РазноеКонтроллер заряда солнечной батареи мррт – MPPT контроллер заряда на STM32F334C8T6 / Habr

Контроллер заряда солнечной батареи мррт – MPPT контроллер заряда на STM32F334C8T6 / Habr

Содержание

MPPT контроллер заряда на STM32F334C8T6 / Habr

В комментариях под моими предыдущими статьями неоднократно возникал вполне резонный вопрос: «Зачем делать dc/dc преобразователи на микроконтроллере, когда есть готовые?» и я в качестве ответа постоянно упоминал, как наиболее яркий пример, контроллер заряда с алгоритмом MPPT. Но сказать это одно, а показать… уже куда интереснее и нагляднее, поэтому сегодня расскажу о своем небольшом вялотекущем проекте такого контроллера.

Проект контроллера является открытым, все исходные файлы доступны на github. Сам контроллер является достаточно простым в реализации, построен он на топологии buck, в нем применены доступные компоненты и все это дает хорошую повторяемость даже без особых знаний. Компоновка разъемов и компонентов выполнены таким образом, чтобы данный контроллер можно было использовать и как отладочную плату для изучения силовой электроники, и как готовое устройство, останется просто изготовить корпус для него.


Собственно MPPT — это процесс поиска точки максимальной мощности у солнечной панели. Наличие данного алгоритма в контроллере позволяет в определенных условиях значительно повысить эффективность использования солнечных панелей. Когда производитель пишет на панели мощность, например, 100…200…250…320 Вт, то имеет ввиду номинальную мощность солнечной панели при уровне инсоляции 1000 Вт/м

2. Разумеется производители не выносят панели на улицу и не ждут идеальных погодных условий, поэтому данная величина принята как стандартная и «генерируется» на лабораторном стенде.

В реальных условиях при ясном небе максимальный уровень инсоляции имеет значения от 250 Вт/м2 где-нибудь в Норвегии и до 900-1000 Вт/м2 в Северной Африке. Из этого следует, что на Севере солнечная панель не выдаст своей заявленной мощности, а вот в Африке легко. НО… Как только на небе появляются тучи, которые затеняют солнечную панель, то уровень инсоляции снижается. Вспомните погоду за последний месяц, много ли идеально солнечных дней вы видели? Если вы с Краснодара, то возможно много, а вот у жителей средней полосы облаков однозначно больше.

Собственно в чем проблема… При снижение освещенности солнечной панели — изменяется расположение точки максимальной мощности (ТММ) на ВАХ реальной солнечной панели. Теперь давайте разберемся что же такое ТММ… Для этого берем солнечную панель с заявленной мощностью 200 Вт (у меня это Delta BST200-24P) и снимаем с нее вольт-амперную характеристику (ВАХ) при уровне инсоляции в 1000 Вт/м2:

Если посмотреть на график мощности, то на нем четко виден пик в котором панель отдает максимально возможную мощность — это и есть ТММ. Так же если из этой точки опустить линию вниз, то она пересечет ВАХ — координаты этой точки являются тем самым результатом, который необходимо найти. Если говорить проще: «MPPT — это процесс поиска точки на ВАХ в которой произведение тока и напряжения имеет максимальное значение»

Дополнительно стоит обратить внимание, что солнечная панель может выдавать несколько больше, это нормальное явление, т.к. эффективность ее зависит не только от уровня инсоляции, но еще и от температуры. Если поставить панель под солнце, то через несколько часов она достаточно сильно нагреется и мощность упадет примерно на 10%.

Теперь давайте разберемся что именно будет делать контроллер заряда и зачем ему МРРТ. Как ранее было сказано — уровень инсоляции будет значительно меняться в процессе эксплуатации: облака, пасмурная погода, рассвет и закат Солнца, соответственно будет изменяться и ВАХ солнечной панели:

На графике изображены ВАХ для 4-х случаев: 1000, 800, 600 и 400 Вт/м2 и соответственно для каждого случая у нас будет своя точка на ВАХ, где произведение тока и напряжения будет иметь максимальное значение. Задача контроллера заряда с MPPT — искать точку максимальной мощности для конкретных погодных условий.

Например, живете вы где-нибудь в Воронеже, у вас тепло и много солнечной энергии и вы нашли ТММ и получаете максимальную отдачу мощности, но через 15 минут над вашими панелями встала туча и частично закрыла собой панели и значение инсоляции изменилось, а следовательно изменилась ВАХ панели. Чтобы контроллер заряда мог подстроиться под новые условия ему необходимо с некоторой частотой, например, раз в 5 минут, производить вычисления и поиск ТММ для новой ВАХ.

Существует множество алгоритмов поиска ТММ, начиная от простейшего «0,8*Uxx» до различных сканирующих алгоритмов с нейронными сетями, но более подробно об алгоритмах и их реализации в коде я расскажу в отдельной статье. Надеюсь вам стало понятно, что такое ТММ и зачем мы ее ищем, теперь можно перейти непосредственно в железу.


Теперь необходимо решить что же должен уметь контроллер, чтобы обеспечить необходимый функционал. Во-первых, контроллер заряжает АКБ, а следовательно необходимо реализовать CC/CV управление (стабилизация тока и напряжения) на выходе и для этого понадобиться измерять ток и напряжение на выходе. Во-вторых, для поиска ТММ необходимо измерять ВАХ солнечной панели, а значит нужно измерять ток и напряжение на входе. В-третьих, должен быть понижающий dc/dc, который опустит входное напряжение до 12 или 24В, в данном случае это будет синхронный buck. Это все позволит реализовать основной функционал устройства, в итоге функциональная схема будет выглядеть так:

Как видите ничего сложного нет, схема очень похожа на пример из данной статьи и отличия лишь в дополнительных цепях обратной связи для реализации алгоритма поиска ТММ и процесса заряда. Помимо этого необходимо реализовать защиту от перегрева, от сквозных токов, добавить парочку интерфейсов для общения с внешним миром и удобного обновления прошивки.


