знание КШМ

Дополните

1. KШM ПРЕДНАЗНАЧЕН ДЛЯ ПРЕОБРАЗОВАНИЯ ПОСТУПАТЕЛЬНОГО ДВИЖЕНИЯ ШАТУНА ВО_____ ДВИЖЕНИЕ ВАЛА.

2. ШАТУН СОЧЛЕНЕН С ПОРШНЕМ ПРИ ПОМОЩИ ПОРШНЕВОГО ______.

Выберите номера всех правильных ответов

3. МАТЕРИАЛ ИЗГОТОВЛЕНИЯ ГОЛОВОК БЛОКА ЦИЛИНДРОВ:

1) серый чугун;

2) углеродистая сталь;

3) легированная сталь;

4) алюминиевый сплав.

5) высокопрочная легированная сталь.

МАТЕРИАЛ ИЗГОТОВЛЕНИЯ ШАТУНОВ

6) серый чугун;

7) углеродистая сталь;

8) легированная сталь;

9) алюминиевый сплав;

10) высокопрочная легированная сталь.

4. ДЕЗАКСАЖ:

1) уплотнение камеры сгорания;

2) ограничение частоты вращения;

3) смещение оси поршневого пальца относительно оси цилиндра

С ЦЕЛЬЮ ИСКЛЮЧЕНИЯ

4) разноса двигателя;

5) прорыва газов в картер;

6) стука поршня о стенку цилиндра.

5. ГИЛЬЗА ЦИЛИНДРА МОКРОГО ТИПА, ТАК КАК ОНА:

1) контактирует с топливом;

2) омывается горячими газами;

3) смазывается моторным маслом;

4) запрессовывается в блок со смазкой;

5) омывается охлаждающей жидкостью.

6. БАЗОВОЙ ДЕТАЛЬЮ КШМ И ВСЕГО ДВИГАТЕЛЯ ЯВЛЯЕТСЯ:

1) шатун;

2) маховик;

3) головка блока;

4) коленчатый вал;

5) блок цилиндров.

7. ПОДВИЖНЫЕ ДЕТАЛИ КШМ:

1) шатун;

2) маховик;

3) клапаны;

4) поршень;

5) головка блока;

6) поддон картера;

7) блок цилиндров;

8) коленчатый вал;

9) поршневой палец;

10) пружины клапанов;

11) поршневые кольца;

12) прокладка головки блока.


8. НЕПОДВИЖНЫЕ ДЕТАЛИ КШМ:

1) шатун;

2) маховик;

3) клапаны;

4) поршень;

5) головка блока;

6) поддон картера;

7) блок цилиндров;

8) коленчатый вал;

9) поршневой палец;

10) пружины клапанов;

11) поршневые кольца;

12) прокладка головки блока.

9. ПРОРЕЗИ НА ЮБКЕ ПОРШНЯ ДЛЯ:

1) снижения нагрева;

2) уменьшения массы поршня;

3) увеличения прочности поршня;

4) компенсации теплового расширения;

5) отвода масла со стенок цилиндра.

10. МАССЫ РАЗЛИЧНЫХ ПОРШНЕЙ ДВИГАТЕЛЯ НЕ ДОЛЖНЫ ОТЛИЧАТЬСЯ БОЛЕЕ ЧЕМ НА:

1) 1-2 г;

2) 2-8 г;

3) 10-15 г;

4) 20-30 г.

11. ЗАМКИ ТРЕХ КОМПРЕССИОННЫХ КОЛЕЦ РАСПОЛАГАЮТ ПОД УГЛОМ ДРУГ К ДРУГУ:

1) 45°;

2) 90°;

3) 100°;

4) 120°;

5) 180°;

6) 270°.

12. СПОСОБЫ УПЛОТНЕНИЯ ГИЛЬЗЫ ЦИЛИНДРА

1) прокладкой головки блока;

2) асбестовым шнуром;

3) резиновыми кольцами;

4) самоподжимным сальником;

5) медным кольцом.

13. МАТЕРИАЛ АНТИФРИКЦИОННОГО СПЛАВА ВКЛАДЫШЕЙ КОЛЕНЧАТОГО ВАЛА:

1) сталь;

2) медь;

3) свинцовистая бронза;

4) оловянистый алюминиевый сплав.

Установите соответствие


14. НОМЕРА ПОЗИЦИИ И НАЗВАНИЯ ЭЛЕМЕНТА КОЛЕНЧАТОГО ВАЛА (РИС. 2.1):

№ ПОЗИЦИИ

a) 1;
b) 2;
c)  3
d) 4
е) 5.

НАЗВАНИЕ

I. Щека;

II. Носок;

III. Хвостовик;

IV. Шатунная шейка;

V. Коренная шейка.

 


Рис. 2.1. Коленчатый вал

Выберите номера всех правильных ответов

15. ОТВЕРСТИЯ В КОЛЕНЧАТОМ ВАЛУ ВЫПОЛНЯЮТСЯ ДЛЯ ПОДАЧИ К ШАТУННЫМ ПОДШИПНИКАМ:

1) масла;

2) воздуха;

3) охладителя;

4) горючей смеси;

5) картерных газов;

6) сжиженного газа.

16. КОЛЕНЧАТЫЙ ВАЛ ФИКСИРУЕТСЯ ОТ ОСЕВОГО СМЕЩЕНИЯ:

1) стопорной шайбой;

2) упорными кольцами;

3) упорными вкладышами;

4) упорными шарикоподшипниками

СО СТОРОНЫ

5) центральной части;

6) носка или хвостовика.

17. МАТЕРИАЛ БЛОКА ЦИЛИНДРОВ:

1) сталь;

2) чугун;

3) титан;

4) алюминиевый сплав.


18. ТЕМПЕРАТУРА («с) НАГРЕВА ПОРШНЯ В МАСЛЕ ПРИ ЕГО СБОРКЕ С ПАЛЬЦЕМ:

1) 45-50;

2) 80-100;

3) 120-150;

4) 180-200.


19. МАСЛОСЪЕМНОЕ КОЛЬЦО СЛУЖИТ ДЛЯ:

1) упрочения поршня;

2) снижения детонации;

3)уплотнения цилиндра;

4) уменьшения массы поршня;

5) снятия излишка масла со стенок;

6) уменьшения расхода масла на угар.

Установите соответствие

20. НОМЕРА ПОЗИЦИИ И НАЗВАНИЯ ЭЛЕМЕНТА ПОРШНЯ (РИС. 2.2):

№ ПОЗИЦИИ

a) 1;

b) 2;

с ) 3

d) 4.

НАЗВАНИЕ

I. Юбка;

II. Днище;

III. Головка;

IV. Уплотняющий пояс.


21. КОЛЕНЧАТЫЕ ВАЛЫ ИЗГОТАВЛИВАЮТ ИЗ:

1) серого чугуна;

2) легированной стали;

3) низкоуглеродистой стали;

4) среднеуглеродистой стали;

5) модифицированного чугуна

МЕТОДОМ:

6) литья;

7)сварки;

8) штамповки.

22. ШЕЙКИ КОЛЕНЧАТОГО ВАЛА:

1) шлифуют;

2) полируют;

3) азотируют;

4) хромируют;

5) цементируют;

6) закаливают ТВЧ;

7) подвергают отпуску

С ЦЕЛЬЮ:

8) придания товарного вида;

9) повышения жесткости вала; 10) повышения износостойкости.

23. ФОРМА КОЛЕНЧАТОГО ВАЛА ОПРЕДЕЛЯЕТСЯ

1) числом цилиндров

2) тактностью двигателя

3) способом воспламенения

4) материалом изготовления

5) расположением цилиндров

6) способом смесеобразования

7) порядком работы цилиндров

8) максимальной мощностью двигателя

           
ОТВЕТЫ

Принцип работы кривошипно шатунного механизма

Кривошипно-шатунный механизм (КШМ) служит для превращения возвратно-поступательного движения поршня во вращательное движение коленчатого вала.

Он состоит из следующих деталей:

– коленчатый вал
– поршень и поршневые кольца (компрессионные и маслосъемное)
– шатуны
– поршневые пальцы
– подшипники скольжения (шатунные вкладыши)

К деталям КШМ можно отнести также и маховик двигателя, но по большей части он является составной частью механизма сцепления.

Принцип его работы заключается в следующем: при воспламенении горючей смеси внутри цилиндра двигателя образовавшиеся газы толкают поршень вниз. Шатун, из-за наличия поршневого пальца, способен проворачиваться вокруг его оси на не значительный угол, тем самым компенсируя время проворачивания коленчатого вала в тот промежуток времени, когда поршень находится в верхней мертвой точке. Из-за наличия противовесов коленчатый вал не может провернуться в обратную сторону, поэтому газы через поршень и шатун передают крутящий момент на коленчатый вал, тем самым проворачивая его далее. Вращение колена коленчатого вала в опоре шатуна обеспечивают шатунные вкладыши, которые являются подшипниками скольжения. Они изготавливаются из латуни.

Герметичность и компрессию в камере сгорания поддерживают специальные компрессионные кольца. Маслосъемное кольцо служит для снятия масла со стенок цилиндра и не допускает попадания смазочного материала внутрь камеры сгорания.

Следует отметить, что все детали кривошипно-шатунного механизма изготавливаются с огромной точностью. Нарушение размеров даже в 0,5 мм может сильно сказать на работе механизма. Все крепежные соединения КШМ затягиваются с определенным моментом, величины которых устанавливаются заводом-изготовителем. Соблюдение машиностроительных допусков и посадок – одна из наиболее важных частей проектирования кривошипно-шатунного механизма.

Основной задачей двигателей внутреннего сгорания, использующиеся на всевозможной технике, является преобразование энергии, которая выделяется при сжигании определенных веществ, в случае с ДВС – это топливо на основе нефтепродуктов или спиртов и воздуха, необходимого для горения.

Преобразование энергии производится в механическое действие – вращение вала. Далее уже это вращение передается дальше, для выполнения полезного действия.

Однако реализация всего этого процесса не такая уж и простая. Нужно организовать правильно преобразование выделяемой энергии, обеспечить подачу топлива в камеры, где производиться сжигание топливной смеси для выделения энергии, отвод продуктов горения. И это не считая того, что тепло, выделяемое при сгорании нужно куда-то отводить, нужно убрать трение между подвижными элементами. В общем, процесс преобразования энергии сложен.

Поэтому ДВС – устройство довольно сложное, состоящее из значительного количества механизмов, выполняющих определенные функции. Что же касается преобразования энергии, то выполняет его механизм, называющийся кривошипно-шатунным. В целом, все остальные составные части силовой установки лишь обеспечивают условия для преобразования и обеспечивают максимально возможный выход КПД.

Принцип действия кривошипно-шатунного механизма

Основная же задача лежит на этом механизме, ведь он преобразовывает возвратно-поступательное перемещение поршня во вращение коленчатого вала, того вала, от движения которого и производится полезное действие.

Чтобы было более понятно, в двигателе есть цилиндро-поршневая группа, состоящая из гильз и поршней. Сверху гильза закрыта головкой, а внутри ее помещен поршень. Закрытая полость гильзы и является пространством, где производится сгорание топливной смеси.

При сгорании объем горючей смеси значительно возрастает, а поскольку стенки гильзы и головка являются неподвижными, то увеличение объема воздействует на единственный подвижный элемент этой схемы – поршень. То есть поршень воспринимает на себя давление газов, выделенных при сгорании, и от этого смещается вниз. Это и является первой ступенью преобразования – сгорание привело к движению поршня, то есть химический процесс перешел в механический.

И вот далее уже в действие вступает кривошипно-шатунный механизм. Поршень связан с кривошипом вала посредством шатуна. Данное соединение является жестким, но подвижным. Сам поршень закреплен на шатуне посредством пальца, что позволяет легко шатуну менять положение относительно поршня.

Шатун же своей нижней частью охватывает шейку кривошипа, которая имеет цилиндрическую форму. Это позволяет менять угол между поршнем и шатуном, а также шатуном и кривошипом вала, но при этом смещаться шатун вбок не может. Относительно поршня он только меняет угол, а на шейке кривошипа он вращается.

Поскольку соединение жесткое, то расстояние между шейкой кривошипа и самим поршнем не изменяется. Но кривошип имеет П-образную форму, поэтому относительно оси коленвала, на которой размещен этот кривошип, расстояние между поршнем и самим валом меняется.

За счет применения кривошипов и удалось организовать преобразование перемещения поршня во вращение вала.

Но это схема взаимодействия только цилиндро-поршневой группы с кривошипно-шатунным механизмом.

На деле же все значительно сложнее, ведь имеются взаимодействия между элементами этих составляющих, причем механические, а это значит, что в местах контакта этих элементов будет возникать трение, которое нужно по максимуму снизить. Также следует учитывать, что один кривошип неспособен взаимодействовать с большим количеством шатунов, а ведь двигатели создаются и с большим количеством цилиндров – до 16. При этом нужно же и обеспечить передачу вращательного движения дальше. Поэтому рассмотрим, из чего состоит цилиндро-поршневая группа (ЦПГ) и кривошипно-шатунный механизм (КШМ).

Начнем с ЦПГ. Основными в ней являются гильзы и поршни. Сюда же входят и кольца с пальцами.

Гильза

Гильзы существуют двух типов – сделанные непосредственно в блоке и являющиеся их частью, и съемные. Что касается выполненных в блоке, то представляют они собой цилиндрические углубления в нем нужной высоты и диаметра.

Съемные же имеют тоже цилиндрическую форму, но с торцов они открыты. Зачастую для надежной посадки в свое посадочное место в блоке, в верхней части ее имеется небольшой отлив, обеспечивающий это. В нижней же части для плотности используются резиновые кольца, установленные в проточные канавки на гильзе.

Внутренняя поверхность гильзы называется зеркалом, потому что она имеет высокую степень обработки, чтобы обеспечить минимально возможное трение между поршнем и зеркалом.

В двухтактных двигателях в гильзе проделываются на определенном уровне несколько отверстий, которые называются окнами. В классической схеме ДВС используется три окна – для впуска, выпуска и перепуска топливной смеси и отработанных продуктов. В оппозитных же установках типа ОРОС, которые тоже являются двухтактными, надобности в перепускном окне нет.

Поршень

Поршень принимает на себя энергию, выделяемую при сгорании, и за счет своего перемещения преобразовывает ее в механическое действие. Состоит он из днища, юбки и бобышек для установки пальца.

Именно днищем поршень и воспринимает энергию. Поверхность днища в бензиновых моторах изначально была ровной, позже на ней стали делать углубления для клапанов, предотвращающих столкновение последних с поршнями.

В дизельных же моторах, где смесеобразование происходит непосредственно в цилиндре, и составляющие смеси туда подаются по отдельности, в днищах поршня выполнена камера сгорания – углубления особой формы, обеспечивающие более лучшее смешивание компонентов смеси.

В инжекторных бензиновых двигателях тоже стали применять камеры сгорания, поскольку в них тоже составные части смеси подаются по отдельности.

Юбка является лишь его направляющей в гильзе. При этом нижняя часть ее имеет особую форму, чтобы исключить возможность соприкосновения юбки с шатуном.

Чтобы исключить просачивание продуктов горения в подпоршневое пространство используются поршневые кольца. Они подразделяются на компрессионные и маслосъемные.

В задачу компрессионных входит исключение появления зазора между поршнем и зеркалом, тем самым сохраняется давление в надпоршневом пространстве, которое тоже участвует в процессе.

Если бы компрессионных колец не было, трение между разными металлами, из которых изготавливаются поршень и гильза было бы очень высоким, при этом износ поршня происходил бы очень быстро.

В двухтактных двигателях маслосъемные кольца не применяются, поскольку смазка зеркала производиться маслом, которое добавляется в топливо.

В четырехтактных смазка производится отдельной системой, поэтому чтобы исключить перерасход масла используются маслосъемные кольца, снимающие излишки его с зеркала, и сбрасывая в поддон. Все кольца размещаются в канавках, проделанных в поршне.

Бобышки – отверстия в поршне, куда вставляется палец. Имеют отливы с внутренней части поршня для увеличения жесткости конструкции.

Палец представляет собой трубку значительной толщины с высокоточной обработкой внешней поверхности. Часто, чтобы палец не вышел за пределы поршня во время работы и не повредил зеркало гильзы, он стопориться кольцами, размещающимися в канавках, проделанных в бобышках.

Это конструкция ЦПГ. Теперь рассмотрим устройство кривошипно-шатунного механизма.

Шатун

Итак, состоит он из шатуна, коленчатого вала, посадочных мест этого вала в блоке и крышек крепления, вкладышей, втулки, полуколец.

Шатун – это стержень с отверстием в верхней части под поршневой палец. Нижняя часть его сделана в виде полукольца, которым он садится на шейку кривошипа, вокруг шейки он фиксируется крышкой, внутренняя поверхность ее тоже выполнена в виде полукольца, вместе с шатуном они и формируют жесткое, но подвижное соединение с шейкой – шатун может вращаться вокруг ее. Соединяется шатун со своей крышкой посредством болтовых соединений.

Чтобы снизить трение между пальцем и отверстием шатуна применяется медная или латунная втулка.

По всей длине внутри шатун имеет отверстие, через которое масло подается для смазки соединения шатуна и пальца.

Коленчатый вал

Перейдем к коленчатому валу. Он имеет достаточно сложную форму. Осью его выступают коренные шейки, посредством которых он соединен с блоком цилиндров. Для обеспечения жесткого соединения, но опять же подвижного, в блоке посадочные места вала выполнены в виде полуколец, второй частью этих полуколец выступают крышки, которыми вал поджимается к блоку. Крышки к с блоком соединены болтами.

Коленвал 4-х цилиндрового двигателя

Коренные шейки вала соединены с щеками, которые являются одной из составных частей кривошипа. В верхней части этих щек располагается шатунная шейка.

Количество коренных и шатунных шеек зависит от количества цилиндров, а также их компоновки. В рядных и V-образных двигателях на вал передаются очень большие нагрузки, поэтому должно быть обеспечено крепление вала к блоку, способное правильно распределять эту нагрузку.

Для этого на один кривошип вала должно приходиться две коренные шейки. Но поскольку кривошип размещен между двух шеек, то одна из них будет играть роль опорной и для другого кривошипа. Из этого следует, что у рядного 4-цилиндрового двигателя на валу имеется 4 кривошипа и 5 коренных шеек.

У V-образных двигателей ситуация несколько иная. В них цилиндры расположены в два ряда под определенным углом. Поэтому один кривошип взаимодействует с двумя шатунами. Поэтому у 8-цилиндрового двигателя используется только 4 кривошипа, и опять же 5 коренных шеек.

Уменьшение трения между шатунами и шейками, а также блоком с коренными шейками достигается благодаря использованию вкладышей – подшипников трения, которые помещаются между шейкой и шатуном или блоком с крышкой.

Смазка шеек вала производится под давлением. Для подачи масла применяются каналы, проделанные в шатунных и коренных шейках, их крышках, а также вкладышах.

В процессе работы возникают силы, которые пытаются сместить коленчатый вал в продольном направлении. Чтобы исключить это используются опорные полукольца.

В дизельных двигателях для компенсации нагрузок используются противовесы, которые прикрепляются к щекам кривошипов.

Маховик

С одной из сторон вала сделан фланец, к которому прикрепляется маховик, выполняющий несколько функций одновременно. Именно от маховика передается вращение. Он имеет значительный вес и габариты, что облегчает вращение коленчатому валу после того, как маховик раскрутится. Чтобы запустить двигатель нужно создать значительное усилие, поэтому по окружности на маховик нанесены зубья, которые называются венцом маховика. Посредством этого венца стартер раскручивает коленчатый вал при запуске силовой установки. Именно к маховику присоединяются механизмы, которые и используют вращение вала на выполнение полезного действия. У автомобиля это трансмиссия, обеспечивающая передачу вращения на колёса.

Чтобы исключить осевые биения, коленчатый вал и маховик должны быть хорошо отбалансированы.

Другой конец коленчатого вала, противоположный фланцу маховика используется зачастую для привода остальных механизмом и систем мотора: к примеру, там может размещаться шестерня привода масляного насоса, посадочное место для приводного шкива.

Это основная схема коленчатого вала. Особо нового пока ничего не придумано. Все новые разработки направлены пока только на снижение потерь мощности в результате трения между элементами ЦПГ и КШМ.

Также стараются снизить нагрузку на коленчатый вал путем изменения углов положения кривошипов относительно друг друга, но особо значительных результатов пока нет.

Двигатели внутреннего сгорания, используемые на автомобилях, функционируют за счет преобразования энергии, выделяемой при горении горючей смеси, в механическое действие – вращение. Это преобразование обеспечивается кривошипно-шатунным механизмом (КШМ), который является одним из ключевых в конструкции двигателя автомобиля.

Устройство КШМ

Кривошипно-шатунный механизм двигателя состоит из трех основных деталей:

  1. Цилиндро-поршневая группа (ЦПГ).
  2. Шатун.
  3. Коленчатый вал.

Все эти компоненты размещаются в блоке цилиндров.

Назначение ЦПГ — преобразование выделяемой при горении энергии в механическое действие – поступательное движение. Состоит ЦПГ из гильзы – неподвижной детали, посаженной в блок в блок цилиндров, и поршня, который перемещается внутри этой гильзы.

После подачи внутрь гильзы топливовоздушной смеси, она воспламеняется (от внешнего источника в бензиновых моторах и за счет высокого давления в дизелях). Воспламенение сопровождается сильным повышением давления внутри гильзы. А поскольку поршень это подвижный элемент, то возникшее давление приводит к его перемещению (по сути, газы выталкивают его из гильзы). Получается, что выделяемая при горение энергия преобразуется в поступательное движение поршня.

Для нормального сгорания смеси должны создаваться определенные условия – максимально возможная герметичность пространства перед поршнем, именуемое камерой сгорания (где происходит горение), источник воспламенения (в бензиновых моторах), подача горючей смеси и отвод продуктов горения.

Герметичность пространства обеспечивается головкой блока, которая закрывает один торец гильзы и поршневыми кольцами, посаженными на поршень. Эти кольца тоже относятся к деталям ЦПГ.

Шатун

Следующий компонент КШМ – шатун. Он предназначен для связки поршня ЦПГ и коленчатого вала и передает механических действий между ними.

Шатун представляет собой шток двутавровой формы поперечного сечения, что обеспечивает детали высокую устойчивость на изгиб. На концах штока имеются головки, благодаря которым шатун соединяется с поршнем и коленчатым валом.

По сути, головки шатуна представляют собой проушины, через которые проходят валы обеспечивающие шарнирное (подвижное) соединение всех деталей. В месте соединения шатуна с поршнем, в качестве вала выступает поршневой палец (относится к ЦПГ), который проходит через бобышки поршня и головку шатуна. Поскольку поршневой палец извлекается, то верхняя головка шатуна – неразъемная.