Технические характеристики:

  • Входное напряжение: 15…60В
  • Выходное напряжение: 12/24В
  • Номинальный выходной ток: 20А
  • Алгоритмы МРРТ: да
  • Частота преобразования: 100 кГц
  • Защита от перегрева: да
  • Защита от сквозного тока: да
  • Защита АКБ: OVP и OCP
  • Интерфейсы: USB, Modbus
  • Ресурс: не менее 50 000 часов
  • Габаритные размеры: 110х90х20 мм

Особых изысков в данном решение не предполагается, основной уклон на повышенную надежность, эффективность алгоритмов ТММ и сохранение адекватной стоимости контроллера. Из удобств было решено заложить гальванически развязанный USB для настройки и перепрошивки управляющего микроконтроллера + его можно использовать для отладки, если SWO вам не нравится. Так же для реализации удаленного управления и мониторинга заложил RS-485, который надежен, дешевый в реализации и позволяет организовать связь на расстояние до 1000 метров. От wi-fi и прочего радио отказался сразу, т.к. контроллер обычно эксплуатируется в металлическом щите и как вариант в ж/б здании.


На КДПВ видно, что устройство состоит из двух печатных плат: 4-х слойных модуль управления и основная 2-х слойная плата. Внимательные могут заметить, что модуль управления похож на решение из прошлой статьи, только основательно переработанное. И действительно, после испытания предыдущей версии control board и после обсуждений в комментариях было решено внести ряд глобальных изменений:


  • Отказ от вертикального монтажа в разъем и переход к горизонтальному. Это позволило решить проблему с разъемом и обойтись обычными 2.54 мм PLS-ами, а так же значительно уменьшить высоту устройства. С вертикальной версией высота контроллера была бы 60 мм, а не 20 и был бы велик шанс отломить плату управления. Сейчас же она не выступает на фоне остальных компонентов и по-прежнему занимает мало места;
  • Размеры платы уменьшены до 90х35 мм;
  • Контроллер STM32F334R8T6 заменен на более компактный и дешевый STM32F334C8T6. Эта замена так же привела к уменьшению количества каналов для управления полумостом с 5 до 4-х. Как показала практика данный контроллер не вывозит управление разом 5-ю полумостами, разве что совсем простые алгоритмы. Исходя из этого было решено отказаться от корпус LQFP-64 в пользу LQFP-48;
  • Добавлен гальванически развязанный USB, а если быть точнее, то мост USB-UART, т.к. в самом микроконтроллере нет аппаратного USB интерфейса;
  • С платы управления убрана микросхема PHY для RS-485, т.к. нужна она не всем и не всегда, но для ее возможного использования на разъем выведен UART и дополнительный gpio для управления прием/передачей. Так же теперь на основную плату можно поставить гальванически развязанный PHY и не быть привязанным к выбранному мною решению;
  • На отладочный разъем помимо интерфейса SWD было решено вывести и SWO для более удобной отладки программы.

Теперь перейдем к выбору компонентов для основной (силовой) части преобразователя. В своем предыдущем рассказе о топологии Buck я поведал о выборе силовых компонентов (транзисторы, конденсаторы, дроссель) и о методике расчетов их номиналов. Сегодня хотелось бы чуть подробнее рассказать о не менее важных компонентах, а именно про драйвер управления силовыми ключами, датчики тока и прочее.


Датчик тока

Для управления зарядом АКБ и измерения ВАХ солнечной панели необходимо измерять постоянный ток в диапазоне от 0 до 20А. Вариантов измерить постоянный ток не так много, самые эффективные и простые способы — токовый шунт и датчик на эффекте Холла. В первой версии я опробовал связку «шунт + INA194», вариант в общем-то рабочий, но сам монитор оказался достаточно шумным и была проблема в измерение токов менее 3-4А. Проблема решалась увеличением номинала шунта и цифровым фильтром, но тогда повышалась мощность, выделяемая на шунте в виде тепла, чего сильно не хотелось.

Изначально вариант с применением датчиков Холла я откинул сразу, а именно серии ACS (например, ACS758 или ACS711), т.к. в прошлом уже пытался их применить, но они сильно врали и у них низка полоса измерения. Правда в одном из обсуждений человек рассказал об успешном опыте применения данных датчиков, оказалось, что относительно новые серии перестали реагировать на малейшие наводки, главное чтобы около них не было ничего железного или того, что может намагнититься. Измерять мне нужно постоянный ток в системе, где скорость изменения тока не высока, а следовательно и полосы в 100 кГц хватит. Исходя из простоты и цены решения во второй версии MPPT контроллера я поставил ACS713ELCTR-30A. У Allegro есть две версии датчиков — DC и DC/AC, мне переменку измерять не нужно, а следовательно выбор очевиден в пользу DC, которые так же обладают бОльшим значением «вольт на ампер». Это позволило достаточно точно измерять не только большие значения тока, но и малые на уровне 0,3…0,5А с реальной погрешностью ±5%. Схема включения данного датчика крайне проста:

Включение стандартное, никакой магии в схеме нет, единственное что необходимо сделать — «согласовать» выходной диапазон датчика 0…5В с тем, что может измерить АЦП у микроконтроллера STM32, а именно с диапазоном 0…3,3В. У датчика выход напряжением, он линеен и увеличение выходного напряжения на 133 мВ означает увеличение тока, протекающего через датчик, на 1А. Исходя из этого минимальное напряжение на выходе 0В, а максимальное 30А * 133 мВ/А = 3,99В. Теоретически делитель напряжения можно было бы не ставить, т.к. максимальный ток всего 20А и следовательно напряжение на выходе будет в пределах 2,66В и никак не угрожает входу АЦП, но лучше перестраховаться. Возможно после тестирования и длительной обкатки устройства я все таки уберу делитель и поставлю повторитель напряжения на ОУ.