В месте соединения шатуна с коленвалом, в качестве вала выступают шатунные шейки последнего. Нижняя головка имеет разъемную конструкцию, что и позволяет закреплять шатун на коленчатом валу (снимаемая часть называется крышкой).

Коленчатый вал

Назначение коленчатого вала — это обеспечение второго этапа преобразования энергии. Коленвал превращает поступательное движение поршня в свое вращение. Этот элемент кривошипно-шатунного механизма имеет сложную геометрию.

Состоит коленвал из шеек – коротких цилиндрических валов, соединенных в единую конструкцию. В коленвале используется два типа шеек – коренные и шатунные. Первые расположены на одной оси, они являются опорными и предназначены для подвижного закрепления коленчатого вала в блоке цилиндров.

В блоке цилиндров коленчатый вал фиксируется специальными крышками. Для снижения трения в местах соединения коренных шеек с блоком цилиндров и шатунных с шатуном, используются подшипники трения.

Шатунные шейки расположены на определенном боковом удалении от коренных и к ним нижней головкой крепится шатун.

Коренные и шатунные шейки между собой соединяются щеками. В коленчатых валах дизелей к щекам дополнительно крепятся противовесы, предназначенные для снижения колебательных движений вала.

Шатунные шейки вместе с щеками образуют так называемый кривошип, имеющий П-образную форму, который и преобразует поступательного движения во вращение коленчатого вала. За счет удаленного расположения шатунных шеек при вращении вала они движутся по кругу, а коренные — вращаются относительно своей оси.

Количество шатунных шеек соответствует количеству цилиндров мотора, коренных же всегда на одну больше, что обеспечивает каждому кривошипу две опорных точки.

На одном из концов коленчатого вала имеется фланец для крепления маховика – массивного элемента в виде диска. Основное его назначение: накапливание кинетической энергии за счет которой осуществляется обратная работа механизма – преобразование вращения в движение поршня. На втором конце вала расположены посадочные места под шестерни привода других систем и механизмов, а также отверстие для фиксации шкива привода навесного оборудования мотора.

Принцип работы механизма

Принцип работы кривошипно-шатунного механизма рассмотрим упрощенно на примере одноцилиндрового мотора. Такой двигатель включает в себя:

  • коленчатый вал с двумя коренными шейками и одним кривошипом;
  • шатун;
  • и комплект деталей ЦПГ, включающий в себя гильзу, поршень, поршневые кольца и палец.

Воспламенение горючей смеси выполняется когда объем камеры сгорания минимальный, а обеспечивается это при максимальном поднятии вверх поршня внутри гильзы (верхняя мертвая точка – ВМТ). При таком положении кривошип тоже «смотрит» вверх. При сгорании выделяемая энергия толкает вниз поршень, это движение передается через шатун на кривошип, и он начинает двигаться по кругу вниз, при этом коренные шейки вращаются вокруг своей оси.

При провороте кривошипа на 180 градусов поршень достигает нижней мертвой точки (НМТ). После ее достижения выполняется обратная работа механизма. За счет накопленной кинетической энергии маховик продолжает вращать коленвал, поэтому чему кривошип проворачивается и посредством шатуна толкает поршень вверх. Затем цикл полностью повторяется.

Если рассмотреть проще, то один полуоборот коленвала осуществляется за счет выделенной при сгорании энергии, а второй – благодаря кинетической энергии, накопленной маховиком. Затем процесс повторяется вновь.

Ещё кое-что полезное для Вас:

Особенности работы двигателя. Такты

Выше описана упрощенная схема работы КШМ. В действительности чтобы создать необходимые условия для нормального сгорания топливной смеси, требуется выполнение подготовительных этапов – заполнение камеры сгорания компонентами смеси, их сжатие и отвод продуктов горения. Эти этапы получили название «такты мотора» и всего их четыре – впуск, сжатие, рабочий ход, выпуск. Из них только рабочий ход выполняет полезную функцию (именно при нем энергия преобразуется в движение), а остальные такты – подготовительные. При этом выполнение каждого этапа сопровождается проворотом коленвала вокруг оси на 180 градусов.

Конструкторами разработано два типа двигателей – 2-х и 4-тактный. В первом варианте такты совмещены (рабочий ход с выпуском, а впуск – со сжатием), поэтому в таких моторах полный рабочий цикл выполняется за один полный оборот коленвала.

В 4-тактном двигателе каждый такт выполняется по отдельности, поэтому в таких моторах полный рабочий цикл выполняется за два оборота коленчатого вала, и только один полуоборот (на такте «рабочий ход») выполняется за счет выделенной при горении энергии, а остальные 1,5 оборота – благодаря энергии маховика.

Основные неисправности и обслуживание КШМ

Несмотря на то, что кривошипно-шатунный механизм работает в жестких условиях, эта составляющая двигателя достаточно надежная. При правильном проведении технического обслуживания, механизм работает долгий срок.

При правильной эксплуатации двигателя ремонт кривошипно-шатунный механизма потребуется только из-за износа ряда составных деталей – поршневых колец, шеек коленчатого вала, подшипников скольжения.

Поломки составных компонентов КШМ происходят в основном из-за нарушения правил эксплуатации силовой установки (постоянная работа на повышенных оборотах, чрезмерные нагрузки), невыполнения ТО, использования неподходящих горюче-смазочных материалов. Последствиями такого использования мотора могут быть:

  • залегание и разрушение колец;
  • прогорание поршня;
  • трещины стенок гильзы цилиндра;
  • изгиб шатуна;
  • разрыв коленчатого вала;
  • «наматывание» подшипников скольжения на шейки.

Такие поломки КШМ очень серьезны, зачастую поврежденные элементы ремонту не подлежат их нужно только менять. В некоторых случаях поломки КШМ сопровождаются разрушениями иных элементов мотора, что приводит мотор в полную негодность без возможности восстановления.

Чтобы кривошипно-шатунный механизм двигателя не стал причиной выхода из строя мотора, достаточно выполнять ряд правил:

  1. Не допускать длительной работы двигателя на повышенных оборотах и под большой нагрузкой.
  2. Своевременно менять моторное масло и использовать смазку, рекомендованную автопроизводителем.
  3. Использовать только качественное топливо.
  4. Проводить согласно регламенту замену воздушных фильтров.

Не стоит забывать, что нормальное функционирование мотора зависит не только от КШМ, но и от смазки, охлаждения, питания, зажигания, ГРМ, которым также требуется своевременное обслуживание.

Кшм назначение устройство принцип действия


Кривошипно-шатунный механизм (КШМ). Назначение, устройство, принцип действия

Видео: Кривошипно-шатунный механизм (КШМ). Основы

Кривошипно-шатунный механизм предназначен для преобразования возвратно-поступательного движения поршня во вращательное движение коленчатого вала.

Детали кривошипно-шатунного механизма можно разделить на:

  • неподвижные — картер, блок цилиндров, цилиндры, головка блока цилиндров, прокладка головки блока и поддон. Обычно блок цилиндров отливают вместе с верхней половиной картера, поэтому иногда его называют блок-картером.
  • подвижные детали КШМ — поршни, поршневые кольца и пальцы, шатуны, коленчатый вал и маховик.

Кроме того, к кривошипно-шатунному механизму относятся различные крепежные детали, а также коренные и шатунные подшипники.

Блок-картер

Блок-картер — основной элемент остова двигателя. Он подвергается значительным силовым и тепловым воздействиям и должен обладать высокой прочностью и жесткостью. В блок-картере устанавливают цилиндры, опоры коленчатого вала, некоторые устройства механизма газораспределения, различные узлы смазочной системы с ее сложной сетью каналов и другое вспомогательное оборудование. Блок-картер изготавливают из чугуна или алюминиевого сплава литьем.

Цилиндр

Цилиндры представляют собой направляющие элементы ⭐ кривошипно-шатунного механизма. Внутри их перемещаются поршни. Длина образующей цилиндра определяется ходом поршня и его размерами. Цилиндры работают в условиях резко изменяющегося давления в надпоршневой полости. Их стенки соприкасаются с пламенем и горячими газами, имеющими температуру до 1500… 2 500 °С.

Цилиндры должны быть прочными, жесткими, термо- и износостойкими при ограниченном количестве смазки. Кроме того, материал цилиндров должен обладать хорошими литейными свойствами и легко обрабатываться на станках. Обычно цилиндры изготавливают из специального легированного чугуна, но могут применяться также алюминиевые сплавы и сталь. Внутреннюю рабочую поверхность цилиндра, называемую его зеркалом, тщательно обрабатывают и покрывают хромом для уменьшения трения, повышения износостойкости и долговечности.

В двигателях с жидкостным охлаждением цилиндры могут быть отлиты вместе с блоком цилиндров или в виде отдельных гильз, устанавливаемых в отверстиях блока. Между наружными стенками цилиндров и блоком имеются полости, называемые рубашкой охлаждения. Последняя заполняется жидкостью, охлаждающей двигатель. Если гильза цилиндра своей наружной поверхностью непосредственно соприкасается с охлаждающей жидкостью, то ее называют мокрой. В противном случае она называется сухой. Применение сменных мокрых гильз облегчает ремонт двигателя. При установке в блок мокрые гильзы надежно уплотняются.

Цилиндры двигателей воздушного охлаждения отливают индивидуально. Для улучшения теплоотвода их наружные поверхности снабжают кольцевыми ребрами. У большинства двигателей воздушного охлаждения цилиндры вместе с их головками крепят общими болтами или шпильками к верхней части картера.

В V-образном двигателе цилиндры одного ряда могут быть несколько смещены относительно цилиндров другого ряда. Это связано с тем, что на каждом кривошипе коленчатого вала крепятся два шатуна, один из которых предназначен для поршня правой, а другой — для поршня левой половины блока.

Блок цилиндров

На тщательно обработанную верхнюю плоскость блока цилиндров устанавливают головку блока, которая закрывает цилиндры сверху. В головке над цилиндрами выполнены углубления, образующие камеры сгорания. У двигателей жидкостного охлаждения в теле головки блока предусмотрена рубашка охлаждения, сообщающаяся с рубашкой охлаждения блока цилиндров. При верхнем расположении клапанов в головке имеются гнезда для них, впускные и выпускные каналы, отверстия с резьбой для установки свечей зажигания (у бензиновых двигателей) или форсунок (у дизелей), магистрали смазочной системы, крепежные и другие вспомогательные отверстия. Материалом для головки блока обычно служит алюминиевый сплав или чугун.

Плотное соединение блока цилиндров и головки блока обеспечивается с помощью болтов или шпилек с гайками. Для герметизации стыка с целью предотвращения утечки газов из цилиндров и охлаждающей жидкости из рубашки охлаждения между блоком цилиндров и головкой блока устанавливается прокладка. Она обычно изготавливается из асбестового картона и облицовывается тонким стальным или медным листом. Иногда прокладку с обеих сторон натирают графитом для защиты от пригорания.

Нижняя часть картера, предохраняющая детали кривошипно-шатунного и других механизмов двигателя от загрязнения, обычно называется поддоном. В двигателях сравнительно малой мощности поддон служит также резервуаром для моторного масла. Поддон чаще всего выполняется литым или изготавливается из стального листа штамповкой. Для устранения подтекания масла между блок-картером и поддоном устанавливается прокладка (на двигателях небольшой мощности для уплотнения этого стыка часто используется герметик — «жидкая прокладка»).

Остов двигателя

Соединенные друг с другом неподвижные детали кривошипно-шатунного механизма являются остовом двигателя, воспринимающим все основные силовые и тепловые нагрузки, как внутренние (связанные с работой двигателя), так и внешние (обусловленные трансмиссией и ходовой частью). Силовые нагрузки, передающиеся на остов двигателя от несущей системы ТС (рама, кузов, корпус) и обратно, существенно зависят от способа крепления двигателя. Обычно он крепится в трех или четырех точках так, чтобы не воспринимались нагрузки, вызванные перекосами несущей системы, возникающими при движении машины по неровностям. Крепление двигателя должно исключать возможность его смещения в горизонтальной плоскости под действием продольных и поперечных сил (при разгоне, торможении, повороте и т.д.). Для уменьшения вибрации, передающейся на несущую систему ТС от работающего двигателя, между двигателем и подмоторной рамой, в местах крепления, устанавливаются резиновые подушки разнообразных конструкций.

Поршневую группу кривошипно-шатунного механизма образует поршень в сборе с комплектом компрессионных и маслосъемных колец, поршневым пальцем и деталями его крепления. Ее назначение заключается в том, чтобы во время рабочего хода воспринимать давление газов и через шатун передавать усилие на коленчатый вал, осуществлять другие вспомогательные такты, а также уплотнять надпоршневую полость цилиндра для предотвращения прорыва газов в картер и проникновения в него моторного масла.

Поршень

Поршень представляет собой металлический стакан сложной формы, устанавливаемый в цилиндре днищем вверх. Он состоит из двух основных частей. Верхняя утолщенная часть называется головкой, а нижняя направляющая часть — юбкой. Головка поршня содержит днище 4 (рис. а) и стенки 2. В стенках проточены канавки 5 для компрессионных колец. Нижние канавки имеют дренажные отверстия 6 для отвода масла. Для увеличения прочности и жесткости головки ее стенки снабжены массивными ребрами 3, связывающими стенки и днище с бобышками, в которых устанавливается поршневой палец. Иногда оребряют также внутреннюю поверхность днища.

Юбка имеет более тонкие стенки, чем у головки. В ее средней части расположены бобышки с отверстиями.

Рис. Конструкции поршней с различной формой днища (а—з) и их элементов:
1 — бобышка; 2 — стенка поршня; 3 — ребро; 4 — днище поршня; 5 — канавки для компрессионных колец; 6 — дренажное отверстие для отвода масла

Днища поршней могут быть плоскими (см. а), выпуклыми, вогнутыми и фигурными (рис. б—з). Их форма зависит от типа двигателя и камеры сгорания, принятого способа смесеобразования и технологии изготовления поршней. Самой простой и технологичной является плоская форма. В дизелях применяются поршни с вогнутыми и фигурными днищами (см. рис. е—з).

При работе двигателя поршни нагреваются сильнее, чем цилиндры, охлаждаемые жидкостью или воздухом, поэтому расширение поршней (особенно алюминиевых) больше. Несмотря на наличие зазора между цилиндром и поршнем, может произойти заклинивание последнего. Для предотвращения заклинивания юбке придают овальную форму (большая ось овала перпендикулярна оси поршневого пальца), увеличивают диаметр юбки по сравнению с диаметром головки, разрезают юбку (чаще всего выполняют Т- или П-образный разрез), заливают в поршень компенсационные вставки, ограничивающие тепловое расширение юбки в плоскости качания шатуна, или принудительно охлаждают внутренние поверхности поршня струями моторного масла под давлением.

Поршень, подвергающийся воздействию значительных силовых и тепловых нагрузок, должен обладать высокой прочностью, теплопроводностью и износостойкостью. В целях уменьшения инерционных сил и моментов у него должна быть малая масса. Это учитывается при выборе конструкции и материала для поршня. Чаще всего материалом служит алюминиевый сплав или чугун. Иногда применяют сталь и магниевые сплавы. Перспективными материалами для поршней или их отдельных частей являются керамика и спеченные материалы, обладающие достаточной прочностью, высокой износостойкостью, низкой теплопроводностью, малой плотностью и небольшим коэффициентом теплового расширения.

Поршневые кольца

Поршневые кольца обеспечивают плотное подвижное соединение поршня с цилиндром. Они предотвращают прорыв газов из надпоршневой полости в картер и попадание масла в камеру сгорания. Различают компрессионные и маслосъемные кольца.

Компрессионные кольца (два или три) устанавливают в верхние канавки поршня. Они имеют разрез, называемый замком, и поэтому могут пружинить. В свободном состоянии диаметр кольца должен быть несколько больше диаметра цилиндра. При введении в цилиндр такого кольца в сжатом состоянии оно создает плотное соединение. Для того чтобы обеспечить возможность расширения установленного в цилиндре кольца при нагревании, в замке должен быть зазор 0,2…0,4 мм. С целью обеспечения хорошей приработки компрессионных колец к цилиндрам часто применяют кольца с конусной наружной поверхностью, а также скручивающиеся кольца с фаской на кромке с внутренней или наружной стороны. Благодаря наличию фаски такие кольца при установке в цилиндр перекашиваются в сечении, плотно прилегая к стенкам канавок на поршне.

Маслосъемные кольца (одно или два) удаляют масло со стенок цилиндра, не позволяя ему попадать в камеру сгорания. Они располагаются на поршне под компрессионными кольцами. Обычно маслосъемные кольца имеют кольцевую канавку на наружной цилиндрической поверхности и радиальные сквозные прорези для отвода масла, которое по ним проходит к дренажным отверстиям в поршне (см. рис. а). Кроме маслосъемных колец с прорезями для отвода масла используются составные кольца с осевыми и радиальными расширителями.

Для предотвращения утечки газов из камеры сгорания в картер через замки поршневых колец необходимо следить за тем, чтобы замки соседних колец не располагались на одной прямой.

Поршневые кольца работают в сложных условиях. Они подвергаются воздействию высоких температур, а смазывание их наружных поверхностей, перемещающихся с большой скоростью по зеркалу цилиндра, недостаточно. Поэтому к материалу для поршневых колец предъявляются высокие требования. Чаще всего для их изготовления применяют высокосортный легированный чугун. Верхние компрессионные кольца, работающие в наиболее тяжелых условиях, обычно покрывают с наружной стороны пористым хромом. Составные маслосъемные кольца изготавливают из легированной стали.

Поршневой палец

Поршневой палец служит для шарнирного соединения поршня с шатуном. Он представляет собой трубку, проходящую через верхнюю головку шатуна и установленную концами в бобышки поршня. Крепление поршневого пальца в бобышках осуществляется двумя стопорными пружинными кольцами, расположенными в специальных канавках бобышек. Такое крепление позволяет пальцу (в этом случае он называется плавающим) проворачиваться. Вся его поверхность становится рабочей, и он меньше изнашивается. Ось пальца в бобышках поршня может быть смещена относительно оси цилиндра на 1,5…2,0 мм в сторону действия большей боковой силы. Благодаря этому уменьшается стук поршня в непрогретом двигателе.

Поршневые пальцы изготавливают из высококачественной стали. Для обеспечения высокой износоустойчивости их наружную цилиндрическую поверхность подвергают закалке или цементации, а затем шлифуют и полируют.

Поршневая группа состоит из довольно большого числа деталей (поршень, кольца, палец), масса которых по технологическим причинам может колебаться; в некоторых пределах. Если различие в массе поршневых групп в разных цилиндрах будет значительным, то при работе двигателя возникнут дополнительные инерционные нагрузки. Поэтому поршневые группы для одного двигателя подбирают так, чтобы они несущественно отличались по массе (для тяжелых двигателей не более чем на 10 г).

Шатунная группа кривошипно-шатунного механизма состоит из:

  • шатуна
  • верхней и нижней головок шатуна
  • подшипников
  • шатунных болтов с гайками и элементами их фиксации

Шатун

Шатун соединяет поршень с кривошипом коленчатого вала и, преобразуя возвратно-поступательное движение поршневой группы во вращательное движение коленчатого вала, совершает сложное движение, подвергаясь при этом действию знакопеременных ударных нагрузок. Шатун состоит из трех конструктивных элементов: стержня 2, верхней (поршневой) головки 1 и нижней (кривошипной) головки 3. Стержень шатуна обычно имеет двутавровое сечение. В верхнюю головку для уменьшения трения запрессовывают бронзовую втулку 6 с отверстием для подвода масла к трущимся поверхностям. Нижнюю головку шатуна для обеспечения возможности сборки с коленчатым валом выполняют разъемной. У бензиновых двигателей разъем головки обычно расположен под углом 90° к оси шатуна. У дизелей нижняя головка шатуна 7, как правило, имеет косой разъем. Крышка 4 нижней головки крепится к шатуну двумя шатунными болтами, точно подогнанными к отверстиям в шатуне и крышке для обеспечения высокой точности сборки. Чтобы крепление не ослабло, гайки болтов стопорят шплинтами, стопорными шайбами или контргайками. Отверстие в нижней головке растачивают в сборе с крышкой, поэтому крышки шатунов не могут быть взаимозаменяемыми.

Рис. Детали шатунной группы:
1 — верхняя головка шатуна; 2 — стержень; 3 — нижняя головка шатуна; 4 — крышка нижней головки; 5 — вкладыши; 6 — втулка; 7 — шатун дизеля; S — основной шатун сочлененного шатунного узла

Для уменьшения трения в соединении шатуна с коленчатым валом и облегчения ремонта двигателя в нижнюю головку шатуна устанавливают шатунный подшипник, который выполнен в виде двух тонкостенных стальных вкладышей 5, залитых антифрикционным сплавом. Внутренняя поверхность вкладышей точно подогнана к шейкам коленчатого вала. Для фиксации вкладышей относительно головки они имеют отогнутые усики, входящие в соответствующие пазы головки. Подвод масла к трущимся поверхностям обеспечивают кольцевые проточки и отверстия во вкладышах.

Для обеспечения хорошей уравновешенности деталей кривошипно-шатунного механизма шатунные группы одного двигателя (как и поршневые) должны иметь одинаковую массу с соответствующим ее распределением между верхней и нижней головками шатуна.

В V-образных двигателях иногда используются сочлененные шатунные узлы, состоящие из спаренных шатунов. Основной шатун 8, имеющий обычную конструкцию, соединен с поршнем одного ряда. Вспомогательный прицепной шатун, соединенный верхней головкой с поршнем другого ряда, нижней головкой шарнирно крепится с помощью пальца к нижней головке основного шатуна.

Коленчатый вал

Коленчатый вал, соединенный с поршнем посредством шатуна, воспринимает действующие на поршень силы. На нем возникает вращающий момент, который затем передается на трансмиссию, а также используется для приведения в действие других механизмов и агрегатов. Под влиянием резко изменяющихся по величине и направлению сил инерции и давления газов коленчатый вал вращается неравномерно, испытывая крутильные колебания, подвергаясь скручиванию, изгибу, сжатию и растяжению, а также воспринимая тепловые нагрузки. Поэтому он должен обладать достаточной прочностью, жесткостью и износостойкостью при сравнительно небольшой массе.

Конструкции коленчатых валов отличаются сложностью. Их форма определяется числом и расположением цилиндров, порядком работы двигателя и числом коренных опор. Основными частями коленчатого вала являются коренные шейки 3, шатунные шейки 2, щеки 4, противовесы 5, передний конец (носок 1) и задний конец (хвостовик 6) с фланцем.