Драйвер управления затворами транзисторов

Еще на стадии идеи я решил сразу отказаться от полной гальванической развязки управляющей схемы от силовой, это банально дорого, хотя и избавляет от наводок и защищает цифровую часть. Введение гальванической развязки 2-х напряжений и драйвера повысило бы цену преобразователя на 40%. Поэтому от любимых драйверов Infineon серии 1ED/1EDI пришлось отказаться и выбрать что-то приличное с бутстрепным питанием верхнего ключа, мой выбор пал на достаточно новое решение — NCP5183DR2G. Драйвер показал себя в работе очень стабильным и достаточным для управления парой mosfet-ов на частоте 100 кГц. Минус в нем я нашел один — отсутствие отдельного входа, например, ShutDown или Enable для выключения драйвера в случае аварии, поэтому для реализации защиты необходимо ставить дополнительную дискретную логику или использовать аппаратный вход FAULT в самом микроконтроллера STM32F334. Я выбрал второй вариант и пока он меня не подвел, хотя изначально относился скептически к надежности такого решения. Схема управления транзисторами выглядит так:

Решение простое и понятное, единственное добавлю от себя — конденсатор С1 должен быть керамическим с диэлектриком X7R и желательно не самый поганый, оригинального Yageo/Murata/Samsung хватит всем. Вся остальная рассыпуха может быть и брендом попроще. Кстати, о «муках выбора» номинала затворных резисторов R1 и R5 вы можете прочитать в данной статье.


Выходные конденсаторы

Выше я заявил о приоритете надежности и ресурса преобразователя, а следовательно необходимо устранить все слабые места. В современных dc/dc преобразователях по моему мнению осталось одно слабое место — электролитические конденсаторы, которые так или иначе через некоторое время «сохнут» и деградируют, что приводит сначала к росту пульсаций и перегреву, а затем к выходу преобразователя из строя.

В моем контроллере заряда целых 2 таких места: конденсаторы на входе и выходе. Было решено заменить выходные электролиты на твердотельные полимерные конденсаторы (как в ваших видеокартах), которые куда легче переносят работу на токах в десятки ампер и обладают ресурсом на порядок выше, чем у самого качественного электролитического конденсатора. Минус у них один — цена, данное удовольствие от Panasonic стоит 2$/шт, но оно того стоит.

На входе устройства напряжение может достигать 60В, а это значит, что твердотельные полимерные конденсаторы уже не поставить, их просто нет, максимум 35В. Правда есть гибридные варианты, это промежуточное звено между электролитом и твердотельным конденсатором, они есть до 100В. У данного типа конденсаторов жидкий электролит заменен на пастообразный, что позволяет в разы повысить его ресурс.

Самые внимательные могут заметить, что выходные твердотельные конденсаторы разные на двух платах. Я думаю, что все «оценили» стоимость за конденсатор 120 мкФ 35В, электролит от Wurth стоит в 10 раз дешевле. Исходя из этого я решил для тестов купить альтернативу конденсаторам 35SEK330M от Panasonic. Ну как альтернативу… есть такая азиатская компания Lelon, которая делает полный аналог (с их слов) конденсаторов от Panasonic. На одну плату я поставил оригинал, на другую аналог, сами устройства у меня уже тестируются около месяца и пока разницы действительно не замечено, посмотрим какой будет итоговый ресурс, но для желающих уронить цену в 5 раз до 0,4$/шт советую задуматься.


Общие сведения по компонентам

Хотелось бы отдельно сказать о политике выбора компонентов и решений. Так как идея предполагает использование данного контроллера не только для изучения на столе, но и работу «в поле», то было решено использовать только проверенных производителей и не использовать китайские компоненты (кроме опыта с Lelon) и различные поделки с алиэкспресс. В моем варианте исполнения и в BOM-е фигурируют оригиналы с digikey от производителей типа Infineon, TI, ON, ST, Yageo, Bourns и прочие. В принципе никто не запрещает вам поставить компоненты попроще, с того же алиэкспресс, но будьте готовы к снижению надежности и КПД контроллера.


Про силовые компоненты и методику расчетов я уже писал в своей статье про buck, прочитать ее можно тут. Я лишь приведу те результаты, что у меня получились:


  • Индуктивность силового дросселя — 30 мкГн, намотан на кольце R32/20/10 из материала Kool Mu. Кольцо откровенно с запасом выбрано, т.к. планировались эксперименты с частотой и повышением тока;


  • Емкость выходных конденсаторов — около 300 мкФ, в реальности емкость набрана существенно бОльшая, что уменьшило выходные пульсации. Я пробовал работу и с 3-мя конденсаторами, все отлично, так что если вы надумаете повторить, то смело оставляйте половину посадочных мест под выходные конденсаторы пустыми. В принципе можно попробовать впаять 6 обычных электролитических конденсаторов, если нет возможности купить твердотельные. По моим предположениям работать контроллер будет без каких-либо проблем;


  • Транзисторы (IPD053N08N3GATMA1) я выбрал те, что были у меня в запасах и достаточно легко покупаются. Если у вас уже есть ключи или не смогли купить те, что заложены у меня, то выбирайте транзистор с сопротивлением канала не более 8 мОм и затвором не более 100 нКл. В противном случае КПД достаточно сильно упадет и транзисторы будут существенно перегреваться.


Так же наверняка найдутся те, кому лень идти на github, поэтому оставлю полную схему устройства в формате PDF:


Железная часть проекта выполнена в Altium Designer 19, так же проект можно открыть в Curcuit Studio. Для тех, кто не хочет связываться с покупкой софта или пиратством, есть принципиальная схема в PDF и Gerber-файлы, этого вам будет достаточно для самостоятельного заказа печатных плат и сборки МРРТ контроллера.

Теперь что касается софта… В ближайшее время я «причешу» тестовый проект на котором сейчас работают контроллеры и так же выложу на github, все желающие смогут посмотреть реализацию тех или иных модулей, а может и помочь в его написании и поиске ошибок. Так же планирую пару статей касательно софтовой части управления dc/dc преобразователем, а именно про П-, ПИ-, ПИД-регуляторы, их реализацию, цифровые фильтры и соответственно про алгоритмы поиска ТММ.


В дальнейшем предполагается еще одна ревизия железа, т.к. в процессе работы вылезли небольшие, но неприятные мелочи, например, с некоторой вероятностью без прошивки на выводах МК может появиться лог.1 и она откроет оба транзистора и приведет к КЗ. Данная проблема побеждается или предварительной заливкой прошивки перед первым включением контроллера или более правильный путь — установка резисторов 10 кОм, подтягивающих входы HIN и LIN на землю (GND). Хотя и в текущем состоянии контроллер работоспособен, но хочется в дальнейшем «вычистить» все потенциально проблемные места.