К шатунным шейкам коленчатого вала присоединяют нижние головки шатунов. Коренными шейками вал устанавливают в подшипниках картера двигателя. Соединяются коренные и шатунные шейки при помощи щек. Плавный переход от шеек к щекам, называемый галтелью, позволяет избежать концентрации напряжений и возможных поломок коленчатого вала. Противовесы предназначены для разгрузки коренных подшипников от центробежных сил, возникающих на кривошипах вала во время его вращения. Их, как правило, изготавливают как единое целое со щеками.

Для обеспечения нормальной работы двигателя к рабочим поверхностям коренных и шатунных шеек необходимо подавать моторное масло под давлением. Масло поступает из отверстий в картере к коренным подшипникам. Затем оно через специальные каналы в коренных шейках, щеках и шатунных шейках попадает к шатунным подшипникам. Для дополнительной центробежной очистки масла в шатунных шейках имеются грязеуловительные полости, закрытые заглушками.

Коленчатые валы изготавливают методом ковки или литья из среднеуглеродистых и легированных сталей (может применяться также чугун высококачественных марок). После механической и термической обработки коренные и шатунные шейки подвергают поверхностной закалке (для повышения износостойкости), а затем шлифуют и полируют. После обработки вал балансируют, т. е. добиваются такого распределения его массы относительно оси вращения, при котором вал находится в состоянии безразличного равновесия.

В коренных подшипниках применяют тонкостенные износостойкие вкладыши, аналогичные вкладышам шатунных подшипников. Для восприятия осевых нагрузок и предотвращения осевого смещения коленчатого вала один из его коренных подшипников (обычно передний) делают упорным.

Маховик

Маховик крепится к фланцу хвостовика коленчатого вала. Он представляет собой тщательно сбалансированный чугунный диск определенной массы. Кроме обеспечения равномерного вращения коленчатого вала маховик способствует преодолению сопротивления сжатия в цилиндрах при пуске двигателя и кратковременных перегрузок, например, при трогании ТС с места. На ободе маховика закреплен зубчатый венец для пуска двигателя от стартера. Поверхность маховика, которая соприкасается с ведомым диском сцепления, шлифуют и полируют.

Рис. Коленчатый вал:
1 — носок; 2 — шатунная шейка; 3 — коренная шейка; 4 — щека; 5 — противовес; 6 — хвостовик с фланцем

Видео-уроки о КШМ

Кривошипно-шатунный механизм (КШМ): назначение, устройство, принцип работы

Если есть что-то, что прочно ассоциируется с любым автомобилем, это механизм двигателя. Как ни странно, принцип его действия мало изменился с тех пор, как 120 лет назад Карл Бенц запатентовал свой первый автомобиль. Система усложнялась, обрастала сложной электроникой, совершенствовалась, но кривошипно-шатунный механизм (КШМ) остался самым узнаваемым “портретом” любого мотора.

Что такое КШМ и для чего он нужен?

Двигатель в процессе работы должен давать какое-то постоянное движение, и удобней всего, чтобы это было равномерное вращение. Однако силовая часть (цилиндро-поршневая группа, ЦПГ) вырабатывает поступательное движение. Значит, нужно сделать так, чтобы один тип движения преобразовался в другой, причем с наименьшими потерями. Вот для этого и был создан кривошипно-шатунный механизм.
По сути, КШМ – это устройство для получения и преобразования энергии и передачи ее дальше, другим узлам, которые уже эту энергию используют.

Устройство КШМ

Строго говоря, КШМ автомобиля состоит из самого кривошипа, шатунов и поршней. Однако говорить о части, не рассказав о целостной конструкции, было бы в корне неправильно. Поэтому схема и назначение КШП и смежных элементов будет рассматриваться в комплексе.

Устройство КШМ: (1 — коренной подшипник на коренной шейке; 2 — шатунный подшипник на шатунной шейке; 3 — шатун; 4 — поршневой палец; 5 — поршневые кольца; 6 — поршень; 7 — цилиндр; 8 — маховик; 9 — противовес; 10 — коленчатый вал.)
  1. Блок цилиндров – это начало всего движения в моторе. Его составляющие – поршни, цилиндры и гильзы цилиндров, в которых эти поршни движутся;
  2. Шатуны – это соединительные элементы между поршнями и коленвалом. По сути, шатун представляет собой прочную металлическую перемычку, которая одной стороной крепится к поршню с помощью шатунного пальца, а другой фиксируется на шейке коленвала. Благодаря пальцевому соединению поршень может двигаться относительно цилиндра в одной плоскости. Точно так же шатун охватывает посадочное место коленвала – шатунную шейку, и это крепление позволяет ему двигаться в той же плоскости, что и соединение с поршнем;
  3. Коленвал – коленчатый вал вращения, ось которого проходит через носок вала, коренные (опорные) шейки и фланец маховика. А вот шатунные шейки выходят за ось вала, и благодаря этому при его вращении описывают окружность;
  4. Маховик – обязательный элемент механизма, накапливающий инерцию вращения, благодаря которой двигатель работает ровней и не останавливается в “мертвой точке”.

Эти и другие элементы КШМ можно условно разделить на подвижные, те, что выполняют непосредственную работу, и неподвижные вспомогательные элементы.

Подвижная (рабочая) группа КШМ

Как понятно из названия, к подвижной группе относятся элементы, которые активно задействованы в работе двигателя.

  1. Поршень. При работе двигателя поршень перемещается в гильзе цилиндра под действием выталкивающей силы при сгорании топлива – с одной стороны, и поворотом коленвала – с другой. Для уплотнения зазора между ним и цилиндром на боковой поверхности поршня находятся поршневые кольца (компрессионные и маслосъемные), которые герметизируют промежуток и препятствуют потере мощности во время сгорания топлива.

    Устройство поршневой группы: (1 — масляно-охлаждающий канал; 2 — камера сгорания в днище поршня; 3 — днище поршня; 4 — канавка первого компрессионного кольца; 5 — первое (верхнее) компрессионное кольцо; 6 — второе (нижнее) компрессионное кольцо; 7 — маслосъемное кольцо; 8 — масляная форсунка; 9 — отверстие в головке шатуна для подвода масла к поршневому пальцу; 10 — шатун; 11 — поршневой палец; 12 — стопорное кольцо поршневого пальца; 13 и 14 — перегородки поршневых колец; 15 — жаровой пояс.)

  2. Шатун. Это соединительный элемент между поршнем и коленвалом. Верхней головкой шатун крепится к поршню с помощью пальца. Нижняя головка имеет съемную часть, так что шатун можно надеть на шейку коленвала. Для уменьшения трения между шейкой коленвала и головкой шатуна ставятся шатунные вкладыши – подшипники скольжения в виде двух пластин, изогнутых полукругом.

    Устройство шатуна

  3. Коленвал. Это центральная часть двигателя, без которой сложно представить себе его принцип работы. Основной его частью является ось вращения, которая одновременно служит опорой для коленвала в блоке цилиндров. Выступающие за ось вращения элементы предназначены для присоединения к шатунам: когда шатун движется вниз, коленвал позволяет ему описать нижней частью окружность одновременно с движением поршня. Так же, как и в случае с шатунами, опорные шейки коленвала лежат на подшипниках скольжения – вкладышах.

    Устройство коленвала

  4. Маховик. Он крепится к фланцу на торцевой части коленвала. Маховик вращается вместе с валом двигателя и частично демпфирует неизбежные в любом ДВС рывковые нагрузки. Но основная задача маховика – раскручивать коленвал (а с ним и цилиндро-поршневую группу), чтобы поршни не замерли в “мертвой точке”. Таким образом, часть мощности двигателя расходуется на поддержку вращения маховика.
Устройство маховика
Неподвижная группа КШМ

Неподвижной группой можно назвать внешнюю часть двигателя, в которой находится КШП.

  1. Блок цилиндров. По сути, это корпус, в котором располагаются непосредственно цилиндры, каналы системы охлаждения, посадочные места распредвала, коленвала и т.д. Он может выполняться из чугуна или алюминиевого сплава, и сегодня производители всё чаще используют алюминий, чтобы облегчить конструкцию. Для этой же цели вместо сплошного литья используются ребра жесткости, которые облегчают конструкцию без потери прочности. На боковых сторонах блока цилиндров располагаются посадочные места для вспомогательных механизмов двигателя.

    Блок цилиндров

  2. Головка блока цилиндров (ГБЦ). Устанавливается на блок цилиндров и закрывает его сверху. В ГБЦ предусмотрены отверстия для клапанов, впускного и выпускного коллекторов, крепления распредвала (одного или больше), крепления для других элементов двигателя. К ГБЦ, снизу, крепится прокладка (1) — пластина, которая герметизирует стык между блоком цилиндров и ГБЦ. В ней предусмотрены отверстия для цилиндров и крепежных болтов. А сверху — клапанная крышка (5), — ею закрывается ГБЦ сверху, когда двигатель собран и готов к запуску. Прокладка клапанной крышки. Это тонкая пластина, которая укладывается по периметру ГБЦ и герметизирует стык.
Устройство ГБЦ: (1 — прокладка ГБЦ; 2 — ГБЦ; 3 — сальник; 4 — прокладка крышки ГБЦ; 5 — крышка клапанная; 6- прижимная пластина; 7 — пробка маслозаливной горловины; 8 — прокладка пробки; 9 — направляющая втулка клапана; 10 — установочная втулка; 11 — болт крепления головки блока.)

Принцип работы КШМ

Работа механизма двигателя основана на энергии расширения при сгорании топливно-воздушной смеси. Именно эти “микровзрывы” являются движущей силой, которую кривошипно-шатунный механизм переводит в удобную форму. На видео, ниже, подробно описанный принцип работы КШМ в 3Д анимайии.

Принцип работы КШМ:

  1. В цилиндрах двигателя сгорает распыленное и смешанное с воздухом топливо. Такая дисперсия предполагает не медленное горение, а мгновенное, благодаря чему воздух в цилиндре резко расширяется.
  2. Поршень, который в момент начала горения топлива находится в верхней точке, резко опускается вниз. Это прямолинейное движение поршня в цилиндре.
  3. Шатун соединен с поршнем и коленвалом так, что может двигаться (отклоняться) в одной плоскости. Поршень толкает шатун, который надет на шейку коленвала. Благодаря подвижному соединению, импульс от поршня через шатун передается на коленвал по касательной, то есть вал делает поворот.
  4. Поскольку все поршни по очереди толкают коленвал по тому же принципу, их возвратно-поступательное движение переходит во вращение коленвала.
  5. Маховик добавляет импульс вращения, когда поршень находится в «мертвых» точках.

Интересно, что для старта двигателя нужно сначала раскрутить маховик. Для этой цели нужен стартер, который сцепляется с зубчатым венцом маховика и раскручивает его, пока мотор не заведется. Закон сохранения энергии в действии.

Остальные элементы двигателя: клапаны, распредвалы, толкатели, система охлаждения, система смазки, ГРМ и прочие – необходимые детали и узлы для обеспечения работы КШМ.

Основные неисправности

Учитывая нагрузки, как механические, так и химические, и температурные, кривошипно-шатунный механизм подвержен различным проблемам. Избежать неприятностей с КШП (а значит, и с двигателем) помогает грамотное обслуживание, но всё равно от поломок никто не застрахован.

Стук в двигателе

Один из самых страшных звуков, когда в моторе вдруг появляется странный стук и прочие посторонние шумы. Это всегда признак проблем: если что-то начало стучать, значит, с ним проблема. Поскольку в двигателе элементы подогнаны с микронной точностью, стук свидетельствует об износе. Придется разбирать двигатель, смотреть, что стучало, и менять изношенную деталь.

Основной причиной износа чаще всего становится некачественное ТО двигателя. Моторное масло имеет свой ресурс, и его регулярная замена архиважна. То же относится и к фильтрам. Твердые частички, даже мельчайшие, постепенно изнашивают тонко пригнанные детали, образуют задиры и выработку.

Стук может говорить и об износе подшипников (вкладышей). Они также страдают от недостатка смазки, поскольку именно на вкладыши приходится огромная нагрузка.

Снижение мощности

Потеря мощности двигателя может говорить о залегании поршневых колец. В этом случае кольца не выполняют свою функцию, в камере сгорания остается моторное масло, а продукты сгорания прорываются в двигатель. Прорыв газов говорит и о пустой растрате энергии, и это чувствует автовладелец как снижение динамических характеристик. Продолжительная работа в такой ситуации может только ухудшить состояние двигателя и довести стандартную, в общем-то, проблему до капремонта двигателя.

Проверить состояние мотора можно самостоятельно, измерив компрессию в цилиндрах. Если она ниже нормативной для данной модификации двигателя, значит, предстоит ремонт двигателя.

Повышенный расход масла

Если двигатель начал “жрать” масло, это явный признак залегания поршневых колец или других проблем с цилиндро-поршневой группой. Масло сгорает вместе с топливом, из выхлопной трубы идет черный дым, температура в камере сгорания превышает расчетную, и это не добавляет двигателю здоровья. В некоторых случаях может помочь очистка без демонтажа двигателя, но в большинстве случаев предстоит разборка и дефектовка двигателя.

Нагар

Отложения на поршнях, клапанах и свечах зажигания говорят о том, что с двигателем есть проблема. Если топливо не сгорает полностью, нужно искать причину неисправности и устранять ее. В противном случае мотору грозит перегрев из-за ухудшения теплопроводности поверхностей со слоем нагара.

Белый дым из выхлопной трубы

Появляется, когда в камеру сгорания попадает антифриз. Причиной чаще всего бывает износ прокладки ГБЦ или микротрещины в рубашке охлаждения двигателя, и для устранения проблемы необходима ее замена.

Медлить в этой ситуации нежелательно: маленькая протечка может обернуться гидроударом. Камера сгорания наполняется жидкостью, поршень движется вверх, но жидкость, в отличие от воздуха, не сжимается, и получается эффект удара о твёрдую поверхность. Последствия такой катастрофы могут быть любые, вплоть до “кулака дружбы” и продажи машины на запчасти.

Заключение

Несмотря на высокие нагрузки, критические условия работы и даже небрежность владельцев, кривошипно-шатунный механизм отличается завидной живучестью. Вывести его из строя можно неправильным обслуживанием, нештатными нагрузками, поломкой смежных элементов. Да, двигатель почти всегда можно починить, но эта услуга обойдётся в разы дороже, чем просто грамотное регулярное ТО. Недаром же есть двигатели “миллионники”, которые способны служить десятилетиями, не доставляя проблем владельцу машины.

Кривошипно-шатунный механизм. Назначение и устройство КШМ

Кривошипно-шатунный механизм (далее сокращенно – КШМ) – механизм двигателя. Основным назначением КШМ является преобразование возвратно-поступательных движений поршня цилиндрической формы во вращательные движения коленчатого вала в двигателе внутреннего сгорания и наоборот.

Устройство КШМ

 

Поршень

Поршень имеет вид цилиндра, изготовленного из сплавов алюминия. Основная функция этой детали заключается в превращении в механическую работу изменение давления газа, или наоборот, – нагнетание давления за счет возвратно-поступательного движения.

Поршень представляет собой сложенные воедино днище, головку и юбку, которые выполняют совершенно разные функции. Днище поршня плоской, вогнутой или выпуклой формы содержит в себе камеру сгорания. Головка имеет нарезанные канавки, где размещаются поршневые кольца (компрессионные и маслосъемные). Компрессионные кольца исключают прорыв газов в картер двигателя, а поршневые маслосъемные кольца способствуют удалению излишков масла на внутренних стенках цилиндра. В юбке расположены две бобышки, обеспечивающие размещение соединяющего поршень с шатуном поршневого пальца.

 

Шатун

Изготовленный штамповкой или кованый стальной (реже – титановый) шатун имеет шарнирные соединения. Основная роль шатуна состоит в передаче поршневого усилия к коленчатому валу. Конструкция шатуна предполагает наличие верхней и нижней головки, а также стержня с двутавровым сечением. В верхней головке и бобышках находится вращающийся («плавающий») поршневой палец, а нижняя головка – разборная, позволяющая, тем самым, обеспечить тесное соединение с шейкой вала. Современная технология контролируемого раскалывания нижней головки позволяет обеспечить высокую точность соединения ее частей.

 

Коленчатый вал

Изготовленный из стали или чугуна высокой прочности коленчатый вал состоит из шатунных и коренных шеек, соединенных щеками и вращающихся в подшипниках скольжения. Щеки создают противовес шатунным шейкам. Основная функция коленчатого вала состоит в восприятии усилия от шатуна для преобразования его в крутящий момент. Внутри щек и шеек вала предусмотрены отверстия для подачи под давлением масла системой смазки двигателя.

 

Маховик

Маховик устанавливается на конце коленчатого вала. На сегодняшний день находят широкое применение двухмассовые маховики, имеющие вид двух, упруго соединенных между собой, дисков. Зубчатый венец маховика принимает непосредственное участие в запуске двигателя через стартер.

 

Блок и головка блока цилиндров

Блок цилиндров и головка блока цилиндров отливаются из чугуна (реже – сплавов алюминия). В блоке цилиндров предусмотрены рубашки охлаждения, постели для подшипников коленчатого и распределительного валов, а также точки крепления приборов и узлов. Сам цилиндр выполняет функцию направляющей для поршней. Головка блока цилиндра располагает в себе камеру сгорания, впускные-выпускные каналы, специальные резьбовые отверстия для свечей системы зажигания, втулки и запрессованные седла. Герметичность соединения блока цилиндров с головкой обеспечены прокладкой. Кроме того, головка цилиндра закрыта штампованной крышкой, а между ними, как правило, устанавливается прокладка из маслостойкой резины.

В целом, поршень, гильза цилиндров и шатун формируют цилиндр или цилиндропоршневую группу кривошипно-шатунного механизма. Современные двигатели могут иметь до 16 и более цилиндров.

     

    РЕКОМЕНДУЕМ ТАКЖЕ ПРОЧИТАТЬ:

     

    Лекция «Устройство кривошипно-шатунного механизма»

    Кривошипно-шатунный механизм (далее сокращенно – КШМ) – механизм двигателя. Основным назначением КШМ является преобразование возвратно-поступательных движений поршня цилиндрической формы во вращательные движения коленчатого вала в двигателе внутреннего сгорания и наоборот.

    — Устройство КШМ:

    • Поршень

    Имеет вид цилиндра, изготовленного из сплавов алюминия. Основная функция этой детали заключается в превращении в механическую работу изменение давления газа, или наоборот, – нагнетание давления за счет возвратно-поступательного движения. Поршень представляет собой сложенные воедино днище, головку и юбку, которые выполняют совершенно разные функции. Днище поршня плоской, вогнутой или выпуклой формы содержит в себе камеру сгорания. Головка имеет нарезанные канавки, где размещаются поршневые кольца (компрессионные и маслосъемные). Компрессионные кольца исключают прорыв газов в картер двигателя, а поршневые маслосъемные кольца способствуют удалению излишков масла на внутренних стенках цилиндра. В юбке расположены две бобышки, обеспечивающие размещение соединяющего поршень с шатуном поршневого пальца.

    • Шатун

    Изготовленный штамповкой или кованый стальной (реже – титановый) шатун имеет шарнирные соединения. Основная роль шатуна состоит в передаче поршневого усилия к коленчатому валу. Конструкция шатуна предполагает наличие верхней и нижней головки, а также стержня с двутавровым сечением. В верхней головке и бобышках находится вращающийся («плавающий») поршневой палец, а нижняя головка – разборная, позволяющая, тем самым, обеспечить тесное соединение с шейкой вала. Современная технология контролируемого раскалывания нижней головки позволяет обеспечить высокую точность соединения ее частей.

    • Коленчатый вал

    Изготовленный из стали или чугуна высокой прочности коленчатый вал состоит из шатунных и коренных шеек, соединенных щеками и вращающихся в подшипниках скольжения. Щеки создают противовес шатунным шейкам. Основная функция коленчатого вала состоит в восприятии усилия от шатуна для преобразования его в крутящий момент. Внутри щек и шеек вала предусмотрены отверстия для подачи под давлением масла системой смазки двигателя.

    • Маховик

    Устанавливается на конце коленчатого вала. На сегодняшний день находят широкое применение двухмассовые маховики, имеющие вид двух, упруго соединенных между собой, дисков. Зубчатый венец маховика принимает непосредственное участие в запуске двигателя через стартер.

    • Блок и головка блока цилиндров

    Блок цилиндров и головка блока цилиндров отливаются из чугуна (реже – сплавов алюминия). В блоке цилиндров предусмотрены рубашки охлаждения, постели для подшипников коленчатого и распределительного валов, а также точки крепления приборов и узлов. Сам цилиндр выполняет функцию направляющей для поршней. Головка блока цилиндра располагает в себе камеру сгорания, впускные-выпускные каналы, специальные резьбовые отверстия для свечей системы зажигания, втулки и запрессованные седла. Герметичность соединения блока цилиндров с головкой обеспечены прокладкой. Кроме того, головка цилиндра закрыта штампованной крышкой, а между ними, как правило, устанавливается прокладка из маслостойкой резины.

    Назначение и устройство кривошипно-шатунного механизма ДВС

    Двигатели внутреннего сгорания, используемые на автомобилях, функционируют за счет преобразования энергии, выделяемой при горении горючей смеси, в механическое действие – вращение. Это преобразование обеспечивается кривошипно-шатунным механизмом (КШМ), который является одним из ключевых в конструкции двигателя автомобиля.

    Устройство КШМ

    Кривошипно-шатунный механизм двигателя состоит из трех основных деталей:

    1. Цилиндро-поршневая группа (ЦПГ).
    2. Шатун.
    3. Коленчатый вал.

    Все эти компоненты размещаются в блоке цилиндров.

    ЦПГ

    Назначение ЦПГ — преобразование выделяемой при горении энергии в механическое действие – поступательное движение. Состоит ЦПГ из гильзы – неподвижной детали, посаженной в блок в блок цилиндров, и поршня, который перемещается внутри этой гильзы.

    После подачи внутрь гильзы топливовоздушной смеси, она воспламеняется (от внешнего источника в бензиновых моторах и за счет высокого давления в дизелях). Воспламенение сопровождается сильным повышением давления внутри гильзы. А поскольку поршень это подвижный элемент, то возникшее давление приводит к его перемещению (по сути, газы выталкивают его из гильзы). Получается, что выделяемая при горение энергия преобразуется в поступательное движение поршня.

    Для нормального сгорания смеси должны создаваться определенные условия – максимально возможная герметичность пространства перед поршнем, именуемое камерой сгорания (где происходит горение), источник воспламенения (в бензиновых моторах), подача горючей смеси и отвод продуктов горения.

    Герметичность пространства обеспечивается головкой блока, которая закрывает один торец гильзы и поршневыми кольцами, посаженными на поршень. Эти кольца тоже относятся к деталям ЦПГ.

    Шатун

    Следующий компонент КШМ – шатун. Он предназначен для связки поршня ЦПГ и коленчатого вала и передает механических действий между ними.