Как всегда хотелось бы поблагодарить PCBway за предоставленные печатные платы и трафареты, которые были использованы в процессе сборки прототипов. Так же отдельное спасибо всем, кто воспользовался кнопкой для донатов, пойду пропью ваша поддержка будет потрачена на железо и это выльется в какую-нибудь интересную статью.

Так же у меня осталось 2 комплекта печатных плат, если кто-то захочет собрать контроллер, то отдам безвозмездно в добрые руки. От вас лишь потребуется собрать и при наличии желания потом написать мне свои замечания и предложения. Желающие пишите в личку.

Проекты на Github

habr.com

MPPT контроллер заряда для солнечной батареи. © Солнечные.RU

Начало

Однако мы обошли вниманием MPPT контроллер заряда, который в действительности является самым совершенным из всех существующих типов. MPPT в переводе с английского означает отслеживание точки максимальной мощности. Дело в том, что мощность солнечных батарей указана всегда именно в этой точке. А напряжение в точке максимальной мощности, например для 12-и вольтовых моделей солнечных батарей обычно равно 17,5 В. При использовании не MPPT контроллера, напряжение на выходе солнечной батареи равно напряжению на заряжаемом аккумуляторе и лежит в пределах 11-14,5В. Соответственно, мощность солнечных батарей используется не полностью и часть мощности теряется. И теряется ее тем больше, чем глубже был разряд аккумулятора.

Вольт-амперная характеристика солнечной батареиПринципиальное отличие контроллера заряда MPPT от всех остальных состоит в том, что он находит и отслеживает точку максимальной мощности солнечной батареи и использует всю доступную мощность путем широтно-импульсного преобразования при всех режимах заряда, а не только при последнем режиме для поддержания предельного напряжения зарядки. Таким образом, использование MPPT контроллера позволяет увеличить количество используемой солнечной энергии от одной и той же батареи на 10-30% в зависимости от глубины разряда аккумулятора.

 

Небольшой конкретный пример для полной ясности:

Имеется солнечная батарея мощностью 100 Вт с напряжением в точке максимальной мощности Ump=17,5 В и током Imp=5,72 А, ток короткого замыкания Isc=6,2 А. Необходимо зарядить аккумулятор, разряженный до 12 В.

При использовании MPPT контроллера:

  • Напряжение на входе равно Uвх=Ump=17,5 В, ток на входе Iвх=Imp=5,72А, мощность на входе Pвх=Uвх*Iвх=17.5*5,72=100 Вт.
  • Напряжение на выходе равно напряжению аккумулятора Uвых=Uаб=12 В, а ток на выходе равен Iвых=Pвх/Uвых=100/12=8,33 А.

Т.е. благодаря преобразованию ток на выходе значительно больше тока солнечной батареи и используется вся её мощность за исключением небольших потерь на преобразование (которые, для простоты не учтены в формулах выше, а в реальности составляют не более 3%).

При использовании прочих моделей:

  • Напряжение на входе равно напряжению на выходе и равно напряжению аккумулятора Uвх=Uвых=Uаб=12 В, ток на входе немного больше Imp, но меньше тока короткого замыкания Isc и примерно равен Iвх=6 А, мощность на входе Pвх=Uвх*Iвх=12*6=72 Вт.
  • Напряжение на выходе равно напряжению аккумулятора Uвых=Uаб=12 В, а ток на выходе равен току на входе Iвых=Iвх=6 А.

Т.е. при использовании не MPPT модели, теряется 28 Вт или 28% мощности солнечной батареи при заряде глубоко разряженного аккумулятора. По мере роста напряжения на аккумуляторе, потери будут уменьшаться, но в любом случае будут более 10%.

Заключение:

Итак, мы рассмотрели все существующие варианты контроллеров заряда и пришли к выводу, что самой совершенной моделью является MPPT. Модели PWM также достойны внимания, но придется мириться с неполным использованием мощности солнечных батарей. Полностью отказаться от контроллера или использовать модели ON/OFF не рекомендуется, т.к. это негативно скажется на сроке службы аккумуляторов.

 

Надеемся, приведенные выше советы помогут Вам сделать выбор контроллера заряда!

www.solnechnye.ru

для АКБ от солнечных батарей, mppt контроллер

Как показывает практика, автономное энергообеспечение частного дома или небольшого производственного предприятия при помощи мини-станций на солнечных батареях — прибыльное вложение инвестиций. Владельцы бытовых гелиосистем платят за энергоресурсы по «зеленым» тарифам, а фактически пользуются электричеством бесплатно.

По статистике, солнечные панели мощностью 20–30 кВт окупаются уже через 5–7 лет активной эксплуатации. Чтобы интегрировать инновационные экотехнологии в действующую схему электроснабжения частного дома, кроме самих фотопанелей, дополнительно потребуется приобрести вспомогательное оборудование: аккумулирующие емкости (АКБ), инверторы, предохранители, а также контроллер заряда солнечной батареи — регулятор напряжения.

Какие функции выполняют регуляторы для гелиосистем

Контроллер заряда разряда АКБ — компактное электронное устройство со встроенным микропроцессором, которое в автоматическом режиме распределяет электроэнергию, полученную от фотоэлементов. Первостепенная задача «умной» электроники заключается в поддержании стабильного напряжения. Кроме этого, коммутационное устройство надежно защищает стационарные аккумуляторные батареи от перезаряда и переразряда.

Контроллер заряда

Среди других первостепенных задач контроллеров заряда для солнечных батарей выделяют:

  • защита системы от перенапряжения и разрыва электроцепи;
  • выбор оптимального значения тока для конкретного типа аккумулятора;
  • мониторинг состояния АКБ (отключение при достижении 100% заряда или превышении установленного предела).

Контроллер солнечных батарей на программном уровне регулирует схему работы подключенных к системе аккумуляторов и обеспечивает оптимальный расход генерируемого электрического тока. Это повышает КПД электростанции в целом, а также в 2 раза продлевает срок эксплуатации оборудования и оптимизирует уровень заряда АКБ. Установка автоматического регулятора позволит сэкономить на сервисном обслуживании гелиосистем в будущем.