    Шатун представляет собой шток двутавровой формы поперечного сечения, что обеспечивает детали высокую устойчивость на изгиб. На концах штока имеются головки, благодаря которым шатун соединяется с поршнем и коленчатым валом.

    По сути, головки шатуна представляют собой проушины, через которые проходят валы обеспечивающие шарнирное (подвижное) соединение всех деталей. В месте соединения шатуна с поршнем, в качестве вала выступает поршневой палец (относится к ЦПГ), который проходит через бобышки поршня и головку шатуна. Поскольку поршневой палец извлекается, то верхняя головка шатуна – неразъемная.

    В месте соединения шатуна с коленвалом, в качестве вала выступают шатунные шейки последнего. Нижняя головка имеет разъемную конструкцию, что и позволяет закреплять шатун на коленчатом валу (снимаемая часть называется крышкой).

    Коленчатый вал

    Назначение коленчатого вала — это обеспечение второго этапа преобразования энергии. Коленвал превращает поступательное движение поршня в свое вращение. Этот элемент кривошипно-шатунного механизма имеет сложную геометрию.

    Состоит коленвал из шеек – коротких цилиндрических валов, соединенных в единую конструкцию. В коленвале используется два типа шеек – коренные и шатунные. Первые расположены на одной оси, они являются опорными и предназначены для подвижного закрепления коленчатого вала в блоке цилиндров.

    В блоке цилиндров коленчатый вал фиксируется специальными крышками. Для снижения трения в местах соединения коренных шеек с блоком цилиндров и шатунных с шатуном, используются подшипники трения.

    Шатунные шейки расположены на определенном боковом удалении от коренных и к ним нижней головкой крепится шатун.

    Коренные и шатунные шейки между собой соединяются щеками. В коленчатых валах дизелей к щекам дополнительно крепятся противовесы, предназначенные для снижения колебательных движений вала.

    Шатунные шейки вместе с щеками образуют так называемый кривошип, имеющий П-образную форму, который и преобразует поступательного движения во вращение коленчатого вала. За счет удаленного расположения шатунных шеек при вращении вала они движутся по кругу, а коренные — вращаются относительно своей оси.

    Количество шатунных шеек соответствует количеству цилиндров мотора, коренных же всегда на одну больше, что обеспечивает каждому кривошипу две опорных точки.

    На одном из концов коленчатого вала имеется фланец для крепления маховика – массивного элемента в виде диска. Основное его назначение: накапливание кинетической энергии за счет которой осуществляется обратная работа механизма – преобразование вращения в движение поршня. На втором конце вала расположены посадочные места под шестерни привода других систем и механизмов, а также отверстие для фиксации шкива привода навесного оборудования мотора.

    Принцип работы механизма

    Принцип работы кривошипно-шатунного механизма рассмотрим упрощенно на примере одноцилиндрового мотора. Такой двигатель включает в себя:

    • коленчатый вал с двумя коренными шейками и одним кривошипом;
    • шатун;
    • и комплект деталей ЦПГ, включающий в себя гильзу, поршень, поршневые кольца и палец.

    Воспламенение горючей смеси выполняется когда объем камеры сгорания минимальный, а обеспечивается это при максимальном поднятии вверх поршня внутри гильзы (верхняя мертвая точка – ВМТ). При таком положении кривошип тоже «смотрит» вверх. При сгорании выделяемая энергия толкает вниз поршень, это движение передается через шатун на кривошип, и он начинает двигаться по кругу вниз, при этом коренные шейки вращаются вокруг своей оси.

    При провороте кривошипа на 180 градусов поршень достигает нижней мертвой точки (НМТ). После ее достижения  выполняется обратная работа механизма. За счет накопленной кинетической энергии маховик продолжает вращать коленвал, поэтому чему кривошип проворачивается и посредством шатуна толкает поршень вверх. Затем цикл полностью повторяется.

    Если рассмотреть проще, то один полуоборот коленвала осуществляется за счет выделенной при сгорании энергии, а второй – благодаря кинетической энергии, накопленной маховиком. Затем процесс повторяется вновь.

    Ещё кое-что полезное для Вас:

    Особенности работы двигателя. Такты

    Выше описана упрощенная схема работы КШМ. В действительности чтобы создать необходимые условия для нормального сгорания топливной смеси, требуется выполнение подготовительных этапов – заполнение камеры сгорания компонентами смеси, их сжатие и отвод продуктов горения. Эти этапы получили название «такты мотора» и всего их четыре – впуск, сжатие, рабочий ход, выпуск. Из них только рабочий ход выполняет полезную функцию (именно при нем энергия преобразуется в движение), а остальные такты – подготовительные. При этом выполнение каждого этапа сопровождается проворотом коленвала вокруг оси на 180 градусов.

    Конструкторами разработано два типа двигателей – 2-х и 4-тактный. В первом варианте такты совмещены (рабочий ход с выпуском, а впуск – со сжатием), поэтому в таких моторах полный рабочий цикл выполняется за один полный оборот коленвала.

    В 4-тактном двигателе каждый такт выполняется по отдельности, поэтому в таких моторах полный рабочий цикл выполняется за два оборота коленчатого вала, и только один полуоборот (на такте «рабочий ход») выполняется за счет выделенной при горении энергии, а остальные 1,5 оборота – благодаря энергии маховика.

    Основные неисправности и обслуживание КШМ

    Несмотря на то, что кривошипно-шатунный механизм работает в жестких условиях, эта составляющая двигателя  достаточно надежная. При правильном проведении технического обслуживания, механизм работает долгий срок.

    При правильной эксплуатации двигателя ремонт кривошипно-шатунный механизма потребуется только из-за износа ряда составных деталей – поршневых колец, шеек коленчатого вала, подшипников скольжения.

    Поломки составных компонентов КШМ происходят в основном из-за нарушения правил эксплуатации силовой установки (постоянная работа на повышенных оборотах, чрезмерные нагрузки), невыполнения ТО, использования неподходящих горюче-смазочных материалов. Последствиями такого использования мотора могут быть:

    • залегание и разрушение колец;
    • прогорание поршня;
    • трещины стенок гильзы цилиндра;
    • изгиб шатуна;
    • разрыв коленчатого вала;
    • «наматывание» подшипников скольжения на шейки.

    Такие поломки КШМ очень серьезны, зачастую поврежденные элементы ремонту не подлежат их нужно только менять. В некоторых случаях поломки КШМ сопровождаются разрушениями иных элементов мотора, что приводит мотор в полную негодность без возможности восстановления.

    Чтобы кривошипно-шатунный механизм двигателя не стал причиной выхода из строя мотора, достаточно выполнять ряд правил:

    1. Не допускать длительной работы двигателя на повышенных оборотах и под большой нагрузкой.
    2. Своевременно менять моторное масло и использовать смазку, рекомендованную автопроизводителем.
    3. Использовать только качественное топливо.
    4. Проводить согласно регламенту замену воздушных фильтров.

    Не стоит забывать, что нормальное функционирование мотора зависит не только от КШМ, но и от  смазки, охлаждения, питания, зажигания, ГРМ, которым также требуется своевременное обслуживание.

    Кривошипно-шатунный механизм: устройство, детали, принцип работы

    Практически в любом поршневом двигателе, установленном в автомобиле, тракторе, мотоблоке, используется кривошипно- шатунный механизм. Стоят они и компрессорах для производства сжатого воздуха. Энергию расширяющихся газов, продуктов сгорания очередной порции рабочей смеси, кривошипный механизм преобразует во вращение рабочего вала, передаваемое на колеса, гусеницы или привод мотокосы. В компрессоре происходит обратное явление: энергия вращения приводного вала преобразуется в потенциальную энергию сжимаемого в рабочей камере воздуха или другого газа.

    Устройство механизма

    Первые кривошипные устройства были изобретены в античном мире. На древнеримских лесопилках вращательное движение водяного колеса, вращаемого речным течением, преобразовывалось в возвратно-поступательной движение полотна пилы. В античности большого распространения такие устройства не получили по следующим причинам:

    • деревянные части быстро изнашивались и требовали частого ремонта или замены;
    • рабский труд обходился дешевле высоких для того времени технологий.

    В упрощенном виде кривошипно-шатунный механизм использовался с XVI века в деревенских прялках. Движение педали преобразовывалось во вращение прядильного колеса и других частей приспособления.

    Разработанные в XVIII веке паровые машины тоже использовали кривошипный механизм. Он располагался на ведущем колесе паровоза. Давление пара на поршневое дно преобразовывалось в возвратно- поступательное движение штока, соединенного с шатуном, шарнирно закрепленном на ведущем колесе. Шатун придавал колесу вращение. Такое устройство кривошипно-шатунного механизма было основой механического транспорта до первой трети XX века.

    Паровозная схема была улучшена в крейцкопфных моторах. Поршень в них жестко прикреплен к крейцкопфу- штоку, скользящему в направляющих взад и вперед. На конце штока закреплен шарнир, к нему присоединен шатун. Такая схема увеличивает размах рабочих движений, позволяет даже сделать вторую камеру с другой стороны от поршня. Таким образом каждое движение штока сопровождается рабочим тактом. Такая кинематика и динамика кривошипно-шатунного механизма позволяет при тех же габаритах удвоить мощность. Крейцкопфы применяются в крупных стационарных и корабельных дизельных установках.

    Элементы, составляющие кривошипно-шатунный механизм, разбивают на следующие типы:

    • Подвижные.
    • Неподвижные.

    К первым относятся:

    • поршень;
    • кольца;
    • пальцы;
    • шатун;
    • маховик;
    • коленвал;
    • подшипники скольжения коленчатого вала.

    К неподвижным деталям кривошипно-шатунного механизма относят:

    • блок цилиндров;
    • гильза;
    • головка блока;
    • кронштейны;
    • картер;
    • другие второстепенные элементы.

    Поршни, пальцы и кольца объединяют в поршневую группу.

    Каждый элемент, равно как и подробная кинематическая схема и принцип работы заслуживают более подробного рассмотрения

    Блок цилиндров

    Это одна из самых сложных по конфигурации деталь двигателя. На схематическом объемном чертеже видно, что внутри он пронизан двумя непересекающимися системами каналов для подачи масла к точкам смазки и циркуляции охлаждающей жидкости. Он отливается из чугуна или сплавов легких металлов, содержит в себе места для запрессовки гильз цилиндра, кронштейны для подшипников коленвала, пространство для маховика, систем смазки и охлаждения. К блоку подходят патрубки системы подачи топливной смеси и удаления отработанных газов.

    Снизу к блоку через герметичную прокладку крепится масляный картер- резервуар для смазки. В этом картере и происходит основная работа кривошипно- шатунного механизма, сокращенно КШМ.

    Гильза должна выдерживать высокое давление в цилиндре. Его создают газы, образовавшиеся после сгорания топливной смеси. Поэтому и то место блока, куда гильзы запрессованы, должно выдерживать большие механические и термические нагрузки.

    Гильзы обычно изготавливают из прочных сортов стали, реже — из чугуна. В ходе работы двигателя они изнашиваются при капитальном ремонте двигателя могут быть заменены. Различают две основных схемы их размещения:

    • сухая, внешняя сторона гильзы отдает тепло материалу блока цилиндров;
    • влажная, гильза омывается снаружи охлаждающей жидкостью.

    Второй вариант позволяет развивать большую мощность и переносить пиковые нагрузки.

    Поршни

    Деталь представляет из себя стальную или алюминиевую отливку в виде перевернутого стакана. Скользя по стенкам цилиндра, он принимает на себя давление сгоревшей топливной смеси и превращает его в линейное движение. Далее через кривошипный узел она превращается во вращение коленчатого вала, а затем передается на сцепление и коробку передач и через кардан к колесам. Силы, действующие в кривошипно-шатунном механизме, приводят транспортное средство или стационарный механизм в движение.

    Деталь выполняет следующие функции:

    • на такте впуска, двигаясь вниз (или в направлении от коленчатого вала, если цилиндр расположен не вертикально) на, он увеличивает объем рабочей камеры и создает в ней разрежение, затягивающее и равномерно распределяющее по объему очередную порцию рабочей смеси;
    • на такте сжатия поршневая группа движется вверх, сжимая рабочую смесь до необходимой степени;
    • далее идет рабочий такт, деталь под давлением идет вниз, передавая импульс вращения коленчатому валу;
    • на такте выпуска он снова идет вверх, вытесняя отработанные газы в выхлопную систему.

    На всех тактах, кроме рабочего, поршневая группа движется за счет коленчатого вала, забирая часть энергии его вращения. На одноцилиндровых двигателях для аккумуляции такой энергии служим массивный маховик, на многоцилиндровые такты цилиндров сдвинуты во времени.

    Конструктивно изделие подразделяется на такие части, как:

    • днище, воспринимающее давление газов;
    • уплотнение с канавками для поршневых колец;
    • юбка, в которой закреплен палец.

    Палец служит осью, на которой закреплено верхнее плечо шатуна.

    Поршневые кольца

    Назначение и устройство поршневых колец обуславливается их ролью в работе кривошипных- устройств. Кольца выполняются плоскими, они имеют разрез шириной в несколько десятых частей миллиметра. Их вставляют в проточенные для них кольцевые углубления на уплотнении.

    Кольца выполняют следующие функции:

    • Уплотняют зазор между гильзой и стенками поршня.
    • Обеспечивают направление движения поршня.
    • Охлаждают. Касаясь гильзы, компрессионные кольца отводят избыточное тепло от поршня, оберегая его от перегрева.
    • Изолируют рабочую камеру от смазочных материалов в картере. С одной стороны, кольца задерживают капельки масла, разбрызгиваемые в картере ударами противовесов щек коленвала, с другой, пропускают небольшое его количество для смазки стенок цилиндра. За это отвечает нижнее, маслосъемное кольцо.

    Смазывать необходимо и соединение поршня с шатуном.

    Отсутствие смазки в течение нескольких минут приводит детали цилиндра в негодность. Трущиеся части перегреваются и начинают разрушаться либо заклиниваются. Ремонт в этом случае предстоит сложный и дорогостоящий.

    Поршневые пальцы

    Осуществляют кинематическую связь поршня и шатуна. Изделие закреплено в поршневой юбке и служит осью подшипника скольжения. Детали выдерживают высокие динамические нагрузки во время рабочего хода, а также смены такта и обращения направления движения. Вытачивают их из высоколегированных термостойких сплавов.

    Различают следующие типы конструкции пальцев:

    • Фиксированные. Неподвижно крепятся в юбке, вращается только обойма верхней части шатуна.
    • Плавающие. Могут проворачиваться в своих креплениях.

    Плавающая конструкция применяется в современных моторах, она снижает удельные нагрузки на компоненты кривошипно- шатунной  группы и увеличивает их ресурс.

    Шатун

    Эта ответственный элемент кривошипно-шатунного механизма двигателя выполнен разборным, для того, чтобы можно было менять вкладыши подшипников в его обоймах. Подшипники скольжения используются на низкооборотных двигателях, на высокооборотных устанавливают более дорогие подшипники качения.

    Внешним видом шатун напоминает накидной ключ. Для повышения прочности и снижения массы поперечное сечение сделано в виде двутавровой балки.

    При работе деталь испытывает попеременно нагрузки продольного сжатия и растяжения. Для изготовления используют отливки из легированной или высокоуглеродистой стали.

    Коленчатый вал

    Преобразование осуществляет с помощь.

    Из деталей кривошипно-шатунной группы коленчатый вал имеет наиболее сложную пространственную форму. Несколько коленчатых сочленений выносят оси вращения его сегментов в сторону от основной продольной оси. К этим вынесенным осям крепятся нижние обоймы шатунов. Физический смысл конструкции точно такой же, как и при закреплении оси шатуна на краю маховика. В коленвала «лишняя», неиспользуемая часть маховика изымается и заменяется противовесом. Это позволяет существенно сократить массу и габариты изделия, повысить максимально доступные обороты.

    Основные части, из которых состоит коленвал, следующие:

    • Шейки. Служат для крепления вала в кронштейнах картера и шатунов на валу. Первые называют коренными, вторые — шатунными.
    • Щеки. Образуют колена, давшие узлу свое название. Вращаясь вокруг продольной оси и толкаемые шатунами, преобразуют энергию продольного движения поршневой группы во вращательную энергию коленвала.
    • Фронтальная выходная часть. На ней размещен шкив, от которого цепным или ременным приводом крутятся валы вспомогательных систем мотора- охлаждения, смазки, распределительного механизма, генератора.
    • Основная выходная часть. Передает энергию трансмиссии и далее — колесам.

    Тыльная часть щек, выступающая за ось вращения коленвала, служит противовесом для основной их части и шатунных шеек. Это позволяет динамически уравновесит вращающуюся с большой скоростью конструкцию, избежав разрушительных вибраций во время работы.

    Для изготовления коленвалов используются отливки из легких высокопрочных чугунов либо горячие штамповки (поковки) из упрочненных сортов стали.

    Картер двигателя

    Служит конструктивной основой всего двигателя, к нему крепятся все остальные детали. От него отходят внешние кронштейны, на них весь агрегат прикреплен к кузову. К картеру крепится трансмиссия, передающая от двигателя к колесам крутящий момент. В современных конструкциях картер исполняется единой деталью с блоком цилиндров. В его пространственных рамках и происходит основная работа узлов, механизмов и деталей мотора. Снизу к картеру крепится поддон для хранения масла для смазки подвижных частей.

    Принцип работы кривошипно-шатунного механизма

    Принцип работы кривошипно — шатунного механизма не изменился за последние три столетия.

    Во время рабочего такта воспламенившаяся в конце такта сжатия рабочая смесь быстро сгорает, продукты сгорания расширяются и толкают поршень вниз. Он толкает шатун, тот упирается в нижнюю ось, разнесенную в пространстве с основной продольной осью.  В результате под действием приложенных по касательной сил коленвал проворачивается на четверть оборота в четырехтактных двигателях и на пол-оборота в двухтактных. таким образом продольное движение поршня преобразуется во вращение вала.

    Расчет кривошипно-шатунного механизма требует отличных знаний прикладной механики, кинематики, сопротивления материалов. Его поручают самым опытным инженерам.

    Неисправности, возникающие при работе КШМ и их причины

    Сбои в работе могут случиться в разных элементах кривошипно-шатунной группы. Сложность конструкции и сочетания параметров шатунных механизмов двигателей заставляет особенно внимательно относить к их расчету, изготовлению и эксплуатации.

    Наиболее часто к неполадкам приводит несоблюдение режимов работы и технического обслуживания мотора. Некачественная смазка, засорение каналов подачи масла, несвоевременная замена или пополнение запаса масла в картере до установленного уровня- все эти причины приводят к повышенному трению, перегреву деталей, появлению на их рабочих поверхностях задиров, потертостей и царапин. При каждой замене масла обязательно следует менять масляный фильтр. В соответствии с регламентом обслуживания также нужно менять топливные и воздушные фильтры.

    Нарушение работы системы охлаждения также вызывает термические деформации деталей вплоть до их заклинивания или разрушения. Особенно чувствительны к качеству смазки дизельные моторы.

    Неполадки в системе зажигания также могут привести к появлению нагара на поршне и п\его кольцах Закоксовывание колец вызывает снижение компрессии и повреждение стенок цилиндра.

    Бывает также, что причиной поломки становятся некачественные либо поддельные детали или материалы, примененные при техническом обслуживании. Лучше приобретать их у официальных дилеров или в проверенных магазинах, заботящихся о своей репутации.

    Перечень неисправностей КШМ

    Наиболее распространенными поломками механизма являются:

    • износ и разрушение шатунных и коренных шеек коленвала;
    • стачивание, выкрашивание или плавление вкладышей подшипников скольжения;
    • загрязнение нагаром сгорания поршневых колец;
    • перегрев и поломка колец;
    • скопление нагара на поршневом днище приводит к его перегреву и возможному разрушению;
    • длительная эксплуатация двигателя с детонационными эффектами вызывает прогорание днища поршня.

    Сочетание этих неисправностей со сбоем в системе смазки может вызвать перекос поршней в цилиндрах и заклинивание двигателя. Устранение всех этих поломок связано демонтажом двигателя и его частичной или полной разборкой.

    Ремонт занимает много времени и обходится недешево, поэтому лучше выявлять сбои в работе на ранних стадиях и своевременно устранять неполадки.

    Признаки наличия неисправностей в работе КШМ

    Для своевременного выявления сбоев и начинающих развиваться негативных процессов в кривошипно- шатунной группе полезно знать из внешних признаков:

    • Стуки в двигателе, непривычные звуки при разгоне.  Звенящие звуки часто бывают вызваны детонационными явлениями. Неполное сгорание топлива во время рабочего такта и взрывообразное его сгорание на такте выпуска приводят к скоплению нагара на кольцах и днище поршня, к ухудшению условий их охлаждения и разрушению. Необходимо залить качественное топливо и проверит параметры работы системы зажигания на стенде.
    • Глухие стуки говорят об износе шеек коленвала. В этом случае следует прекратить эксплуатацию, отшлифовать шейки и заменить вкладыши на более толстые из ремонтного комплекта.
    • «Поющий» на высокой звонко ноте звук указывает на возможное начало плавления вкладышей или на нехватку масла при повышении оборотов. Также нужно срочно ехать в сервис.
    • Сизые клубы дыма из выхлопного патрубка свидетельствуют о избытке масла в рабочей камере. Следует проверить состояние колец и при необходимости заменить их.
    • Падение мощности также может вызываться закоксовыванием колец и снижением компрессии.

    При обнаружении этих тревожных симптомов не стоит откладывать визит в сервисный центр. Заклиненный двигатель обойдется намного дороже, и по деньгам, и по затратам времени.

    Обслуживание КШМ

    Чтобы не повредить детали КШМ, нужно соблюдать все требования изготовителя по периодическому обслуживанию и регулярному осмотру автомобиля.

    Уровень масла, особенно на не новом автомобиле, следует проверять ежедневно перед выездом. Занимает это меньше минуты, а может сэкономить месяцы ожидания при серьезной поломке.

    Топливо нужно заливать только с проверенных АЗС известных брендов, не прельщаясь двухрублевой разницей в цене.

    При обнаружении перечисленных выше тревожных симптомов нужно незамедлительно ехать на СТО.

    Не стоит самостоятельно, по роликам из Сети, пытаться растачивать цилиндры, снимать нагар с колец и выполнять другие сложные ремонтные работы. Если у вас нет многолетнего опыта такой работы- лучше обратиться к профессионалам. Самостоятельная установка шатунного механизма после ремонта- весьма сложная операция.

    Применять различные патентованные средства «для преобразования нагара на стенках цилиндров», «для раскоксовывания» разумно лишь тогда, когда вы точно уверены и в диагнозе, и в лекарстве.

    Принципы операционной системы

    Участие

    Ожидается, что студенты будут посещать занятия и регулярно вносить свой вклад в занятия. Этот означает отвечать на вопросы в классе, участвовать в обсуждениях и помощь другим студентам.