Принцип работы контроллера заряда аккумулятора

Без интеллектуальной системы распределения энергоресурсов, генерируемый ток будет поступать на клеммы АКБ постоянно, что неизбежно приведет к повышению напряжения. Для каждой аккумуляторной батареи предусмотрены собственные показатели предельного значения — этот параметр зависит от типа конструкции АКБ и температуры окружающей среды.

схема контролера заряда аккумултора

Когда напряжение превысит рекомендуемый уровень, возникнет перезаряд, что приведет к резкому повышению температуры электролита. Аккумулятор начнет закипать и интенсивно выбрасывать в воздух пары дистиллированной воды. Если ничего не предпринимать, то ресурс АКБ сократится вдвое. На практике известны случаи, когда аккумулирующие емкости спустя время полностью пересыхали. Чтобы этого избежать, производители модульных фотопанелей предлагают два альтернативных варианта:

  1. измерять напряжение вручную и самостоятельно контролировать процесс генерации и аккумуляции электрического тока;
  2. установить контроллер для солнечных батарей — в данном случае коммутационный прибор автоматически адаптирует работоспособность гелиосистемы под нужды потребителя.

В ночное время суток контроллер батареи находится в «спящем» режиме. После попадания лучей солнца на фотоэлементы генерируемый постоянный ток будет проходить через коммутационное устройство. Когда напряжение станет больше 10 В, электрический ток будет перенаправлен на диод Шоттки, а затем только попадет в аккумуляторную батарею.

Если напряжение превысит 14 В, автоматически включится усилитель, который откроет MOSFET — транзистор с изолированным затвором. В этот момент заряда аккумуляторов не будет. После полной разрядки конденсатора МДП-транзистор закроется, и АКБ автоматически будет заряжаться. Сам процесс подзарядки длится до того момента, пока напряжение снова не поднимется до предельного уровня.

Какие параметры контроллера надо учитывать

На контроллер для солнечной панели может поступать напряжение одновременно от нескольких гелиосистем, которые соединены по различным схемам. Чтобы контроллер заряда батареиработал правильно, крайне важно принимать во внимание суммарные показатели входного напряжения и номинальные значения тока.

схема контролера заряда аккумултора солнечных батарей

Желательно предусмотреть также запас технических характеристик на уровне 20–25%. Для чего это нужно? Во-первых, производители часто завышают реальные параметры работы фотоэлементов на солнечных панелях. Во-вторых, излучение солнца нестабильно — при аномальной активности показатели солнечной энергии запросто могут превысить допустимый расчетный предел.

Формула для приблизительных расчетов — 1,2P ≤ I×U, где:

  • P – суммарная мощность фотопанелей;
  • I – ток на выходе коммутационного прибора;
  • U – выходное напряжение под нагрузкой.

Нежелательно использовать контроллеры для солнечных панелей, как универсальные источники электропитания — не рекомендуется подключать к ним электронные приборы бытового применения, так как по умолчанию эти модули рассчитаны исключительно на «прямой контакт» с аккумуляторами.

В каком месте надо устанавливать регулятор

Монтируется устройство непосредственно между аккумуляторной батареей и активной гелиосистемой. При использовании бытовых приборов (стиральная машина, телевизор и др.) в схему подключения обязательно надо добавить 1–2 инвертора, которые необходимы для преобразования постоянного тока (12 В) в переменный на 220V. Инвертер подключается к системе сразу после АКБ.

схема контролера заряда от солнечных панелей

Дополнительно потребуется установка предохранителя для надежной защиты оборудования от перегрузок и коротких замыканий. Если используется сразу несколько фотопанелей, то рекомендуется монтировать автоматические предохранители между каждым рабочим узлом системы, начиная монтаж от солнечной батареи.

Какие различают виды модулей-контроллеров

Перед тем, как выбрать контроллер заряда, не лишним будет разобраться в основных технических характеристиках приборов. Главным отличием между популярными моделями регуляторов заряда солнечных батарей считается метод обхода ограничения лимитного напряжения. Выделяют также функциональные характеристики, от которых напрямую зависит практичность и удобство использования «умной» электроники. Рассмотрим популярные и востребованные разновидности контроллеров для современных гелиосистем.

1) On/Off контроллеры

Самый примитивный и ненадежный способ распределения энергоресурсов. Его главный недостаток — аккумулирующая емкость заряжается до 70–90% от фактической номинальной емкости. Первостепенная задача On/Off моделей заключается в предотвращении перегрева и перезаряда АКБ. Контроллер для солнечной батареи блокирует подзарядку при достижении лимитного значения напряжения, поступающего «свыше». Обычно это происходит при 14,4V.

схема On/Off контроллера заряда

На таких солнечных контроллерах используется порядком устаревшая функция автоматического отключения режима подзарядки при достижении максимальных показателей генерируемого электрического тока, что не позволяет зарядить АКБ на 100%. Из-за этого происходит постоянный недобор энергоресурсов, что негативно сказывается на сроке службы аккумулятора. Поэтому такими солнечными контроллерами пользоваться при установке дорогостоящих гелиосистем нецелесообразно.

2) PWM контроллеры (ШИМ)

Управляющие блоки-схемы, функционирующие по методу широтно-импульсной модуляции, справляются со своими прямыми обязанностями гораздо лучше, чем приборы типа On/Off. ШИМ контроллеры предотвращают чрезмерный перегрев аккумулятора в критических ситуациях, повышают способность принятия электрического заряда и контролируют сам процесс обмена энергией внутри системы. PWM контроллер дополнительно выполняет ряд других полезных функций:

  • оснащен специальным датчиком для учета температуры электролита;
  • вычисляет температурные компенсации при различных напряжениях заряда;
  • поддерживает работу с разными видами аккумулирующих емкостей для дома (GEL, AGM, жидко-кислотные).
PWM контроллер

Пока напряжение находится ниже 14,4 В, АКБ подключен к солнечной панели напрямую, благодаря чему процесс подзарядки происходит очень быстро. Когда показатели превысят максимально допустимое значение, солнечным контроллером напряжение автоматически будет понижено до 13,7 В — в этом случае процесс подзарядки не будет прерван и батарея зарядится на 100%. Температура работы устройства колеблется в пределах от -25℃ до 55℃.