    Прогнозируемые отсутствия следует заранее обсудить с инструктором.

    Академическая честность

    Любой академический проступок в рамках этого курса считается серьезным нарушение, и будут применяться самые строгие академические штрафы. преследовали за такое поведение.Студенты могут обсудить на высоком уровне идеи с другими студентами, но на момент реализации (т.е. программирование), каждый человек должен делать свою работу. Использовать Интернета в качестве ссылки разрешено, но прямое копирование код или другая информация является обманом. Копирование — обман, чтобы позволить другому человеку полностью или частично скопировать экзамен или присвоение, или ложный вывод программы. Это тоже нарушение бакалавриата Академический кодекс чести соблюдать, а затем не сообщать академическая нечестность.Вы несете ответственность за безопасность и целостность собственной работы.

    Поздняя работа

    В случае серьезной болезни или другого уважительного отсутствия, как это определено политики университета, курсовые работы будут приниматься поздно столько же дней, сколько и при отсутствии по уважительной причине.

    В противном случае взимается штраф в размере 25% за каждый день опоздания (кроме случаев, когда это указано).Вы может сдать часть задания вовремя, а часть — с опозданием. Каждый в заявке должно быть четко указано, какие части она содержит; никакая часть не может быть отправлено более одного раза.

    Студенты-инвалиды

    Любой студент, имеющий документально подтвержденную инвалидность и зарегистрированный в Служба поддержки инвалидов должна как можно скорее поговорить с профессором. относительно жилья.Студенты, которые не зарегистрированы, должны связаться с Управление по делам инвалидов.

    .

    Основной принцип работы индуктивного датчика приближения

    Вы когда-нибудь задумывались, как индуктивный датчик приближения может определять присутствие металлической цели? Хотя лежащая в основе электротехника сложна, основной принцип работы понять нетрудно.

    В основе индуктивного датчика приближения («prox», «датчик» или «prox sensor» для краткости) лежит электронный генератор, состоящий из индуктивной катушки, состоящей из множества витков очень тонкой медной проволоки, конденсатора для хранения электрического заряда, и источник энергии для электрического возбуждения.Размер индукционной катушки и конденсатора согласован для создания самоподдерживающихся синусоидальных колебаний с фиксированной частотой. Катушка и конденсатор действуют как две электрические пружины с грузом, подвешенным между ними, постоянно толкая электроны вперед и назад друг к другу. Электрическая энергия подается в цепь, чтобы инициировать и поддерживать колебания. Без поддержания энергии колебания исчезли бы из-за небольших потерь мощности из-за электрического сопротивления тонкой медной проволоки в катушке и других паразитных потерь.

    Колебание создает электромагнитное поле перед датчиком, потому что катушка расположена прямо за «лицевой стороной» датчика. Техническое название лицевой панели датчика — «активная поверхность».

    Когда кусок проводящего металла входит в зону, ограниченную границами электромагнитного поля, часть энергии колебаний передается металлу цели. Эта переданная энергия проявляется в виде крошечных циркулирующих электрических токов, называемых вихревыми токами.Вот почему индуктивные датчики иногда называют вихретоковыми датчиками.

    Протекающие вихревые токи сталкиваются с электрическим сопротивлением, пытаясь циркулировать. Это создает небольшую потерю мощности в виде тепла (как маленький электрический нагреватель). Потери мощности не полностью компенсируются внутренним источником энергии датчика, поэтому амплитуда (уровень или интенсивность) колебаний датчика уменьшается. В конце концов, колебания уменьшаются до такой степени, что другая внутренняя цепь, называемая триггером Шмитта, обнаруживает, что уровень упал ниже заранее определенного порога. Этот порог — уровень, при котором присутствие металлической цели однозначно подтверждается. При обнаружении цели триггером Шмитта включается выход датчика.

    На короткой анимации справа показано влияние металлической мишени на колеблющееся магнитное поле датчика. Когда вы видите, что кабель, выходящий из датчика, становится красным, это означает, что обнаружен металл и датчик был включен. Когда цель уходит, вы можете видеть, что колебания возвращаются к своему максимальному уровню, и выход датчика снова отключается.

    Хотите узнать больше об основных принципах работы индуктивных датчиков приближения? Вот короткое видео на YouTube, посвященное основам:

    Как это:

    Нравится Загрузка …

    Генри Менке

    У меня есть электротехническое образование, которое дает мне прочную техническую основу для моей нынешней должности директора по маркетингу продуктов.

    .

    Является ли амортизация операционными расходами?

    Амортизация может быть либо операционными расходами, либо внереализационными расходами

    Амортизация — это операционные расходы, если амортизируемый актив используется в основной операционной деятельности организации.

    Амортизация — это внереализационные расходы, если амортизируемый актив используется в периферийной или побочной деятельности организации.

    Примеры того, когда амортизация является операционными расходами

    Примеры амортизации, отражаемой в составе операционных расходов в отчете о прибылях и убытках, включают:

    • Амортизация витрин, складского оборудования, автофургона и зданий, используемых в торговых и общих административных функциях розничного продавца.Амортизация будет отражена в отчете о прибылях и убытках розничного продавца в разделе, содержащем его административные и административные расходы.
    • Амортизация оборудования и зданий, используемых производителем для выполнения торговых и общих административных функций . Эта амортизация будет отражена в отчете о прибылях и убытках производителя в разделе, содержащем его SG&A расходы.
    • Амортизация оборудования и зданий, используемых при производстве продукции. Эта амортизация будет относиться к произведенным товарам и считается частью косвенных затрат на продукт.В том периоде, в котором продукт продается, его стоимость (включая долю амортизации) будет отражаться как часть стоимости проданных товаров, что, вероятно, будет крупнейшими операционными расходами в отчете о прибылях и убытках производителя.
    .

    Пошаговое руководство по работе с ODME и принципу его работы

    Некоторое время назад я написал небольшой пост об ODME, но он будет более подробным. Все больше и больше компаний уделяют внимание сохранению окружающей среды. Нефтяная компания не стремится сотрудничать с компаниями, которые не принимают во внимание экологические аспекты в своей повседневной работе.

    Пока так, что в настоящее время недостаточно просто выполнять требования закона. Все хотят, чтобы мы выходили за рамки требований законодательства.

    ODME — одно из устройств, обеспечивающих соблюдение экологических требований на борту судов.

    Но задержания по-прежнему происходят из-за несоблюдения ODME. Иногда такое несоблюдение является преднамеренным, но во многих случаях непреднамеренным. Компания должна сосредоточиться на развитии культуры безопасности, которая поможет предотвратить умышленное несоблюдение требований.

    Но доскональное знание оборудования, такого как ODME, — единственный способ избежать непреднамеренного несоблюдения требований. Это руководство может помочь нам лучше узнать ODME, узнав о нем больше.

    Для чего нужен ODME?

    Что ж, если вы это читаете, то, скорее всего, вы знаете, для чего нужен ODME. Но давайте все же спросим об этом. Зачем нам ODME? Разве мы не можем просто запретить выбрасывать масляную смесь за борт и высаживать ее баржей.

    Мы заботимся об окружающей среде, но есть предприятия, которые нужно поддерживать. Судовладельцы будут утверждать, что им следует разрешить сбрасывать водную часть нефтесодержащей смеси в море?

    ODME обеспечивает баланс между «не выбрасывать нефть в море» и «снижением эксплуатационных расходов» для судовладельцев.

    Но иногда мы забываем, что цель ODME — удалить воду из помоев, а не столько нефти, сколько разрешено.

    Как это делает ODME?

    В общих чертах ODME управляет работой этих двух клапанов, показанных на диаграмме ниже.

    Эти два клапана никогда не будут открываться или закрываться вместе. Если один открыт, другой будет в закрытом положении.

    Нам известно, что правило 34 Приложения I к Marpol перечисляет условия, при которых нефтесодержащие смеси могут сбрасываться в море.

    Когда условия номер 4 и 5 удовлетворены, ODME откроет забортный клапан, чтобы разрешить сброс нефтяной воды. Каждый раз, когда мы превышаем любое из этих двух условий, ODME закроет забортный клапан и откроет отстойный клапан.

    Теперь для выполнения этой задачи ODME необходимо измерить

    • Мгновенная скорость сброса для обеспечения того, чтобы она не превышала 30 л / нм
    • Общее количество выгружено, чтобы гарантировать, что оно не превышает требуемого

    Итак, давайте посмотрим, какие компоненты помогают ODME измерять эти вещи.

    Какие все компоненты делают ODME

    Если вы помните, формула для мгновенной скорости разряда равна

    .

    Теперь, если ODME необходимо измерить IRD, ему обязательно потребуются значения содержания масла в PPM и скорости потока. Скорость соединения обычно указывается либо из журнала, либо из GPS.

    Все эти значения передаются в вычислительный блок ODME. Вычислительный блок выполняет все математические вычисления для получения требуемых значений. В большинстве случаев вы найдете вычислительное устройство в диспетчерской.Теперь посмотрим, как и откуда вычислительный блок получает эти значения

    Расход

    Вычислительный блок

    ODME получает расход от расходомера. Небольшая пробоотборная линия проходит от основной линии, проходит через расходомер и возвращается к основной линии. Расходомер рассчитывает расход в м3 / час и передает это значение в вычислительный блок через сигнальный кабель.

    Измерение PPM

    Измерительная ячейка — это компонент, который измеряет количество масла (в ppm) в воде.Измерительная ячейка находится в шкафу «Блок анализа». В большинстве случаев вы найдете «Блок анализа» в бювете.

    Принцип измерения основан на том факте, что разные жидкости имеют разные характеристики светорассеяния. Основываясь на диаграмме светорассеяния масла, измерительная ячейка определяет содержание масла.

    Проба воды пропускается через трубку из кварцевого стекла. А содержание масла определяется путем последовательного прохождения этой пробы воды через разные детекторы.

    Но для измерения PPM в пробе воды проба сбросной воды должна пройти через измерительную ячейку. Эту работу выполняет пробоотборный насос.

    Насос для отбора проб отбирает пробу из нагнетательной линии перед выпускными клапанами. Этот образец отправляется в измерительную ячейку (в блоке анализа) для измерения содержания масла, а затем отправляется обратно в ту же линию нагнетания.

    Важно, чтобы насос для отбора проб не работал всухую или с избыточным давлением нагнетания. Чтобы избежать этой ситуации, внутри анализатора установлен датчик давления.Этот датчик давления измеряет давление на входе и выходе насоса для отбора проб.

    Измерительная ячейка всегда должна получать непрерывный поток пробы, чтобы анализировать самую свежую пробу. Датчик давления также исключает возможность работы ODME при закрытых пробоотборных клапанах.

    Измерительную ячейку необходимо регулярно чистить во время работы. Это сделано во избежание отложения масляных следов вокруг измерительной ячейки, которые могут давать неверные показания. Для очистки измерительной ячейки ODME выполняет цикл очистки с заранее заданным интервалом во время работы.Цикл очистки включает промывание ячейки пресной водой.

    Линия очистки и линии отбора проб в измерительные ячейки разделены пневматическими клапанами. Таким образом, при запуске цикла очистки происходит следующее:

    • Пневматический клапан линии пресной воды в измерительную ячейку открывается
    • Пневматический клапан линии отбора проб в измерительную ячейку закрывается.
    • Если ODME имеет приспособление для впрыска моющего средства, необходимое количество моющего средства будет впрыснуто во время цикла очистки

    Нам необходимо убедиться, что резервуары для моющего средства не пустые, и мы используем только моющее средство, рекомендованное производителем.

    Итак, есть три дополнительные строки, которые вы найдете в блоке анализа для цикла очистки.

    • Линия пресной воды для очистки измерительной ячейки
    • Воздуховод для работы пневмоклапанов
    • Линия чистящего раствора для лучшей очистки измерительной ячейки

    Блок анализа отправляет значения данных, такие как давление и содержание масла, в вычислительный блок в CCR. В зависимости от марки блок анализа отправляет эти значения либо непосредственно в вычислительный блок, либо через блок преобразования.

    Если установлен преобразователь, он может выполнять дополнительные задачи, например, контролировать цикл очистки.

    Вычислительный блок вычисляет IRD на основе всех этих значений, введенных в него. Если IRD меньше 30 л / миля, он дает команду блоку электромагнитного клапана открыть забортный клапан и закрыть обратный клапан рециркуляции. Когда IRD становится больше 30 л / миля, он закрывает забортный клапан.

    Вычислительный блок также вычисляет количество фактической нефти, сброшенной в море.Требование состоит в том, что мы не можем выгружать более 1/30000 от общего количества перевозимого груза. Прежде чем мы запустим ODME, нам нужно вычислить и передать это максимально допустимое значение в ODME. Об этом мы поговорим позже в этом посте.

    Но, как видите, постепенно мы создали базовую линейную диаграмму ODME. Теперь, если вы можете извлечь линейную диаграмму ODME на своем судне, проверьте, можете ли вы относиться к ней. Я наугад взял линейную диаграмму одного из производителей, чтобы увидеть, можем ли мы идентифицировать части и линию ODME? Я мог бы, вы также можете идентифицировать себя на изображении ниже?

    Если бы вы могли, очень хорошо.Но если вам все еще нужны ответы, вот они на изображении ниже

    Теперь, когда мы ясно понимаем, из чего состоит ODME и какие компоненты ODME, давайте посмотрим, как старший офицер должен управлять ODME.

    Работа ODME

    Как мы знаем, ODME требуется в соответствии с Приложением I Marpol, которое касается аспектов загрязнения, связанных с нефтяными грузами. Теперь за 10 шагов давайте посмотрим, как нам следует использовать ODME.

    Предположим, мы находимся на танкере-продукте дедвейтом 45000 тонн, который только что выгружал нефтеналивной груз объемом 29000 тонн (30000 м3 при 15 ° C).Этот танкер должен очистить эти танки, в которых находился общий нефтяной груз в 29000 тонн. Как продолжить очистку и слив помои с помощью ODME?

    Шаг 1: Установите общее количество масла в ODME

    Marpol установила предел общего количества масла, которое мы можем слить в промывочную воду. Этот лимит составляет 1/30000 от общего количества перевозимого груза. Итак, в нашем примере с танкером-продуктовозом рассчитаем

    Всего грузов, перевезенных в очищаемых танках: 30000 м3 при 15 ° C

    Общее количество сливаемого масла из мойки = 1 м3 (1000 литров)

    Установите общий предел масла в 1000 литров в ODME.Продемонстрируем это в ODME make Rivertrace engineering.

    Чтобы установить общий предел масла, перейдите к разделу «Разгрузка масла» в разделе «Выбор режима», нажав кнопку ввода (центральная).

    В разделе «Настройка сброса масла» перейдите к «пределу срабатывания сигнализации» и нажмите «Ввод».

    Установите новое значение с помощью стрелок вверх и вниз и нажмите ввод.

    Он попросит подтвердить, что мы и сделаем, и теперь мы установили максимальный предел слива масла.

    2.Разрешить минимум 36 часов на оседание

    Мы будем мыть цистерны и собирать отстой в отстойник. Но прежде чем мы сможем откачивать нефтесодержащую воду через ODME, нам нужно дать время отстоя как минимум 36 часов. Это время отстаивания обеспечивает полное отделение масла от воды.

    Мы можем возразить, что если наш расход ограничен 30 л / мор. Мили, то какая разница со временем установления? Но факт в том, что даже когда мы можем использовать ODME для сброса нефтесодержащей воды, мы должны обеспечить минимальное содержание масла в воде.

    3) Проверьте все остальные условия в Приложении I Marpol, Reg 34

    Мы должны убедиться, что другие условия, связанные с движением судна, минимальной скоростью и удаленностью от ближайшего берега, соответствуют требованиям.

    4) Подготовить ODME к работе

    После того, как мы будем удовлетворены всеми условиями, мы можем подготовиться к началу сброса шламов за борт.

    Мы уже обсуждали, какие компоненты присутствуют в ODME и каковы их функции. Итак, мы знаем, что нам нужно сделать, чтобы настроить ODME для работы.Конечно, на разных судах все может немного отличаться, но большинство вещей будет общим. Мы должны проверить и найти каждый элемент, упомянутый в руководстве. Вот краткий обзор некоторых общих элементов, которые необходимо проверить перед работой ODME

    .
    • Проверить, открыты ли впускной и выпускной клапаны расходомера
    • Проверить, есть ли подача пресной воды и все ли клапаны открыты
    • Проверить, открыты ли впускной и выпускной клапаны пробоотборной линии
    • Проверить, есть ли подача воздуха для пневматических клапанов.
    • Проверить наличие чистящего раствора в емкости
    • Проверить, включено ли питание преобразователя
    • Проверьте и поверните вал насоса для отбора проб рукой, чтобы убедиться, что он движется свободно

    Также проверьте и убедитесь, что все значения указаны в автоматическом, а не в ручном режиме. Эти значения для проверки относятся к расходу, скорости и частям в минуту.

    5) Запустить грузовой насос в режиме рециркуляции

    После того, как мы настроили ODME, мы можем запустить насос отстойного резервуара, содержащего нефтесодержащую воду, в режиме рециркуляции.Теперь, даже когда он работает в режиме рециркуляции и забортный клапан закрыт, на некоторых устройствах вы можете проверить IRD на экране CCR ODME. Если вы видите какие-то странные клапаны, например, высокое содержание PPM масла в пробе, остановите насос и

    • либо запустить цикл очистки вручную, если эта функция присутствует в ODME
    • или Очистите измерительную ячейку вручную с помощью инструмента производителя, как описано в руководстве ODME

    6) Пуск за борт

    После того, как все вышеперечисленные шаги выполнены и проверены, мы можем запустить ODME, чтобы начать сброс за борт.

    7) Монитор во время всей операции сброса за борт

    Теперь, если все в порядке, внимательно следите за

    Сбрасываемая вода не оставляет видимого блеска на поверхности моря. Помните, что вам не нужен фонарик, чтобы увидеть это. Выполнять сброс за борт необходимо только в светлое время суток.

    Проверяйте и отслеживайте значения масла в воде (PPM) и IRD. Если IRD близок к 30 л / миля, вы не хотите, чтобы он пересек 30 л / миля и остановил операцию.В этом случае вы можете уменьшить скорость насоса, чтобы уменьшить расход. При уменьшении скорости потока уменьшается и IRD.

    Контролируйте уровень поверхности раздела масло-вода с помощью ленты MMC или UTI. Это важно, потому что мы серьезно относимся к окружающей среде. Мы хотим остановить выброс за борт за несколько сантиметров до того, как мы достигнем поверхности масла. Это показывает нашу серьезность к сохранению окружающей среды. Это также показывает, что наша цель заключалась не в том, чтобы слить столько нефти, сколько мы можем, а в том, чтобы слить как можно больше чистой воды.

    Более того, мы не хотим портить нашу систему ODME, позволяя маслу проникать в систему.

    8) Остановить сброс за борт

    ODME остановится автоматически, когда IRD превысит 30 л / м.миль или если мы превысим предел общего сброса масла. Но мы должны быть готовы остановить ODME и вручную. Мы должны остановить сброс за борт вручную, если произойдет одно из следующих событий

    • Мы достигли уровня интерфейса
    • Быстрое увеличение PPM.Мы можем продолжить, если уверены, что граница раздела нефть-вода еще очень далеко.
    • Мы видим масляный блеск на поверхности моря

    9) Не запускайте ODME несколько раз

    Если ODME останавливается автоматически из-за того, что IRD превышает 30L / NM, мы не должны запускать ODME снова. Некоторые люди снова запускают ODME, чтобы проверить, могут ли они по-прежнему уменьшить количество на борту. Даже когда вы можете утверждать, что делаете это через ODME, вы на самом деле ненамеренно осуждаете МАРПОЛ.Многие суда были задержаны Парижским меморандумом о взаимопонимании за неоднократные попытки запустить ODME. Задержание имеет логику и следующие причины

    • При многократных запусках оператор пытается выбросить за борт как можно больше масла
    • После автоматической остановки ODME оператору необходимо подождать еще 24 часа, чтобы снова запустить ODME. Это связано с тем, что, если уровень смеси масло / вода будет очень низким, при рециркуляции она будет взбалтываться. Теперь, чтобы вода отделилась от масла, нам нужно подождать 24 часа.

    Но если ODME остановился из-за какой-либо ошибки, когда уровень воды все еще был высоким, нет необходимости ждать еще 24 часа для установления времени.

    9) Выполните цикл очистки

    Каждый раз, когда ODME останавливается, запускается цикл очистки. Но если он не запускается автоматически, мы можем запустить цикл очистки вручную.

    10) Закройте все клапаны и систему

    После завершения операции ODME мы можем закрыть все клапаны и подачу электроэнергии.Затем мы можем сделать запись в журнале нефтяных операций по этой операции.

    Заключение

    Было зафиксировано множество задержаний и сотни наблюдений за неправильным использованием ODME. Эти задержания также включают умышленное неправильное функционирование ODME.

    Было немного случаев, когда моряки обходили ODME, даже когда ODME находился в идеальной форме и работал. Это произошло потому, что моряки иногда считают, что такое оборудование, как ODME, сложно в эксплуатации.

    Но если мы хорошо знаем наше оборудование, оно не только будет казаться простым в эксплуатации, но и будет работать безупречно.

    .

    процессов подкачки — вопросы и ответы по операционной системе

    перейти к содержанию Меню
    • Дом
    • разветвленных MCQ
      • Программирование
      • CS — IT — IS
      • ECE — EEE — EE
      • Гражданский
      • Механический
      • Химическая промышленность
      • Металлургия
      • Горное дело
      • Приборы
      • Аэрокосмическая промышленность
      • Авиационная
      • Биотехнологии
      • Сельское хозяйство
      • Морской
      • MCA
      • BCA
    • Test & Rank
      • Sanfoundry Tests
      • Сертификационные испытания
      • Тесты для стажировки
      • Занявшие первые позиции
    • Конкурсы
    • Стажировка
    • Обучение
    Меню .

    Синхронизация процессов — вопросы и ответы по операционной системе

    перейти к содержанию Меню
    • Дом
    • разветвленных MCQ
      • Программирование
      • CS — IT — IS
      • ECE — EEE — EE
      • Гражданский
      • Механический
      • Химическая промышленность
      • Металлургия
      • Горное дело
      • Приборы
      • Аэрокосмическая промышленность
      • Авиационная
      • Биотехнологии
      • Сельское хозяйство
      • Морской
      • MCA
      • BCA
    • Test & Rank
      • Sanfoundry Tests
      • Сертификационные испытания
      • Тесты для стажировки
      • Занявшие первые позиции
    • Конкурсы
    • Стажировка
    • Обучение
    Меню .