3) МРРТ контроллер

Данный тип регулятора постоянно контролирует ток и напряжение в системе, принцип работы построен на обнаружении точки «максимальной мощности». Что это дает на практике? Использовать МРРТ контроллер выгодно, поскольку он позволяет избавиться от излишков напряжения с фотоэлементов.

МРРТ контроллер

Эти модели регуляторов используют широтно-импульсные преобразования в каждом отдельном цикле процесса подзарядки АКБ, что позволяет увеличить отдачу солнечных панелей. В среднем экономия составляет порядка 10–30%. Важно помнить, что ток на выходе из аккумуляторной батареи всегда будет выше входящего тока, который поступает от фотоэлементов.

МРРТ-технология обеспечивает зарядку аккумуляторов даже при облачной погоде и недостаточной интенсивности солнечного излучения. Целесообразнее применять такие контроллеры в гелиосистемах мощностью 1000 Вт и выше. МРРТ контроллер поддерживает работу с нестандартными напряжениями (28 В или другие значения). КПД держится на уровне 96–98%, а значит, практически все солнечные ресурсы будут преобразованы в постоянный электрический ток. Контроллер МРРТ считается самым лучшим и надежным вариантом для бытовых гелиосистем.

4) Гибридные контроллеры заряда

Это оптимальный вариант, если в качестве электростанции для частного дома используется комбинированная схема электроснабжения, которая состоит из гелиоустановки и ветрогенератора. Гибридные устройства могут работать по технологии МРРТ или PWM, но при этом вольтамперные характеристики будут отличаться.

Гибридный контроллер заряда

Ветрогенераторы вырабатываю электричество неравномерно, что приводит к непостоянной нагрузке на аккумуляторы — они функционируют в так называемом «стрессовом режиме». При возникновении критической нагрузки солнечный контроллер гибридного типа сбрасывает избыточную энергию при помощи специальных тэнов, которые подключаются к системе отдельно.

Как подключить блок-регулятор самостоятельно

Схема контроллера заряда для подключения к гелиоустановке достаточно проста: нужно соединить между собой все рабочие элементы, не нарушая полярность. Некоторые владельцы гелиосистем придерживаются смешанного способа подключения, когда аккумуляторы соединены друг с другом параллельно, а к блоку-регулятору подключаются в последовательном порядке. Количество АКБ для подключения к системе не ограничено. Но для больших аккумулирующих «массивов» дополнительно потребуется установить мощный блок-инвертор, который справится с повышенной нагрузкой.

схема подключения блока-регулятора

Домашние умельцы могут смастерить контроллер заряда батареи своими руками — для это обычно используют транзисторы, способные выдерживать силу электрического тока до 50 А, автомобильный реле-регулятор, диоды и резистор на 120 кОм. Эффективность самодельных моделей контроллеров для солнечной батареи будет «хромать», по сравнению с заводскими приборами, но для маломощных и экспериментальных гелиосистем такой вариант вполне уместен.

earthgenerator.ru

Контроллер заряда солнечных батарей

В настоящее время все большую популярность набирают системы, в которых не требуется подключение к сети электропитания. В состав системы входят: генератор энергии, контроллер (ШИМ, МРРТ, к примеру, фирма Arduino), реле, инвертор (совершает поворот тока) и провода. Ниже представлены различные варианты получения энергии с использованием природных источников и преобразованием их энергии.

Контроллер заряда солнечных батарей с цифровым дисплеем Morningstar, 15А

Контроллер заряда солнечных батарей с цифровым дисплеем Morningstar

Системы автономного обеспечения энергией

Ветрогенераторы

Востребованы в местности с сильными ветрами, иначе их рентабельность заметно падает. Данные системы просты в эксплуатации и обслуживании.

Принцип действия ветрогенераторов заключается в переводе кинетической энергии ветра в механическую энергию лопастей, соединенных с ротором, а далее – в электрическую.

Преимущества очевидны:

  • Система полностью автономна, топливо не требуется.
  • Простая конструкция, не требующая дорогостоящего обслуживания. Ремонт сводится к профилактическому осмотру.
  • Для бесперебойной работы не требуется остановка системы. При отсутствии ветра энергия потребителям идет с аккумуляторных батарей.
  • Бесшумная работа системы достигнута за счет прогрессивных материалов и конструкций ветрогенераторов.

Для получения оптимальных показателей необходимо чтобы были выполнены следующие условия:

  • Устойчивый ветер. Перед установкой нужно предусмотреть отсутствие вблизи лесов и парков, показатели скорости и силы ветряных потоков.
  • Для установки понадобится специальная техника для установки мачты ветрогенератора.
  • Периодически обновлять смазочные материалы для продолжительной службы системы.  5 ветрогенераторов, установленных на зеленом поле

Солнечные панели (батареи)

В сравнении с ветрогенераторами у солнечных батарей более сложный процесс изготовления, в связи с чем их стоимость будет выше. Но такие системы технологичнее по ряду преимуществ:

  • Так же, как и ветрогенераторы, солнечные батареи не нуждаются в топливе, работают бесшумно и без перерыва.
  • Более долговечны. Время эксплуатации превышает ветрогенераторы на 10 лет.
  • Более доступная кинетическая энергия. Солнечный свет более постоянный, чем порывы ветра.
  • Область установки. Солнечная энергия намного доступнее ветра.
  • Регулировка мощности. У ветрогенераторов мощность фиксированная, а на солнечных батареях есть возможность устанавливать нужную в зависимости от потребностей.

Единственным недостатком солнечных панелей является продолжительность дня в зависимости от часового пояса. Например, в Мурманской области в декабре-январе солнечные батареи будут непригодны в связи с наступлением полярной ночи и отсутствием солнечного света.