    детали и запчасти КШМ двигателя

    Подобрать запчасти в каталоге «Кривошипношатунный механизм»

    Основные компоненты и принцип работы КШМ

    Состоит кривошипно-шатунный механизм из таких подвижных деталей и элементов крепежа, как:

    • Коленвал
    • Поршни с поршневыми кольцами и пальцами
    • Шатуны
    • Вкладыши, втулки
    • Стопорное кольцо
    • Крышки

    Недвижимыми составляющими данного устройства считаются цилиндры, ГБЦ, блок цилиндров, картер, поддон, прокладка ГБЦ.

    В процессе загорания топливно-горючей смеси, оказавшиеся в цилиндрах газы, перемещают поршень в нижнее положение. Благодаря поршневому кольцу шатун может прокручиваться, компенсируя момент прокручивания коленвала при нахождении поршня вверху.

    Противовесы не позволяют коленвалу повернуться, поэтому крутящий момент на него подают газы, проходящие сквозь шатун и поршень. Вращают колено латунные подшипники скольжения или шатунные вкладыши. В результате коленвал передает усилие на коробку передач и колеса.

    Компрессионные кольца предназначены для обеспечения герметичного состояния и необходимой компрессии в камере сгорания. Для предотвращения проникновения внутрь смазки установлено маслосъемное кольцо, которое снимает остатки масел со стенок цилиндра.
     

    Неисправности кривошипно-шатунного механизма

    Так как данный механизм эксплуатируется в чрезвычайно тяжелых условиях при повышенной температуре на высоких скоростных режимах, именно он повреждается первым в системе двигателя. Если возникают неисправности в этом узле, они часто приводят к дорогостоящему ремонту мотора.

    Причиной неполадок обычно является естественный износ компонентов силового агрегата или нарушение правил его эксплуатации. При несвоевременном проведении техобслуживания, применении низкосортных смазочных материалов, топлива, фильтров, продолжительной эксплуатации перегруженного транспортного средства преждевременно могут возникнуть проблемы в работе кривошипно-шатунного механизма.

    Типичными неполадками данного узла считаются:
    • Изнашивание коренных и шатунных подшипников. Такое повреждение сопровождается приглушенным стуком в блоке цилиндров, который отчетливо слышен при повышении оборотов, также падает давление масла в системе. В подобном случае эксплуатация автотранспортного средства запрещена
    • Изнашивание поршней и цилиндров, которое сопровождается звонким гулом при работе непрогретого мотора и возникновением синеватого дыма из выхлопной трубы
    • Изнашивание поршневых пальцев. Для данной проблемы характерен звонкий стук вверху блока цилиндров при работающем моторе
    • Повреждение и залегание поршневых колец. Оно проявляется перебоями в работе силового агрегата, падением компрессии, повышением расхода масла и появлением синего дыма из выхлопа

    Кроме этого со временем на поршнях и на стенках камеры сгорания может появляться нагар, который приводит к сильному нагреванию двигателя, увеличенному расходу топлива и понижению мощности авто.

    Чтобы максимально продлить срок службы кривошипно-шатунного механизма следует постоянно контролировать крепления, при необходимости подтягивать болты на картере и ГБЦ, а также содержать мотор в чистоте и периодически удалять нагар, который образуется в камере сгорания.

    Кривошипно-шатунный механизм Кривошипно-шатунный механизм КШМ предназначен

    Кривошипно-шатунный механизм

    Кривошипно-шатунный механизм (КШМ) предназначен для преобразования возвратнопоступательного движения поршня во вращательное движениеи наоборот. :

    КШМ – это механизм, который преобразует одно движение в другое. То есть, например, вращение он может преобразовать в качательные, поступательно-толкательные и иные движения.

    Принцип действия Поршень под действием давления газов совершает поступательное движение в сторону коленчатого вала. С помощью кинематических пар «поршень-шатун» и «шатун-вал» поступательное движение поршня преобразовывается во вращательное движение коленчатого вала.

    Детали КШМ делят на две группы, это подвижные и неподвижные детали: неподвижные: блок цилиндров (является базовой деталью двигателя внутреннего сгорания) и представляет собой общую отливку с картером, головка цилиндров, картер маховика и сцепления, нижний картер (поддон), гильзы цилиндров, крышки блока, крепежные детали, прокладки крышек блока, кронштейны, полукольца коленчатого вала.

    Состав КШМ Поршень – элемент КШМ, изменяющий давление газа. Такие изменения осуществляются путем его возвратнопоступательного движения. Маховик- располагается на конце коленвала. Он играет одну из главных ролей в работе двигателя – участвует в запуске ДВС через стартер.

    Состав КШМ Коленчатый вал – элемент для восприятия усилий от шатуна, в дальнейшем преобразующий эти усилия в крутящий момент. Блок цилиндров- имеет специальные охлаждающие рубашки, точки крепления для основных узлов и приборов, а также постель для подшипников коленвала и распредвала.

    Состав КШМ Шатун – главный элемент кривошипношатунного механизма для передачи поршневого усилия к коленвалу. Данная деталь может быть кованой из стали или титана.

    Кривошипно-шатунный механизм (КШМ) двигателей тракторов

    Кривошипно-шатунный механизм (КШМ) предназначен для преобразования поступательного движения поршней во вращательное движение коленчатого вала (КВ). Основными движущимися деталями КШМ являются: поршни с кольцами, поршневые пальцы, шатуны, шатунные и коренные подшипники, маховик.
    Поршневая группа деталей дизелей Д-65 и Д-240 сконструирована одинаково.


    Рис. 1. Поршень с шатуном (Д-65):
    1 — шатунный болт; 2 — крышка головки шатуна; 3 — шатун; 4 — стопорное кольцо; 5 — поршневой палец; 6 — поршень; 7 — маслосъемные кольца; 8 — компрессионные кольца; 9 — верхнее компрессионное кольцо; 10 — втулка верхней головки шатуна; 11 — верхний вкладыш шатуна; 12-нижний вкладыш шатуна; 13 — контровочная пластина

    Поршни 6 (рис. 1) изготовлены из алюминиевого сплава с тремя канавками под компрессионные 8, 9 и двумя под маслосъемные 7 кольца. В днище поршня выполнена камера сгорания. В канавках под маслосъемные кольца и ниже этих канавок просверлены отверстия для отвода масла внутрь поршня. По наружному диаметру юбки (в плоскости, перпендикулярной к плоскости поршневого пальца) поршни подразделяются на три размерные группы (табл. 1). Клеймо группы наносится на днище.

    Комплектовочные размеры поршней и гильз. Таблица 1.

    В комплект на двигатель поршни, шатуны и поршневые пальцы подбирают одинаковой размерной группы. Отклонение в массе поршней и шатунов в комплекте не должно превышать 15 г. По диаметру отверстия под поршневой палец поршни делят на две размерные группы (табл. 2), их маркируют краской на бабышках. Поршневые пальцы 5 полые, стальные. От осевого перемещения они удерживаются разжимными стопорными кольцами 4. установленными в канавки поршня. По наружному диаметру пальцы разделены на две группы (см. табл. 2). Маркировочная краска нанесена на внутренней поверхности пальца.

    Комплектовочные размеры поршней и пальцев. Таблица 2.

    Поршневые кольца изготовлены из специального чугуна. Верхнее компрессионное кольцо 9 прямоугольного сечения для уменьшения износа хромировано (по наружной поверхности). Второе и третье 8 кольца для улучшения компрессионных качеств имеют на внутренней поверхности торсионные выточки, которые при установке колец должны быть обращены вверх — к днищу поршня. В две нижней канавки поршня установлены маслосъемные 7 кольца скребкового типа (по два в каждую канавку). Верхним в канавке устанавливается кольцо с дренажными окнами на торце, а нижний — без окон; выточки наружной поверхности маслосъемных колец должны быть обращены вниз (к юбке поршня).

    Замки поршневых колец располагают на ровном расстоянии по окружности. Нормальный зазор в замке новою кольца, установленного в новую гильзу 0,3…0,7 мм. Поршневые кольца заменяют, если зазор превышает 4 мм, а поршни меняют, если зазор между новым кольцом и канавкой в поршне по высоте превышает 0.4 мм. У дизеля Д-245 несколько иное расположение колец (рис. 2): под верхнее компрессионное кольцо трапецеидальной формы залито чугунную вставку 2, маслосъемное кольцо одно — как и у Д-240 — коробчатого типа.

    Рис. 2. Схемы расположения колец на поршнях дизелей Д-245 (а) и Д240 (б):
    а) 1 — поршень; 2 — чугунная вставка типа «нирезист»; 3 — верхнее компрессионное кольцо; 4, 5 — компрессионные кольца; 6 — маслосъемное кольцо;
    б) 1 — поршень; 2 — верхнее компрессионное кольцо; 3, 4 — компрессионные кольца; 5 — маслосъемное кольцо

    Шатуны 3 (см. рис. 1) стальные, штампованные. В верхнюю головку запрессована биметаллическая втулка 10 (стальная со слоем бронзы). Для смазки поршневого пальца в верхней головке шатуна и втулки есть отверстие. По внутреннему диаметру втулки сортируются на две размерные группы: с большим диаметром маркируются черной краской, с меньшими — желтой.

    Нижняя головка шатуна разъемная. Разъем выполнен косым для обеспечения прохода нижней части через гильзу при монтаже. Крышка 2 прикреплена к шатуну двумя болтами из высококачественной стали, застопоренными контровочной пластиной 3.


    Рис. 3. Детали кривошипно-шатунного и газораспределительного механизмов (Д-65):
    1 — заглушка; 2 — шестерня распределительного вала; 3 — упорное кольцо; 4 — упорный фланец распределительного вала; 5 — толкатели; 6 — впускной клапан; 7 — направляющая втулка клапана; 8 — рукоятка декомпрессионного механизма; 9 — валики декомпрессионного механизма; 10-регулировочный винт: 11 — выпускной клапан; 12 — штанги толкателя; 13-поршень; 14-распределительный вал; 15 — втулка; 16 — палец маховика, 17 — шарикоподшипники; 18 — болт; 19 — маховик; 20 — венец; 21 — шатун; 22, 23 — вкладыши коренных подшипников; 24 — шестерня; 25 — маслоотражатель; 26 — коленчатый вал; 27 — шкив; 28 — головка цилиндров; 29 — пружина клапана; 30 — сухарик; 31 — регулировочный винт декомпрессионного механизма; 32 — коромысло клапана.

    Коленчатый вал 26 (рис. 3) полноопорный, стальной (имеет пять коренных и четыре шатунных шейки, рабочие поверхности которых закалены токами высокой частоты. В шатунных шейках имеются полости для центробежной очистки масла при вращении вала. Полости закрыты резьбовыми заглушками 1, которые у двигателя должны быть одной группы (номер группы выбит на торце заглушки), чтобы не нарушилась балансировка вала. На первой, четвертой, пятой и восьмой щеках вала дизелей Д-240 и Д-245 закреплены съемные противовесы. Их наличие обусловлено большой частотой вращения коленчатого вала этих дизелей (2200 мин1), вследствие чего центробежные силы сильно возрастают. Установка противовесов значительно уменьшает нагрузки на подшипники. В коренных и шатунных шейках выполнены сверления, по которым подается масло к подшипникам (вкладышам).

    На переднем конце вала смонтированы шестерня 24 привода распределения и насоса системы смазки, шкив 27 привода насоса системы охлаждения и генератора, маслоотражатель 25; на заднем — маслоотражатель и маховик 19 с напрессованным на нем зубчатым стальным венцом 20.

    Коленчатые валы изготовлены с шейками двух номинальных размеров: для дизелей Д-65 диаметры коренных и шатунных шеек в первом номинале соответственно равны 85,25 мм и 75,25 мм, во втором — 85,0 мм и 75,0 мм; для дизелей Д-240 в первом — 75,25 мм и 68,25 мм, во втором — 75,0 мм и 68,0 мм. Валы с шейками второго стандартного размера имеют на первой щеке обозначение: 2КШ — все шейки вала второго номинала; 2К — коренные второго, а шатунные первого; 2Ш — шатунные второго, а коренные первого.

    Вкладыши коренных 23 и шатунных 22 подшипников изготовлены из сталеалюмнневой ленты. От перемещений и проворачивания вкладыши стопорятся выштампованными на них усиками, входящими во фрезеровки в постелях вкладышей в блоке и шатуне. На наружной поверхности вкладыша проставляется товарный знак завода и размер, а на внутренней поверхности усика (выступа) — клеймо (« + » или « — ») группы вкладыша по высоте (вкладыши комплектуют так, чтобы один из них имел на усике знак « + » а другой « — » или оба без маркировки). Отверстия в верхних половинках коренных вкладышей совпадают с маслоподводящими каналами в блоке.

    Зазор в подшипниках нового или отремонтированного двигателя в пределах 0,065…0,123 мм для шатунных и 0,070…0,134 мм для коренных. При увеличении зазора в шатунных подшипниках до 0,25 мм и овальности шейки более 0,06 мм или в коренных — соответственно до 0,3 и более 0,1 мм шейки вала шлифуют на соответствующий ремонтный размер.

    Осевое перемещение вала ограничивается упорами пятой коренной шейки (допустимое в эксплуатации — 0,5 мм), осевое перемещение нижней головки шатуна допускаемое 0,7 мм. Коленчатый вал и маховик дизеля Д-240 изображены на рис. 4.


    Рис. 4. Коленчатый вал с маховиком (Д-240):
    1 — коренная шейка; 2 и 12 — щеки; 3 — упорные кольца; 4 — нижний вкладыш коренного подшипника; 5 — маховик; 6 — маслоотражательная шайба; 7 — установочный штифт; 8 — болт; 9 — зубчатый венец; 10 — верхний вкладыш коренного подшипника; 11 — шатунная шейка; 13 — галтель; 14 — противовесы; 15 — болт крепления противовеса; 16 — замковая шайба; 17 — шестерня коленчатого вала; 18 — шестерня привода масляного насоса; 19 — упорная шайба; 20 — болт; 21 — шкив; 22 — канал подвода масла в полость шатунной шейки; 23 — пробка; 24 — полость в шатунной шейке; 25 — трубка для масла.
    [Тракторы «Беларус» семейств МТЗ и ЮМЗ. Устройство, работа, техническое обслуживание. Я.Е. Белоконь, А.И. Окоча, Г.В. Шкаровский; Под ред. Я.Е. Белоконя. 2003 г.]

    Статьи о КШМ двигателей тракторов: Кривошипно-шатунный механизм; Кривошипно-шатунный механизм двигателя СМД-60; Особенности эксплуатации КШМ; ТО КШМ и ГРМ двигателя трактора; Уход за кривошипно-шатунным механизмом

    Боевая машина БМП-1

    Боевая машина БМП-1

    ФАС | Военные | DOD 101 | Системы | Земля | СТРОКА ||||


    Индекс | Поиск | Присоединяйтесь к ФАС

    «Броневая машина пехота» (БМП-1) была впервые построена в начале 1960-х годов и увидена публикой в ​​ноябре 1967 года на параде на Красной площади. НАТО назвала его М-1967 и БМП до того, как стало известно его правильное обозначение. БМП представляла собой важный переход от концепции бронетранспортера к боевой бронированной машине пехоты, сочетающей высокую мобильность, эффективное противотанковое вооружение и бронированную защиту для перевозки войск.БМП значительно меньше западных БТР и имеет значительно большую огневую мощь. БМП-1 была инновационной в том смысле, что позволяла пехоте вести огонь из личного оружия изнутри машины, оставаясь при этом защищенной броней. Для этого каждому солдату пехоты были предоставлены окна для стрельбы и приборы обзора. Таким образом, БМП стала первой боевой машиной пехоты. БМП-1 имеет экипаж от трех до восьми человек. БМП пришла на смену БТР-50П и дополняет БТР-60ПБ в мотострелковых частях первой линии.

    Сочетание эффективной противотанковой огневой мощи, высокой мобильности и адекватной защиты сделало БМП серьезным дополнением к арсеналу советских мотострелковых частей. Разработанный с учетом требований высокоскоростного наступления в условиях ядерной войны, он несет 73-мм орудие 2А20 с максимальным количеством выстрелов 40 и максимальной дальностью более 7000 футов. Его 73-мм основное орудие ведет огонь с помощью ракетной установки с оперением. Снаряд HEAT со средней прицельной дальностью 800 метров (способен успешно поражать танки на дальностях до 1300 метров) и оснащен автоматом заряжания.Основное вооружение БМП1 необычно тем, что оно стреляет теми же боеприпасами, что и пехотный реактивный гранатомет РПГ-7. Пусковая планка для противотанковой управляемой ракеты AT-3 Sagger расположена над пушкой, что обеспечивает большую дальность действия противотанковых снарядов (до 3000 метров).

    БМП представляет собой полностью бронированную боевую плавающую машину пехоты (БМП). Его корпус с низким силуэтом имеет крутой наклонный лоб с хорошо заметной ребристой поверхностью. В центре чрезвычайно плоской башни с усеченным конусом установлены 73-мм гладкоствольная пушка и калибр калибра 7.62-мм спаренный пулемет. Над пушкой крепится планка для запуска ракет SAGGER. 6-цилиндровый дизельный двигатель с водяным охлаждением мощностью 290 л.с. расположен спереди справа, а люк водителя — спереди слева, прямо перед люком командира, на котором установлен инфракрасный прожектор. Люк наводчика находится с левой стороны невысокой крыши башни. В корме башни есть четыре больших люка в крыше десантного отделения, а также две большие выходные двери в корме. С каждой стороны десантного отделения по четыре огневых порта и по одному в левой задней двери.Подвеска имеет шесть неравномерно расположенных опорных катков типа ПТ-76 с тремя опорными катками гусеницы и звездочкой переднего привода.

    БМП является амфибией, движется по воде за счет гусениц, а не за счет гидрореактивного двигателя ПТ-76, и обладает дальностью и скоростью, необходимыми для того, чтобы не отставать от быстро движущихся танков, за которыми она обычно следует в наступательных порядках.

    БМП имеет экипаж из трех человек, включая командира машины, который становится командиром отделения, когда пассажиры пехоты спешиваются через задние выходные двери.Однако обзорные блоки и окна для стрельбы по бокам и в задней части десантного отделения позволяют пехотинцам на ходу вести огонь из автоматов (АКМ или АК-74) и ручных пулеметов (ПКМ или РПК-74) изнутри машины. В войсках также есть противотанковые гранатометы РПГ-7 или РПГ-16 и ЗРК SA-7 / GRAIL или SA-14, выстрел из которых может вести пассажир, стоящий в заднем люке. Когда экипаж и пассажиры застегнуты, они имеют защиту от ядерного оружия в герметичном корпусе с фильтрами, что позволяет им работать независимо от внешней среды.

    БМП оснащена инфракрасным прожектором, перископами и прицелами для работы в ночное время, а также способна создавать собственную дымовую завесу путем впрыска дизельного топлива в выпускной коллектор.

    Из-за крайней уязвимости, продемонстрированной БМП во время ближневосточной войны 1973 года, в Советской Армии велись широкие споры о том, как эту машину следует использовать в бою. БМП имеет относительно тонкую броню (максимальная толщина 19 мм в корпусе, 23 мм в башне), которая обеспечивает защиту от.50 калибра бронебойных снарядов только по 60-й лобовой дуге, и машина чрезвычайно уязвима для огня ПТУР и танков. Из-за компактности машины критические зоны, такие как моторный отсек и зона хранения боеприпасов (с правой стороны), топливные элементы (в задних дверях) и десантное отделение расположены таким образом, что проникновение в любую точку транспортное средство обычно приводит к мобильности, огневой мощи или гибели персонала.

    Из-за ограниченной способности прижимать главное орудие БМП не может вести огонь по танкам и БТР с хороших позиций с закрытым корпусом и поэтому очень уязвима для вражеского огня, когда открывается для поражения целей.

    Хотя башня может поворачиваться на 360 градусов, главное орудие и спаренный пулемет должны быть подняты, чтобы пропустить инфракрасный прожектор на командирской башенке, создавая мертвое пространство для обоих орудий между 10:00 и 11:00. Это ограничение могло стать серьезной проблемой во время боя, поскольку автоматическое отключение турели с электроприводом останавливает движение до тех пор, пока пушка не будет поднята.

    БМП может поддерживать максимальную скорость (70 км / ч) только в течение короткого периода времени из-за сильной вибрации и возможности отказа трансмиссии.Из-за сложного механизма заряжания и отсутствия стабилизации невозможно вести точный огонь из 73-мм орудия или спаренного пулемета при движении по пересеченной местности. БМП должна быть неподвижна при стрельбе и сопровождении ПТУР SAGGER. SAGGER сложно перезарядить и вообще нельзя перезаряжать в условиях NBC. Систему наземной навигации необходимо обнулять каждые 30 минут.

    Варианты

    Боевая машина пехоты БМП также стала основой для семейства вариантов, выполняющих другие функции.Каждый вариант имеет обозначение, соответствующее году его первого наблюдения. Многие БМП теперь оснащены улучшенными полуавтоматическими ПТРК AT-3c / SAGGER или новыми ПТРК AT-4 / SPIGOT или AT-5 / SPANDREL.

    • BMP Model 1966 — оригинальная версия БМП (также называемая БМП-А) с более короткой носовой частью, чем ее преемница, БМП-1.
    • БМП-1 (БМП M1976) — наиболее распространенный вариант боевой машины пехоты — БМП-1 , появившаяся в 1970 году.Его наиболее заметные модификации, удлинение носовой части и удлинение дефлекторного кожуха в задней части, были разработаны для улучшения плавучести машины, чему препятствовало переднее размещение двигателя. Другие изменения включают увеличенное квадратное окно для стрельбы для пулемета ПКМ под башней и перемещенные блоки обзора над боевым отделением.
    • БМП-1К [BMP Ml974] — командирский вариант БМП-1, который отличается от БМП-1 главным образом наличием дополнительного радиооборудования и антенн, а также приваренными отверстиями для пулеметов.
    • БМП-1П [BMP M1981] — БМП-1 с заменой пусковой планки AT-3 SAGGER на установленную на пинтеле пусковую установку ПТУР AT-4 SPIGOT. Этот вариант имеет двухместную башню с 30-мм автоматической пушкой. ПТРК AT-4 / SPIGOT или AT-5 / SPANDREL устанавливается наверху башни (а не над стволом орудия, как на пусковой планке AT-3 / SAGGER на БМП-1). По сравнению с БМП-1 на каждой стороне заднего боевого отделения на один огневой люк меньше, а на левой стороне корпуса впереди башни — дополнительный пулеметный люк.Доработаны и гусеницы БМП M1981.
    • БМП-1ПК — командирский вариант БМП-1П
    • БМП КШМ [БМП 1978] — имеет большую телескопическую антенну и больше радиооборудования, чем БМП М 1974 года. В башне нет вооружения. Сообщается, что этот вариант используется штабами полков и дивизий.
    • ПРП-3 (БМП-СОН — ранее БМП М1975) имеет увеличенную двухместную башню, которая сдвинута в корму.Вооружение башни состоит только из 7,62-мм пулемета (а не из 73-мм пушки и планки SAGGER у БМП-1). Прямоугольная складывающаяся антенна для радара наблюдения поля боя SMALL FRED установлена ​​в задней части башни. Эффективная дальность действия РЛС — 20 км. PRP-3 имеет экипаж из пяти человек и обширное радио и оптическое оборудование. Одна из этих машин закреплена за гаубичным дивизионом (буксируемым или самоходным), а другая — в батарее целеуказания артиллерийского полка.
    • ПРП-4 — Преемник ПРП-3, с дополнительным обтекателем на правой стороне башни.
    • IRM — Инженерная разведывательная машина-амфибия
    • M-80 — Хотя иногда это называют югославской копией российской БМП-1, очевидно, что это не так.
    ДЛИНА 22 ФУТОВ
    ШИРИНА 9 футов
    ВЫСОТА 7 футов
    ВЕС 14 ТОНН
    Основное вооружение (калибр, модель) 73-мм пушка 2А38
    тип боеприпаса HEAT-FS, HE-Frag
    дальность, эффективная (м) 800
    скорострельность (об / мин) устойчивая / максимальная 10
    стабилизированная
    высота / угол поворота (градусы)
    базовая нагрузка 40
    вспомогательное вооружение ПТРК AT-4a / 5a
    дальность, эффективная (м) 2000/4000
    скорострельность, циклическая / практическая (об / мин)
    бронепробиваемость (мм на дальности) 600 / 650
    Основная нагрузка 5
    Вспомогательное вооружение 7.62-мм ПКТ MG
    дальность, эффективная (м)
    тип боеприпаса
    скорострельность, циклическая / практическая (об / мин)
    пробиваемость (мм)
    базовая нагрузка 2000
    Вспомогательное вооружение
    модель
    скорострельность, циклическая / практическая (об / мин)
    пробиваемость (мм на расстоянии м)
    базовая нагрузка
    характеристики машины
    ночные прицелы
    командир IR
    наводчик II
    водитель IR
    скорость, дорога / бездорожье (км / ч) 65/45 / 8
    дальность полета, дорога / бездорожье (км) 600/570
    переход траншеи (ширина x высота м) 2.5×0,8
    уклон x боковой уклон (градусы) 31×17
    клиренс (мм) 390
    брод (м) плавать
    броня, корпус / башня ( мм) 19/23
    экипаж 3 + 8
    Ночные прицелы Дальность действия усилителя изображения 1200 м.




    Источники и методы



    ФАС | Военные | DOD 101 | Системы | Земля | СТРОКА ||||


    Индекс | Поиск | Присоединяйтесь к ФАС
    http: // www.fas.org/man/dod-101/sys/land/row/bmp.htm
    Поддержкой занимается Роберт Шерман
    Первоначально создано Джоном Пайком
    Обновлено 16 октября 1999 г. 12:17:05

    Fortinet | Безопасность предприятия без компромиссов

    Последний

    Понимание безопасности и основные сведения о том, как организации могут защитить себя от возникающих угроз.

    Fortinet Security Fabric обеспечивает сквозную безопасность для экосистем 5G

    Fortinet обеспечивает постоянную безопасность в частных и общедоступных сетях 5G, используя самые быстрые NGFW для промышленных предприятий и операторов мобильной связи.А с беспроводной глобальной сетью 5G обеспечивает гибкое и сверхбыстрое подключение для SD-WAN.

    Читать далее
    В новом отчете Gartner приводятся соображения по обеспечению безопасности гибридного облака. Модель

    Узнайте об основных задачах адаптации и масштабирования гибридных моделей в расширяющейся сети, используя SASE и защиту нулевого доверия для обеспечения комплексной безопасности.

    Читать далее

    Новая безопасная интеграция SD-WAN с центром сетевого подключения Google Cloud

    Упрощение перехода к облаку для бесперебойной, безопасной и превосходной работы с рабочими нагрузками и приложениями в Google Cloud и гибридных облаках.

    Читать далее

    Наша инфраструктура доступа к WWLAN названа 2021 Gartner Peer Insights Выбор клиента

    Четыре года подряд Fortinet была названа в честь своей инфраструктуры доступа к проводным и беспроводным локальным сетям.Узнайте почему от клиентов, которые внедрили решения Fortinet LAN Edge.

    Читать далее

    Опережая угрозы

    Fortinet Security Fabric непрерывно оценивает риски и автоматически настраивается для обеспечения комплексной защиты в реальном времени по всей поверхности и циклу цифровых атак.

    На базе FortiOS Fabric является самой производительной интегрированной платформой кибербезопасности в отрасли с богатой экосистемой. Fabric обеспечивает постоянную безопасность на расширенной поверхности цифровых атак. Полная совместимость, полная видимость и детальный контроль теперь возможны для гибридных развертываний, включая оборудование, программное обеспечение и X-as-a-Service в сетях, конечных точках и облаках.

    Решения по отраслям

    Компании, правительства и поставщики услуг повсюду используют решения Fortinet для стимулирования цифровых инноваций и достижения лучших результатов.

    Популярный международный продовольственный рынок достигает уровня 2 стандарта PCI с FortiGate

    Jungle Jim — популярный международный рынок, использующий «безопасные маршрутизаторы» для соответствия стандарту безопасности данных индустрии платежных карт (PCI DSS). Когда команда решила перейти на соответствие стандарту PCI Level 2, организации потребовалось обновить сетевую безопасность и выбрать межсетевые экраны следующего поколения (NGFW) корпоративного уровня Fortinet FortiGate, чтобы обеспечить более надежную защиту своих данных транзакций.

    Смотри

    Лучшая в отрасли аналитика угроз

    FortiGuard Labs, организация по анализу угроз и исследованиям в Fortinet, разрабатывает, вводит новшества и обслуживает одну из самых признанных и опытных систем искусственного интеллекта и машинного обучения в отрасли.Мы используем это для обеспечения беспрецедентной защиты, прозрачности и непрерывности бизнеса в Fortinet Security Fabric, защищая наших клиентов от широкого спектра постоянно меняющихся и сложных угроз.

    Учить больше

    Признание лидера отрасли

    Наши лучшие в своем классе решения безопасности были проверены и рекомендованы ведущими сторонними поставщиками.

    Fortinet был включен в несколько магических квадрантов Gartner. Изучите нашу коллекцию отчетов, чтобы узнать, где находится Fortinet.

    Рекомендуется в 9 из 9 тестов NSS Labs и ЕДИНСТВЕННЫЙ рекомендуемый поставщик для SD-WAN, чтобы иметь рейтинг безопасности.

    Компания, которую мы держим

    Мы с гордостью защищаем организации S&P 500 и Fortune 100, а также сотни тысяч владельцев малого бизнеса.

    Получить руки на

    Узнайте о преимуществах решений Fortinet онлайн и лично.

    Интернет-демонстрации

    Изучите ключевые функции и возможности и испытайте пользовательский интерфейс.

    События и вебинары

    Найдите возможности онлайн и лично, чтобы узнать больше.

    Сделать запрос

    Поговорите со специалистом Fortinet о ваших потребностях в архитектуре безопасности.

    Бесплатные пробные версии

    Протестируйте наши продукты и решения в своей родной среде.

    © GARTNER ЯВЛЯЕТСЯ ЗАРЕГИСТРИРОВАННОЙ ТОРГОВОЙ МАРКОЙ И ОБСЛУЖИВАНИЕМ GARTNER, INC. И / или ее аффилированных лиц и используется здесь с разрешения. Все права защищены.

    верификация онлайн-казино кшм

    21 история блэкджека реальная Мы с нетерпением ждем возможности представить более насыщенный контент от Triple Edge Studios в ближайшие недели.Согласно Microgaming… Издатель игр компании Дэвид Рейнольдс прокомментировал новую игру, заявив: «Action Ops: Snow & Sable — еще одно творение Triple Edge Studios, которое наступает по пятам за их предыдущей игрой для проверки онлайн-казино kshm . Wicked Tales: Dark Red.Wilds and Extra Spins: игроки обнаружат, что эта новая игра включает в себя сложенные джокеры, смешанные дикие выплаты и дополнительные вращения. Бонусный код казино Yeti 2020 Американский издатель игр Wizards of the Coast объявил о подписании альянса с гигантом. производитель игрушек Hasbro Incorporated, который должен увидеть, как пара создаст программу киберспорта для легендарного бренда Magic: The Gathering.Мы полностью поддерживаем киберспорт и подтверждаем, что Magic: The Gathering является лидером в категории игр для проверки коллекционных автомобилей онлайн-казино kshm d, предоставляя при этом прибыльные возможности для профессионалов, игроков, спонсоров и часть киберспорта. персонажа на любой из барабанов случайным образом, и цель состоит в том, чтобы увидеть, как тот же персонаж появляется на их барабане, чтобы иметь возможность заработать еще более крупные выигрыши. бесплатные слоты казино

    joker casino valkaВ ходе раунда дополнительных вращений игроки могут активировать еще больше дополнительных вращений.Заявление Кокса гласило: «Сегодня чрезвычайно важный день для Magic: The Gathering, поскольку мы объявляем о нашей приверженности киберспорту и нашим игрокам Magic: The Gathering, расширяя нашу структуру турниров, чтобы включить в нее миллионный призовой фонд. Игра помещает игроков в онлайн-казино , где проходит проверка, и игроки присоединяются к дуэту, борющемуся с преступностью, в их поисках. Borderlands 3 коэффициенты на игровых автоматах Golf International Incorporated заявила, что премьера ее первого зала для киберспорта состоится в ее стенах. Франшиза Лас-Вегаса в начале следующего месяца подтверждает, что, кроме того, она находится в процессе разработки решений «под ключ» для аналогичных мероприятий, которые будут проводиться на ее территории.Партнер, «уверенный» в успехе: со своей стороны, Крис Ларсон, старший вице-президент TCL Corporation по Северной Америке, охарактеризовал места проведения Topgolf International Incorporated как «непохожие на другие», прежде чем заявить, что его компания «рада» объединились с оператором, чтобы «создать новый опыт для киберспортивного сообщества и гостей Topgolf». В заявлении Ларсона говорится: «Проверка онлайн-казино TCL C . Отмеченные наградами телевизоры kshm orporation получили высокую оценку за предоставление изображения высочайшего качества и высокой мощности. производительность, особенно со стороны игрового сообщества, что делает [наши] продукты достойным дополнением к домам и площадкам Topgolf по всей стране.онлайн рулетка 20 пенсов

    aristocrat online casino Игра помещает игроков в онлайн-казино , проверяющее kshm , горячее действие, с игроками, которые присоединяются к дуэту борющихся с преступностью в их поисках. Благодаря функциям Mixed Wild Pays, Stacked Wilds и Free Spins игроки могут окунуться в футуристические научно-фантастические игровые автоматы с дерзким дуэтом ». В заявлении Ларсона говорится:« Проверка онлайн-казино TCL C kshm orporation удостоены наград за телевизоры. обеспечивая превосходное качество изображения и высокую производительность, особенно со стороны игрового сообщества, что делает [наши] продукты достойным дополнением к домам и площадкам Topgolf по всей стране.Правила игры в живую рулетку »Заявление Ларсона гласит:« Проверка онлайн-казино TCL C . Отмеченные наградами телевизоры от kshm orporation получили высокую оценку за высочайшее качество изображения и высокую производительность, особенно со стороны игрового сообщества, что делает [наши] продукты достойным дополнением к дома и площадки Topgolf по всей стране. Разброс в игре дает 10, 15 или 20 дополнительных вращений, если на барабанах выпадет три, четыре из пяти символов. Игра была разработана Triple Edge Studios и предназначена для запуска исключительно для операторов Microgaming.игра в рулетку онлайн


    Что означает имя Кшм?

    Значение кшм — обещание, клятва
    Пол кшм — девочка
    Категория кшм — телугу
    Нумерология кшм — 6

    Содержание
    Значение имени Кшм

    Кшм — имя девушки на телугу, что означает «Обещание, клятва» .Имя Кшм имеет нумерологическое значение 6.

    Анализ каждой буквы имени
    Кшм

    Каждая буква имени представляет энергии, которые можно интерпретировать. Таким образом, каждая буква имеет значение. В следующей таблице представлены значения каждой буквы. во имя Кшм.

    Письма Значение
    К Вы все о просветлении.Как глубоко чувствующий человек, так и артистичный, вы также мотивированы и сильно полагаетесь на свое чутье при принятии решений. Вы также сила, с которой нужно считаться. Будьте осторожны с беспокойством и колебаниями, потому что вы склонны к повышенной нервозности.

    Есть люди, которые стремятся к мудрости и проницательности и предпочитают принимать решения на основе инстинкта. Это эмоциональные существа, которых тянет к искусству. Следует проявлять осторожность в отношении беспокойства, поскольку они склонны к нему.

    S Вы настоящий чародей.Обладая чувством тепла и преданности, вы также глубоко чувствуете вещи — это может привести к чрезмерно драматическим реакциям и интенсивной внутренней жизни. Убедитесь, что вы внимательно обдумываете каждое решение, и не забываете ли вас о многочисленных эмоциональных взлетах и ​​падениях.

    Эти люди, очень преданные своему делу с эмоциональной точки зрения, харизматичны и глубоко чувствуют себя. Это, в свою очередь, может внести драматизм в их жизнь. Настоятельно рекомендуется проанализировать ситуацию, прежде чем принимать поспешные решения.

    H Вы провидец, но также склонны зарабатывать много денег и быстро их терять.Однако в долгосрочной перспективе у вас, вероятно, все будет хорошо — ваше творчество сослужит вам хорошую службу. Вы думаете интуитивно и, возможно, предпочитаете побыть в одиночестве. Избавьтесь от сомнений относительно себя и проводите много времени на свежем воздухе!

    Воображение этих людей не знает границ. Придумываемые ими методы отлично помогают заработать много денег. В то же время у них есть отличные способы быстро потерять много денег. Это сценарий 50/50. Они склонны быть одиночками, которые доверяют своим инстинктам и любят природу.

    M Ты трудоголик! Энергичная рабочая лошадка, вам не нужно много спать и вы очень здоровы. Однако вам также очень нравится быть домоседом, и вам нужна стабильная финансовая база, чтобы чувствовать себя в безопасности. Также убедитесь, что ваш драйв не вызывает у вас нетерпения по отношению к другим людям.

    Фанатики труда. Это простое описание для этих людей.Отдых для них не имеет значения, поскольку они живут и дышат работой. Их характер определяется сильной волей, они созданы для создания уютного дома и требуют стабильного дохода. Им следует проявлять осторожность и не беспокоиться о тех, кто их окружает.

    Анализ имени специальными буквами
    Kshm Затем нумеролог обращается к «особым буквам» в вашем имени, которые обычно имеют в виду «краеугольный камень, замковый камень и первая гласная» в вашем имени.

    Краеугольная буква — это самая первая буква вашего имени, а Заключительный камень — самая последняя буква. Первая буква вашего имени показывает, как и что вы создаете в жизни. Последняя буква вашего имени показывает вашу способность «идти своим чередом» и добиваться успехов в жизни. Например, в имени Энн краеугольная буква — А, а заглавная буква — E.

    Специальные буквы в названии Кшм is — k&m

    Первое письмо (Краеугольный камень) Понимание имени
    Кшм Первая буква каждого имени определяет значение.первая буква имени Кшм — «к» . ниже мы объясняем природу имени Кшм в соответствии с первой буквой k.

    Если людей с именем на эту букву (К) называют перфекционистами, то в этом не будет ничего страшного, потому что им все нравится безупречно. Они предпочитают умного и разумного партнера, если они не находят партнера по своему усмотрению, они вообще не идут на компромисс.

    Им нравится выделяться из толпы и отличаться от других. Их отношение к зарабатыванию денег очень ясное, и они предпочитают думать в первую очередь о себе. Иногда они строгие, иногда мягкие, но в обоих случаях очень твердые. Да, в случае с любовью они очень романтичны, и когда они кого-то любят, они также любят открыто выражать себя. В этом случае они успешны.

    Последняя буква (The Capstone) Insight of Name
    Kshm Последняя буква каждого имени также определяет значение.последняя буква имени Кшм — м . ниже мы объясняем природу имени Кшм по последней букве м.

    Человек, как правило, методичен, завершает проекты консервативным и традиционным способом.
    Практически все ваши проекты приносят успех и процветание. Ваши проекты также становятся ключом к поддержке других.

    Понимание первой гласной имени
    Kshm Первая гласная в вашем имени предлагает вам — и другим — окно во внутреннее вас и часто указывает на вашу первую реакцию или реакцию на события или переживания в вашей жизни.Тем не менее, это в основном «внутренняя» вещь, то есть то, что действительно знаете только вы, и не то, что другие могут открыто заметить в вас.

    Первая гласная в вашем имени может дать вам общее представление о том, как вы смотрите на мир вокруг себя и реагируете на него.

    В имени Кшм не найдено гласных.

    Как в нумерологии вычисляется имя Кшм?

    Алфавит Итого по позиции
    К 2
    S 1
    H 8
    M 4
    Всего 15
    Промежуточный итог 15 6
    Расчетная нумерология 6
    Согласно нумерологическому значению 6, Kshm — Ответственный, защитный, заботливый, уравновешенный, сочувствующий, дружелюбный, отличный строитель отношений, отличный родитель, щедрый и искренний.

    Имя Кшм очень сентиментально. Kshm часто помогает в отношениях. Kshm несет ответственность и искренне помогает людям. Кшм всегда готов выслушать проблемы друзей и помочь им, когда это будет необходимо.

    Кшм может сделать все, чтобы выразить любовь к семье. Ответственность, доброта, самоотверженность, сочувствие и верность — замечательные качества Kshm . Kshm отлично справится со всем и заслуживает доверия.

    Просмотр сведений о личности
    Происхождение, страны, лунный зодиак
    Оставьте свой отзыв
    См. Отзывы других пользователей и
    Полный анализ имени «kshm»

    Вернуться

    тебя зовут Кшм? или вы знаете кого-нибудь с именем Kshm , пожалуйста, помогите нам найти более подробную информацию о имени Kshm .поделитесь своими знаниями о имени Kshm .
    Примечание: пожалуйста, введите имя без заголовка.Глоссарий

    / Национальная программа моделирования сейсмических опасностей / Землетрясения / Природные опасности и риски / Наша наука / Домашняя страница

    A B C D E F G H I J K L M N O P Q R S T U V W X Y Z

    Acceleration — Изменение скорости (скорости в определенном направлении) за единицу времени.Земля испытывает ускорение во время землетрясения, когда земля трясется.

    Aleatory Uncertainty — Неопределенность, зависящая от случая, вызванная внутренней изменчивостью природы. Он используется в вероятностном анализе сейсмической опасности. (Подробнее: http://www.opensha.org/sites/opensha.org/files/PSHA_Primer_v2_0.pdf)

    Модель фонового источника или распределенной сейсмичности — эта модель предназначена для учета разломов всех размеров, о которых мы не знаем, на поверхности и на глубине.Это многослойная (глубинная) сетка показателей сейсмичности, разработанная с использованием каталога землетрясений GeoNet. Это один из двух компонентов исходной модели NSHM, который в основном разрабатывается рабочей группой SRM.

    Эффекты бассейна — Усиленное землетрясение в пределах геологического бассейна из-за его геометрии и наличия более мягких грунтов (т. Е. «Осадочного бассейна»). Обновление NSHM предполагает включение моделирования бассейнового усиления для региона Веллингтона.Бассейн Веллингтона является районом, вызывающим серьезную озабоченность после землетрясения в Кайкхура в 2016 году, однако эта проблема касается многих бассейнов по всей стране.

    наверх <<

    CSHM — C anterbury S eismic H azard M odel — региональная временная модель для района Большого Крайстчерча, разработанная после основных толчков продолжающегося землетрясения в Кентербери. CSHM зависит от времени, поскольку он учитывает снижение активности афтершоков с течением времени.

    Дезагрегация / дезагрегация (дезагрегация / дезагрегация) — процесс разделения вкладов в результаты вероятностной сейсмической опасности по заданным критериям. Это сделано, чтобы помочь понять, какие источники землетрясений могут повлиять на них, и которые важны для конкретного региона. Критерии могут быть комбинациями (т. Е. Магнитуды, расстояния, местоположения и типа тектонической области (т.е. активная мелкая кора, вулканическая, субдукционная поверхность, субдукционная плита).

    Детерминированный анализ сейсмической опасности — Использование только одного значительного потенциального землетрясения для оценки сотрясения земли для конкретного места или региона.Он может включать или не включать неопределенность в расчет сотрясения грунта. Обычно это используется для дополнения вероятностного анализа сейсмической опасности.

    Направленность — Изменчивость сотрясения землетрясения в зависимости от направления разрыва разлома. Движение грунта в направлении распространения разрыва (направление, в котором выделяется энергия землетрясения) более сильное, чем в других направлениях (см. Глоссарий по землетрясениям USGS; и https://earthquake.usgs.gov/data/rupture/directivity .php

    наверх <<

    Эпистемическая неопределенность — Неопределенность в наших знаниях о том, как происходят землетрясения и сотрясает землю. Время и дополнительное наблюдение могут уменьшить эти неопределенности. Он используется в вероятностном анализе сейсмической опасности. (Подробнее см .: Вероятностный анализ сейсмической опасности в региональном и национальном масштабе: современное состояние и будущие задачи; и http://www.opensha.org/sites/opensha.org/files/PSHA_Primer_v2_0.pdf;

    GMM Модель движения грунта — Математические / статистические модели, используемые для оценки количества сотрясений грунта на заданном участке или в заданной серии точек.Иногда также называется «отношением затухания». GMM, специфичные для Новой Зеландии, включают McVerry et al. (2006) и Брэдли (2013). Есть наборы других международных GMM из проектов NGA West-1, возглавляемых США, NGA West-2 и NGA Subduction. Рабочей группе GMCM поручено разработать и определить, какие GMM будут включены в NSHM.

    GMCM — Модель характеристики движения грунта — Эта модель объединяет несколько методов оценки сотрясения грунта с использованием различных GMM и других факторов, таких как эффекты бассейна.

    Движение грунта — Движение земной поверхности, вызванное землетрясениями. Землетрясения создают сейсмические волны, которые проходят через поверхность земли и вдоль нее. (См. Глоссарий по землетрясениям USGS.)

    наверх <<

    Кривая опасности — Набор значений (обычно в виде кривой на графике), представляющих вероятности превышения (вертикальная ось) заданных значений ускорения (горизонтальная ось). Короче говоря, значения этой кривой представляют вероятность превышения определенного значения ускорения.Эти графики относятся к одному периоду спектра (т.е. PGA, 0,5, 1).