Солнечные батареи, установленные на крыше жилого дома

Солнечные батареи, установленные на крыше жилого дома

Гибридные системы

Объединив ветрогенераторы и солнечные батареи, мы получим систему, в которой будут компенсированы недостатки получения энергии. Основным источником является ветрогенератор, он требует меньше затрат на установку и проще в обслуживании. В качестве дополнительного источника энергии применяют солнечные фотовольтаические панели. В случае штиля они возьмут на себя функцию производства электроэнергии.

Контроллеры

Одним из важнейших составляющих являются контроллеры заряда. Они служат для контроля и регулирования заряда аккумуляторных панелей.

Известный факт, что полное разряжение, как и чрезмерная зарядка, влияют на дальнейшую работу аккумуляторных батарей. Особо чувствительными являются свинцово-кислотные аккумуляторные панели. Для предохранения батарей от этих нагрузок и служит регулятор. При максимальной зарядке АКБ (аккумуляторной батареи) с помощью контроллеров уровень тока будет понижен, при понижении заряда до критических значений подача энергии будет остановлена.

Типы контроллеров

Существует несколько типов регуляторов: On/Off, ШИМ и МРРТ.

Перед подбором устройства необходимо ответить на два основных вопроса:

  • Какое напряжение на входе?
  • Какой номинальный ток? Автоматический контроллер заряда с регулятором MPPT для солнечных батарей

    Автоматический контроллер заряда с регулятором MPPT для солнечных батарей

Как и у большинства устройств, обязательно наличие прочностного запаса. Максимальное напряжение контроллера должно превышать общее напряжение на 20 процентов. Для определения запаса номинального тока нужно к величине тока короткого замыкания солнечных батарей прибавить 10–20 процентов, также данное значение зависит от типа регулятора. Эти данные можно найти в технических паспортах контроллеров. Например, для контроллера солнечных батарей SOL4UCN2 (ШИМ) выходное напряжение тока принимает значения 3 вольта, 6 вольт, 12 вольт. Также возможно подобрать контроллеры с выходным напряжением 36 или 48 вольт. К тому же необходимо предусмотреть инвертор для преобразования тока.

Контроллеры On/Off

В линейке контроллеров являются простейшими и, соответственно, недорогими. Когда заряд аккумулятора достигает предельного значения, контроллер разрывает соединение между солнечной панелью и батареей посредством реле. В действительности батарея не полностью заряжена, что оказывает влияние на дальнейшую работоспособность аккумулятора. Поэтому несмотря на низкую стоимость, лучше не использовать регулятор данного типа.

Контроллер On/Off для заряда солнечных батарей

Контроллер On/Off для солнечных батарей

ШИМ (PWM) – контроллеры

Для этого типа контроллера применена технология широтно-импульсной модуляции. Преимуществом является прекращение заряда аккумуляторной батареи без отсоединения солнечных модулей, что позволяет продолжить зарядку АКБ до максимального уровня. Рекомендованная область применения – системы с небольшой мощностью (до 48 вольт).

МРРТ – контроллеры

Maximum power point tracker контроллер появился 80-х годах. Самым эффективным по праву считается именно этот тип контроллера. Он отслеживает максимальный энергетический пик и понижает напряжение, но увеличивает силу тока, не изменяя мощность. Благодаря высокому коэффициенту полезного действия МРРТ – контроллеры сокращают срок окупаемости солнечных станций. Выходные напряжения варьируются от 12 до 48 вольт.

Самодельные контроллеры

Безусловно, можно сделать контроллер своими руками. Прототипом служит . В его схеме с помощью реле коммутируется сигнал, полученный с ветрогенераторов или солнечных батарей. Реле управляется посредством пороговой схемы и полевого транзисторного ключа. Подстроечные резисторы регулируют пороги переключения режима.

Схема для создания контроллера своими руками

Схема для создания контроллера своими руками

В данной схеме использовано 8 резисторов в качестве нагрузки для утилизации энергии. Эта схема является первоначальной, ее можно упростить самостоятельно, а можно прибегнуть к помощи достоверных источников. Несмотря на очевидную простоту конструкции, не рекомендуется использовать контроллеры, созданные своими руками, во избежание неблагоприятных последствий, таких как порча АКБ, например (при напряжениях 36–48 вольт).

Гибриды

Гибридным контроллером считается контроллер, использующий энергию ветра и солнца. Его преимуществом является возможность использование двух источников тока (ветрогенератора или солнечной батареи) совместно или попеременно. Незаменим для автономных производств.

Дополнительные функции аккумуляторных батарей

Прогресс не стоит на месте и благодаря ему можно подобрать контроллер с нужными характеристиками для каждого потребителя индивидуально. Модель контроллера может включать в себя дисплей с выводом информации о батарее, реле, солнечных панелях, количестве заряда, напряжении (вольт), токе. Также может присутствовать система оповещения при приближении разрядки и таймер для активации ночного режима. Существуют контроллеры с возможностью подключения к компьютеру.

Контроллер заряда с возможностью подключения к компьютеру I-Panda SMART 2

Контроллер с возможностью подключения к компьютеру I-Panda SMART 2

Платформа контроллера

Одним из оптимальных вариантов служит платформа фирмы Arduino (Ардуино). Плюсов достаточно много. Основным преимуществом является доступность, ведь программная оболочка бесплатна. Печатные платы есть в свободном доступе. Благодаря открытой архитектуре системы проблем с дополнением линейки не возникнет. Данные контроллеры поддерживают двигатели с напряжением до 12 вольт, можно подключить реле. Также Arduino выпускают и другие аппаратно-программные средства. Например, микроконтроллеры, для подпитки которых требуется 5 вольт или 3,3 вольта. К тому же программистам доступны специальные возможности портов (ШИМ, АЦП).

Многие усовершенствования можно выполнить своими руками. Но в 2008 году фирма разделилась на две части, которые оставили одно и то же название, но разные сайты (arduino.cc и arduino.org). При выборе продукции необходимо обращать внимание на это, ведь несмотря на общее прошлое, сейчас продукция Arduino отличается.

Инверторы

Устройство, помогающее сигналу совершить поворот на 1800, преобразовывающее постоянный ток в переменный. При этом частота и/или напряжение меняется. Схем инверторов достаточно большое количество, самыми часто встречающимися являются три типа.

Схема мостового инвертора без трансформатора

Схема мостового инвертора без трансформатора

Первый тип – это мостовые инверторы без трансформатора, применяются для установок с высокими напряжениями (от 220 до 360 вольт). Ко второму типу относят инверторы с нулевым выводом трансформатора, используют в системах с низким напряжением (12–24 вольт). И третьим типом являются мостовые инверторы с трансформатором. Их применяют для обширных диапазонов напряжений мощности (48 вольт).

Страны-производители

На рынке представлено множество контроллеров заряда с различными модификациями, отличающихся как по цене, так и по качеству. Среди контроллеров российского производства наилучшими вариантами являются производители: Эмикон, Автоматика-с, Овен. Данные фирмы на рынке контроллеров находятся уже много лет и вполне зарекомендовали себя. Среди контроллеров зарубежного производства лидерами считаются Allen-Bradley, MicroLogix (дочернее производство Allen Bradley) и SLC 500. Главным критерием выбора именно этих производителей является большая область применения, т. е. контроллеры данных фирм можно использовать в разных сферах и для разных целей.

Контроллеры зарубежного производства MicroLogix

Контроллеры зарубежного производства MicroLogix

Расчет системы

Чтобы правильно рассчитать систему, необходимо действовать последовательно. В большинстве случаев принимается стандартное напряжение 220 вольт. Для начала нужно задаться углом поворота солнечных панелей.

Затем оценивают примерную производительность. Для этого нужно рассчитать минимальную и максимальную солнечную активность для годичного цикла. Эти значения также будут зависеть от географического расположения.

Далее идет выбор инвертора. Одними из основных критериев выбора является коэффициент полезного действия и различные защитные механизмы.

Аккумуляторные батареи подбираются по рабочей емкости и току в зависимости от нужд потребителя. Соединение аккумуляторов возможно как последовательно, так и параллельно. Для большей надежности рекомендуется, чтобы АКБ были одной мощности, в идеале выпущены одной партией. В основном используются свинцово-кислотные аккумуляторные батареи, но в последнее время из-за снижения цен конкурентоспособными становятся литийионные АКБ. Их отличие состоит в большей удельной емкости, но для литийионных аккумуляторов требуется специальное зарядное устройство, многие регуляторы им просто-напросто не подойдут.

Контроллер заряда солнечных батарей МРРТ Tracer 1215RN

Контроллер заряда солнечных батарей МРРТ Tracer 1215RN

При использовании МРРТ-контроллеров необходимо учитывать максимальный выходной ток контроллера, а не первичного источника. У ШИМ-контроллеров такой особенности нет.

Еще одним аспектом, требующим внимания, является выбор реле и проводов. Их длина должна быть минимальной, чтобы избежать дополнительных потерь. Само собой, провода нужно подбирать в зависимости от потребностей, ведь их характеристики зависят от поперечного сечения провода и материала, из которого они изготовлены. Провода должны выдерживать указанное напряжение от 12 до 48 вольт. Также не стоит пренебрегать изоляционным материалом, он напрямую влияет на теплопроводность проводов.

Вывод

Независимо от типа регулятора (ШИМ, МРРТ или изготовленный своими руками), необходимо учитывать параметры всей системы для более продуктивной работы (в том числе напряжение от 12 до 48 вольт). Сейчас выбор моделей на рынке неограничен, но не стоит брать первый попавшийся, нужно тщательно ознакомиться с характеристиками, ведь от этого зависит долговечность и надежность остальных компонентов.

Принцип работы контроллера заряда солнечных батарей

Принцип работы контроллера заряда солнечных батарей

При правильном подборе составляющих частей системы, углов поворота солнечных панелей и их географического расположения можно создать экономичную систему получения энергии без дополнительных источников питания. Причем многое можно сделать своими руками, покупая только основные части (например, платформу Arduino), не требуя дополнительных расходов.

Автор: П. Морозов

solntsepek.ru

MPPT контроллер заряда Li-Ion аккумулятора от солнечной батареи на м/сх CN3791 —

Плата MPPT контроллера заряда Li-Ion аккумулятора от солнечной батареи на м/сх CN3791Плата вид сверху

MPPT контроллер предназначен для заряда одной ячейки Li-Ion аккумулятора от солнечной батареи (можно использовать например такие аккумуляторы). Он выполнен на специально разработанной микросхеме “CN3791”, которая имеет такие функции как:

  • предназначен для работы с 1-ой ячейкой литий-ионного аккумулятора 3.7 В
  • защита перезаряда батареи
  • автоматическая перезарядка
  • автоматическая обработка глубоко разряженных батарей
  • мягкий старт
  • индикация статуса заряда
  • MPPT функция
  • автоматический переход в спящий режим, когда входное напряжение меньше чем напряжение батареи

MPPT контроллер имеет 2 индикатора: красный горит (зеленый не горит) когда идет заряд  от солнечной батареи, зеленый горит (красный не горит) когда заряд литий-ионного аккумулятора закончен, в случае когда оба индикатора моргают – отсутствует батарея.

Другой готовый контроллер в корпусе – “Tracer-1215RN” – MPPT контроллер заряда свинцово-кислотной батареи от солнечных батарей (10 А, 12/24 В, 130/260 Вт)

Подключение:

  • “IN+” – плюсовой вход от солнечной батареи
  • “IN-” – минусовой вход от солнечной батареи
  • “+BAT” – плюсовой выход на литий-ионную батарею
  • “-BAT” – минусовой выход на литий-ионную батарею

Технические характеристики:

  • количество ячеек литий-ионной батареи: 1
  • максимальное входное напряжение от солнечной батареи: 28 В
  • максимальный зарядный ток, до: 4 А
  • размеры: 50 x 30 x 10 мм
Купить контроллер можно здесь.

Используемые детали:

TPC8107, CN3791, D4185 (MOSFET P-CH, 40 В 50 А)

datasheet (описание) на микросхему CN3791

Типовая схема включения микросхемы “CN3791”:

Типовая схема включения микросхемы "CN3791"

Зарядный профиль устройства:

Типовая схема включения микросхемы "CN3791"

Для сборки MPPT контроллера своими руками также может потребоваться:

umnyjdomik.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о