    KSHM — Kaikōura S eismic H azard M odel. Региональная модель, зависящая от времени, была разработана для центральной части Новой Зеландии (т.е. северной / северо-восточной части Южного острова и нижней части Северного острова) после землетрясения в Кайклуре 2016 года. Эта модель включает значительные обновления модели источника разлома, включая источники зоны субдукции Хикуранги, и модели распределенной сейсмичности: оба компонента включают зависящие от времени скорости землетрясений, которые меняются во времени.KSHM также включает в себя набор моделей движения грунта (GMM), а не одну модель, как в NSHM 2010 года.

    Новозеландский класс площадки — используется для передачи понимания почвенных условий на площадке и в настоящее время используется в строительных стандартах и ​​руководящих принципах Новой Зеландии (например, в стандарте Новой Зеландии 1170). Классы площадок варьируются от A до E и определяются рядом почвенных условий, включая, помимо прочего, скорости поперечных волн, измерение других геотехнических свойств и оценку периода площадки.Большинство сайтов в Новой Зеландии соответствуют классам сайтов B, C или D. Ниже приведены краткие описания классов сайтов:

    — A: Strong Rock
    — B: Rock
    — C: Мелководный грунт
    — D: Глубокий или мягкий грунт
    — E: Очень мягкий грунт

    New Zealand Strong Motion Database (NZSMD) — база данных записей сильного движения записан в Новой Зеландии. Эта база данных была создана GNS (Van Houtte et al., 2017), включая данные до 2016 года.Он обновляется как часть редакции NSHM.

    NSHM Национальная модель сейсмической опасности . Это официальная модель сейсмической опасности для Новой Зеландии, которая оценивает вероятность и силу землетрясений в Новой Зеландии.

    NSHMP-haz — Кодекс Национального проекта по картированию сейсмической опасности (NSHMP) Геологической службы США для анализа сейсмической опасности. Платформа написана с использованием java и имеет открытый исходный код (свободно доступна и может быть разработана пользователями).

    наверх <<

    OpenQuake — комплексная программная платформа для расчета опасности и риска землетрясений, разработанная Фондом Global Earthquake Model Foundation. Платформа написана с использованием Python и имеет открытый исходный код (свободно доступен и может разрабатываться пользователями).

    Period (T) — интервал времени, необходимый для одного полного цикла волны землетрясения. (См. Диаграмму в Глоссарии USGS Earthquake.)

    PGA P eak G round A cceleration.Наибольшее увеличение скорости, зарегистрированное при землетрясении частицей на земле, или которое можно ожидать на основании оценочного движения грунта в определенном месте (т.е.как показано в спектре для конкретного места). В PSHA PGA обычно отображается с нулевым спектральным периодом.

    PSHA P robabilistic S eismic H azard A анализ. Численный / аналитический подход к количественной оценке вероятности превышения различных уровней движения грунта на площадке с учетом всех возможных землетрясений.(Подробнее: http://www.opensha.org/sites/opensha.org/files/PSHA_Primer_v2_0.pdf)

    Вероятность превышения (PoE, PE) — PoE для движения грунта обеспечивает вероятность того, что движение грунта будет превышено в интересующем временном окне. Это основной вывод PSHA.

    наверх <<

    Период возврата, интервал повторения и вероятность превышения

    Период возврата и интервал повторения — это разные вещи. Период возврата используется для описания выходов PSHA. Интервал повторяемости используется для описания поведения землетрясений при конкретном разломе. Однако закономерность возникновения землетрясений — очень дискуссионная тема. Например, мы не обязательно моделируем отдельные землетрясения, которые происходят с регулярным интервалом, и поэтому использование периода повторяемости для сотрясения грунта может вводить в заблуждение, и движение грунта с определенной вероятностью превышения (PoE) является правильным термином. Например, мы должны описывать колебания грунта с 10% вероятностью превышения за 50 лет, а не колебания грунта с периодом повторяемости 475 лет.

    Модель уровня сейсмичности — Представления известных и неизвестных источников разломов для целей оценки опасности землетрясений. Эта модель дает оценки того, где происходят землетрясения, с какой скоростью они происходят и какими могут быть магнитуды. Он включает данные об известных неисправностях и оценки неизвестных неисправностей. Оба компонента ограничены несколькими источниками данных, включая геологию землетрясений и модель разломов сообщества, каталог землетрясений GeoNet и сеть GeoNet GNSS.Окончательная модель уровня сейсмичности состоит из многокомпонентных моделей, которые позволяют нам учесть эпистемическую неопределенность.

    Spectrum / Spectra — кривая, показывающая амплитуду (в случае анализа опасности, это будет ускорение) по оси y в зависимости от периода по оси x. Итак, общий спектр должен показывать количество тряски в каждом периоде (сколько есть тряски каждого типа). Это производится для горизонтальных движений земли. (См. Диаграмму в глоссарии по землетрясениям USGS.)

    наверх <<

    UHS — Единый спектр / спектры опасностей, обычно называемые «спектром» или «спектрами».

    Vs30 — Средняя скорость поперечной волны на глубину 30 метров. Часто используется отдельно или вместе с Z1.0 и / или Z2.5 для представления характеристик площадки в моделях движения грунта (GMM).

    Z1.0 — Глубина, на которой скорость поперечной волны достигает 1 км / с (1000 м / с). Часто используется вместе с Vs30 для представления характеристик площадки в моделях движения грунта (GMM).

    Z2.5 — Глубина, на которой скорость поперечной волны достигает 2,5 км / с (2500 м / с). Часто используется вместе с Vs30 для представления характеристик площадки в моделях движения грунта (GMM).

    наверх <<

    Масштабная модель грузовика 1:43 ГАЗ-66 Командно-штабная машина КШМ Р-142Н Автомобили, грузовики и фургоны Игрушки и хобби

    Масштабная модель грузовика 1:43 ГАЗ-66 Командно-штабная машина КШМ Р-142Н Автомобили, грузовики и фургоны Игрушки и хобби

    Найдите много отличных новых и подержанных опций и получите лучшие предложения на Масштабную модель грузовика 1:43 ГАЗ-66 Командно-штабная машина КШМ Р-142Н по лучшим онлайн ценам на! Бесплатная доставка для многих товаров !.Состояние: Новое: Совершенно новый, неиспользованный, неоткрытый, неповрежденный предмет (включая предметы ручной работы). См. Список продавца для получения полной информации. См. Все определения состояний : Пол: : Мальчики , Характеристики: : Ограниченная серия : Марка автомобиля: : gaz , Цвет: : Синий : Модель: : ГАЗ-66 Командно-штабная машина КШМ Р-142Н , Тип транспортного средства: : Truck Kung : Материал : : Литье под давлением , Год выпуска: : 66 : Тема: : СССР , Бренд: : AutoHistory : Масштаб: : 1:43 , Рекомендуемый возрастной диапазон: : 10+ : Серия: : gaz autohistory , UPC: : Не применяется ,。

    Масштабная модель грузовика 1:43 ГАЗ-66 Командно-штабная машина КШМ Р-142Н









    Масштабная модель грузовика 1:43 ГАЗ-66 Командно-штабная машина КШМ Р-142Н

    Масштабная модель грузовика 1:43 ГАЗ-66 Командно-штабная машина КШМ Р-142Н, штабная машина КШМ Р-142Н Масштабная модель грузовика 1:43 ГАЗ-66 Командуй и, Найдите много отличных новых и подержанных опций и получите лучшие предложения на Масштабная модель грузовика 1:43 ГАЗ-66 Командно-штабная машина КШМ Р-142Н по лучшим онлайн-ценам на, Бесплатная доставка многих товаров, Покупка в лучшем магазине, удовлетворение гарантировано 24 часа, чтобы служить вам здесь, чтобы дать вам то, что вы хотите Рынок лучшие цены и возможна доставка на следующий день.КШМ Р-142Н Масштабная модель грузовика 1:43 ГАЗ-66 Командно-штабная машина mesrajaschool.com.






    Сканируй и плати

    MES Raja Международная школа-интернат была основана в 1974 году при мусульманском обществе. Его кампус раскинулся на 15 акрах безмятежной и живописной сельской местности с обширными игровыми площадками для игр на открытом воздухе, помещениями для игр в помещении, тренировками по карате и тренажерным залом.Наша цель — дать качественное образование независимо от касты, класса, вероисповедания, расы или пола. Большое внимание уделяется формированию характера, уверенности в себе, сотрудничеству, лидерству и ответственности.

    Мы верим в ценность развития у детей чувства собственного достоинства в безопасной и надежной среде, а также в целостный подход, учитывающий индивидуальные потребности наших детей. Школа входит в состав Центрального совета среднего образования Дели.

    Читать далее

    Выдающиеся ученые
    с рекордными результатами

    Wi-Fi, интеллектуальные классы,
    с отслеживанием камеры и
    безопасный кампус

    Чрезвычайно дружелюбный
    и доступный
    Управление

    Квалифицированный медицинский персонал
    Помощь

    Школа-интернат MES Raja

    Медицинское обслуживание

    В школе заботятся о здоровье учеников.

    Цифровые классы

    Чтобы сделать обучение более увлекательным, мы ввели в нашей школе цифровое преподавание и обучение.

    Система Монтессори

    Монтессори-метод обучения применяется на дошкольном этапе.

    Экзаменационная и контрольная работа

    Для правильной оценки тест проводится каждые 30 рабочих дней.

    Биологическая лаборатория

    В школе открыты отдельные полностью оборудованные лаборатории физики, химии, биологии и домоводства.

    Масштабная модель грузового автомобиля 1:43 ГАЗ-66 Командно-штабная машина КШМ Р-142Н

    GPM BJ057 / DC Delrin хомуты для легкого заднего верхнего рычага HPI BAJA 5B. Mattel Disney Pixar Самолеты Fire & Rescue Windlifter Helicopter Diecast Toy Boxed, Tui Group B787-800 Dreamliner SKY144-70 — Ref.Декаль DC112 Jetairfly. ICM 35301-1 / 35 Британская пехота 1917-1918 гг. Первая мировая война 4 фигурный пластиковый модельный набор, POKEMON TCG LUCARIO & MELMETAL POWER PARTNERSHIP TIN 4 НАБОРЫ УСИЛИТЕЛЕЙ + 1 ПРОМО. 3,75-дюймовая новая серия «Звездные войны» CHEWBACCA W / Stand Gun Aciton Figures Collection Toy, Bat Project 72011 Boeing S-307 / SB-307B Пластиковая модель Stratoliner, комплект 1/72, лебедка 1/10 Крюк, черный ACC80901, НАБОР СТРАЙКЕРОВ ПОЛНЫЙ РАЗМЕР 26 ДЮЙМОВ CARROM BOARD GAME С БЕСПЛАТНЫМИ МОНЕТАМИ.1 комплект MA / AR Chassis Modification Kit FRP Part для Tamiya Mini 4WD RC Car Parts, 1980 DARK BLUE 940125721 MAXICHAMPS 1:43 Новинка в коробке! LANCIA BETA COUPE.ПЛЮНЖЕР W8B NEW LIONEL FM ЧАСТЬ 2321-164. 4шт моделирование автомобилей динозавров дети откидной автомобиль игрушка мини-модель динозавра автомобиля. НОВОЕ ОБОРУДОВАНИЕ SEGA Game 30-летие переделано в микроразмер ограниченной версии ЯПОНИЯ PSL. Набор игрушек для детской ванны «Резиновая уточка»: 4 ведра по 18 уток в каждом. Traxxas Drive Cup TRA5153 2. Спичечный коробок Volkswagen Type 3 Fastback 1965 Light Blue FWD28-956H 1/64.

    Школа-интернат MES Raja

    Мы стараемся сделать процесс приема максимально простым.Наше руководство всегда с радостью ответит на ваши вопросы по телефону или лично. Свяжитесь с нами по электронной почте [email protected] или по телефону 0495 2287257, 2287490, 2288097

    Последние новости
    Доступна услуга школьного консультанта

    Служба школьного консультанта работает с 9.00 до 4.

    Читать далее
    Библиотека книг

    Студенты могут собирать библиотечные книги

    Читать далее
    2-й взнос

    Оплата комиссии онлайн

    Читать далее

    Мы стараемся сделать процесс приема максимально простым.Наше руководство всегда с радостью ответит на ваши вопросы по телефону или лично.

    Школа-интернат MES Raja

    T.C AHAMED

    Председатель
    Проф. А.М.П. Хамза

    Секретарь
    C.S RAMESH KUMAR

    Руководитель

    Масштабная модель грузового автомобиля 1:43 ГАЗ-66 Командно-штабная машина КШМ Р-142Н

    Мужские хлопковые льняные рубашки с V-образным вырезом и повседневной футболкой Henley с длинным рукавом в магазине мужской одежды.Пара акриловых светящихся в темноте розеток Playboy Bunny Cutout Gold IP с резьбой: Одежда. Groen 088846 Сливной шланг для полости: Товары для дома. Классический фитнес-браслет с прочными аксессуарами, он не тяжелый и не громоздкий для тех, кто хочет сохранить свои сумки легкими и тонкими, Модель грузовика в масштабе 1:43 ГАЗ-66 Командно-штабная машина КШМ Р-142Н , Найдите комфорт в квартире Фоли from ®, высококачественный магазин с хорошим обслуживанием, ArtMetalz Dye-Sublimation on Chromaluxe Aluminium. Автономный или настенный аналоговый будильник Home-X Jumbo с большими цифрами: Home & Kitchen, Масштабная модель грузовика 1:43 ГАЗ-66 Командно-штабная машина КШМ Р-142Н .Спортивные вьетнамки Crocs унисекс Modi. Эта шапка в стиле Белоснежки подойдет любому малышу и станет прекрасным подарком. Если вы не хотите, чтобы они были пластиковыми, отправьте нам сообщение. Если у вас есть какие-либо вопросы, напишите мне, Масштабная модель грузовика 1:43 ГАЗ-66 Командно-штабная машина КШМ Р-142Н , расходы не включены в цене товара или стоимости доставки, а также был известен как символ богатства во многих древних культурах. • От 1 до 8 рабочих дней (США и Канада). Детская сумка-тоут «Угадай, как сильно я тебя люблю» хранит сладкие чувства любимой истории Сэма Макбрэтни «Модель грузовика в масштабе 1:43» ГАЗ-66 Командно-штабная машина kshm R -142Н .◆ Этот продукт представляет собой идеальную комбинацию с зарядной станцией с точки зрения поиска ASIN. Графические изображения футболок напечатаны профессионально. Gold): Глушители — ✓ БЕСПЛАТНАЯ ДОСТАВКА при соответствующих критериях покупках, Зарядное устройство Mcottage UK Plug Wall 3 Pin Plug с 2/3 USB-портами для iPad Phone Планшет: Kitchen & Home, грузовик в масштабе 1:43 GAZ-66 Command and Staff машина КШМ Р-142Н , Как спортивная компания мы полностью понимаем, насколько важен активный и здоровый образ жизни. плавное действие при регулировке положения »« Это отличное подспорье для человека с артритом рук ».


    Масштабная модель грузового автомобиля 1:43 ГАЗ-66 Командно-штабная машина КШМ Р-142Н


    Найдите много отличных новых и подержанных опций и получите лучшие предложения на Масштабную модель грузовика 1:43 ГАЗ-66 Командно-штабная машина КШМ Р-142Н по лучшим онлайн-ценам, Бесплатная доставка для многих товаров, Покупайте в лучшем магазине. Гарантированные 24 часа, чтобы служить вам здесь, чтобы предоставить вам то, что вы хотите, лучшие на рынке цены и доступную доставку на следующий день. mesrajaschool.com
    Масштабная модель грузовика 1:43 ГАЗ-66 Командно-штабная машина КШМ Р-142Н mesrajaschool.com

    Army Guide

    БМП-1 представляет собой полностью бронированную боевую машину-амфибию (AIFV). Его низко очерченный корпус имеет острый наклонный фронт с хорошо заметной ребристой поверхностью.

    Центрально расположенная, чрезвычайно плоская башня с усеченным конусом содержит 73-мм гладкоствольную пушку и 7,62-мм спаренный пулемет. Над пушкой крепится планка для пуска противотанковой управляемой ракеты AT-3 SAGGER. В правой передней части корпуса расположен 6-цилиндровый дизельный двигатель с водяным охлаждением мощностью 290 л.с.Люк механика-водителя находится спереди слева, прямо перед люком командира, на котором установлен ИК-прожектор. Люк наводчика находится с левой стороны невысокой крыши башни. В корме башни четыре больших люка в крыше десантного отделения; две большие двери выхода также находятся в задней части.

    В десантном отделении с каждой стороны по четыре огневых порта и по одному в левой задней двери. Подвеска имеет шесть опорных катков с неравномерно разнесенными штамповками, три опорных катка гусеницы и звездочку переднего привода.Сочетание эффективной противотанковой огневой мощи, высокой мобильности и адекватной защиты делает БМП значительным улучшением по сравнению с бронетранспортерами более ранней серии БТР. 73-мм пушка стреляет кумулятивными снарядами с оперением и оперением с эффективной дальностью от 800 до 1000 метров.

    Имеется также автоматический загрузчик. Для увеличения дальности действия противотанковых средств на БМП-1 установлена ​​ПТУР AT-3 SAGGER, эффективная дальность стрельбы до 3000 метров. БМП — амфибия, движется по воде за счет гусениц.У него есть дальность и скорость, необходимые для того, чтобы не отставать от быстро движущихся танков, за которыми он обычно следует в наступательных порядках.

    Экипаж БМП — три человека. Сюда входит командир машины, который становится командиром отделения, когда пассажиры пехоты спешиваются через задние выходные двери. Блоки обзора и окна для стрельбы по бокам и в задней части десантного отделения позволяют пехотинцам на ходу вести огонь из автоматов (АКМ или АК-47) и ручных пулеметов (ПКМ или РПК-74) изнутри машины.Также в войсках имеется противотанковый гранатомет РПГ-7В или РПГ-16, выстрел из которого может вести пассажир, стоящий в заднем люке. БМП БМП несут системы вооружения SA-7/14/16/18 и АГС-17 в составе взводов ПВО и автоматических гранатометов БМП.

    В застегнутом состоянии экипаж и пассажиры имеют защиту от ядерного оружия в герметичном корпусе с фильтрами. Это позволяет им работать независимо от внешней среды. БМП имеет инфракрасный прожектор, перископы и прицелы для работы в ночное время.Он также может создавать свою собственную дымовую завесу, впрыскивая дизельное топливо в выпускной коллектор.

    ВАРИАНТЫ:

    БМП обр. 1966 г. Это была оригинальная версия БМП (также называемая БМП-А), у которой была более короткая носовая часть, чем у ее преемницы, БМП-1. В этой версии не было системы защиты от NBC.

    БМП-1 (БМП модели 1976 г.) Это серийная серийная модель БМП-1.

    БМП-1К Командный вариант БМП-1.Эта версия отличается от БМП-1 главным образом наличием дополнительного радиооборудования и антенн, а также приваренными пулеметными портами. Десантное отделение было переработано для размещения полевых столов и картографических досок. Он используется как командирская машина батальона.

    БМП-1П Это БМП-1 с заменой пусковой планки AT-3 SAGGER на установленную на крышке башни пусковую установку ПТУР AT-4 SPIGOT. Эта версия также имеет дымовые гранатометы, установленные в корме башни.

    БМП-1ПК Это командирский вариант БМП-1П.

    БРМ и БРМ-1 (БМП-Р или БМП М1976) Этот вариант используется в качестве разведывательной машины. Он состоит из БМП-1 с увеличенной двухместной башней, вооруженной 73-мм пушкой. На этой машине нет ПТУР. В крыше есть два небольших люка вместо четырех прямоугольных, как у БМП-1.

    БРМ-1К (БМП M1976 / 2) Этот разведывательный вариант состоит из БРМ-1 с добавлением РЛС наблюдения поля боя ПСНР-5К (ВЫСОКИЙ МАЙК), которая установлена ​​в задней части башни.Этот радар поднимается над крышей башни, когда это необходимо, а затем опускается в башню, когда не используется. Эта машина также включает в себя лазерный дальномер ДКРМ-1, локационный прибор АРРС-1, миноискатель ИМП и ночной бинокль 1ПН33Б. Переносимое навигационное оборудование включает в себя гирокомпас ТНА-1, ИГ11Н и обзорный прибор 1Т25.

    БМП КШМ На этой невооруженной машине управления и связи установлена ​​большая телескопическая антенна и больше радиооборудования, чем на БМП-1К.

    ПРП-3 (БМП-СОН) Эта машина артиллерийской разведки используется в качестве средства корректировки артиллерийского огня и / или средства определения местоположения артиллерийских мин и минометов.Передняя часть машины идентична БМП-1, но имеет новую двухместную башню с двумя цельными люками, открывающимися вперед. Оба люка имеют перископы для наблюдения и большой оптический прибор перед люком. Вооружение состоит из 7,62-мм пулемета, пришедшего на смену 73-мм пушке. В задней части башни установлен радар наблюдения поля боя SMALL FRED с плоской антенной, которая складывается вперед, когда она не используется. В задней части башни с левой стороны находится еще одна круглая крышка люка и телескопическая антенна.Эта машина имеет экипаж из пяти человек и оснащена обширным оборудованием связи и оптическими приборами.

    ПРП-4 Этот автомобиль является преемником ПРП-3. Он отличается от своего предшественника добавлением дополнительного обтекателя с правой стороны башни.

    Инженерная разведывательная машина-амфибия ИРМ Машина создана на базе шасси БМП-1. На нем установлен двигатель и подвеска БМП-1 в новом корпусе. Он был разработан для выполнения множества специализированных инженерных разведывательных функций, включая обнаружение мин и разведку дна реки.Для выполнения функции обнаружения мин IRM имеет два устройства, установленных в передней части машины, которые можно убрать заподлицо с корпусом, когда они не используются. IRM является полностью амфибийным, приводится в движение двумя винтами в кожухе в задней части машины. При погружении на поверхность корпуса устанавливается шноркель; когда не требуется, он остается горизонтальным.

    Мобильный учебный центр БМП-ППО Эта машина представляет собой БМП-1 со снятой башней и оснащенной восемью башенками на крыше для обучаемых, а также сиденьями для командира машины и водителя.У каждого обучаемого есть ТНПО-170 и один прибор наблюдения типа МК-4, установленный в носовой части башенки, и блок А-2 переговорного устройства Р-124.

    ЧЕХОСЛОВАКИЯ БМП-1 ВАРИАНТЫ:

    • ОТ-90 БМП-1 с замененной башней на ту же башню, что и на чехословацком БТР ОТ-64С (8 x 8), вооруженном 14,5-мм и 7,62-мм пулеметами.
    • BVP-1 БМП-1 чешского производства
    • ДП-90 Техническая версия ОТ-90
    • МР-31 Командная версия ПВО версии командного пункта БМП КШМ.
    • МУ-90 Противоминный вариант ОТ-90 без башни, пространство закрыто стальным листом.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *