РазноеКислота из аккумулятора – Какая кислота в аккумуляторе автомобиля

Кислота из аккумулятора – Какая кислота в аккумуляторе автомобиля

Содержание

Подробно о том, какая кислота залита в аккумуляторе вашего автомобиля и для чего она нужна

от generator-prosto.

Многие автолюбители задают себе вопрос о том, какая кислота залита в аккумуляторе автомобиля. По незнанию высказываются различные неверные предположения. Кто-то говорит, что там соляная кислота. Некоторые считают, что там вода. Пора внести ясность в этот вопрос. В свинцово-кислотном аккумуляторе автомобиля залита серная кислота. Если выражаться совсем точно, то залит раствор серной кислоты в дистиллированной воде. Этот раствор получил название электролит.

Содержание статьи:

Применение серной кислоты и её сорта

Вообще, в качестве электролита в некоторых видах автомобильных аккумуляторов может использоваться щёлочь. Например, никель-кадмиевый или никель-железный тип АКБ. Есть ещё группа гелевых аккумуляторов AGM и GEL, где электролит находится в связанном состоянии. Но это тот же раствор серной кислоты. Просто он либо переведён в гелеобразное состояние с помощью добавок (GEL), либо им пропитано стекловолокно (AGM). Наиболее распространёнными на сегодняшний день остаются свинцово-кислотные автомобильные аккумуляторы с жидким электролитом. Поэтому речь пойдёт именно о водном растворе серной кислоты, предназначенном для заливки в АКБ.




Электролит



Дистиллированная вода

Серная кислота используется в самых разных отраслях народного хозяйства. К примеру, с её помощью очищается поверхность металла перед нанесением покрытия, она используется при приготовлении различных синтетических красителей. Кроме того, серная кислота востребована в сфере производства удобрений, взрывчатки, фармакологической промышленности, переработке нефти.

Серная кислота нашла широкое применение при производстве свинцово-кислотных аккумуляторов для автомобилей. Концентрация кислоты в электролите составляет 30-35 процентов (вес.). Остальное дистиллированная вода. Использовать обычную водопроводную воду нельзя, поскольку в ней содержатся соли различных металлов. Их попадание в аккумулятор автомобиля значительно сократит срок его службы.

В бытовой сфере концентрации Н2SO4 в 30 процентов достаточно, но в сфере производства часто используется серная кислота более высокой концентрации. Концентрированную серную кислоту получают в две стадии. На первой стадии концентрация доводится до 70 процентов, а затем увеличивают до 98 процентов. Серная кислота такой концентрации наиболее пригодна для последующего хранения. Возможно, получение концентрации 99 процентов, но в дальнейшем из-за потери SO3 она снижается до 98,3 процента.

Существуют основные сорта серной кислоты, которые перечислены ниже:

  • Башенная или нитрозная. Концентрация 75 процентов. Плотность этого сорта составляет 1,67 гр/см3. Название этот сорт получил из-за метода производства в футерованных башнях нитрозным способом. Обжиговый газ с двуокисью серы (SO
    2
    ) обрабатывается нитрозой (H2SO4 с добавками оксидов азота). В ходе химической реакции получается оксиды азота и кислота. При этом оксиды постоянно циркулируют в производственном цикле;
  • Контактная. Концентрация от 92,5 до 98 процентов. Плотность сорта составляет 1,837 гр/см3. Этот сорт также производится из обжигового газа, в котором содержится двуокись SO2. В ходе реакции происходит ее окисление до SO3 при контакте с твёрдым катализатором из ванадия;
  • Сорт Олеум. Концентрация 104,5 процента. Плотность составляет 1,897 гр/см3. Сорт представляет собой раствор SO3 в серной кислоте (H2SO4). Соотношение SO3 — 20 процентов, H2SO4 — 104,5 процента;
  • Высокопроцентный олеум. Концентрация 114,6 процента, а плотность 2,002 гр/см
    3
    ;
  • Аккумуляторная. Концентрация от 92 до 94 процента, а плотность 1,835 гр/см3.

Процессы, происходящие в АКБ с участием электролита

Работа свинцово-кислотного автомобильного аккумулятора основывается на электрохимических процессах, которые протекают с участие электролита. Аккумулятор автомобиля состоит из положительных и отрицательных пластин, погруженных в водный раствор серной кислоты. Положительные и отрицательные пластины имеют токоотводящие решётки из свинца с различными добавками в зависимости от типа аккумулятора.

На решётках положительных электродов нанесён красновато-коричневый диоксид свинца (PbO2). На отрицательных электродах — сероватый порошок свинца (Pb). Электрические характеристики аккумулятора напрямую зависят от плотности электролита. Для понимания назначения электролита нужно рассмотреть основные процессы, происходящие в аккумуляторе автомобиля.

При разряде аккумулятор на положительном электроде (аноде) идёт следующая реакция:

PbO2 + SO42? + 4H+ + 2e? -> PbSO4 + 2H2O

На отрицательном электроде (катоде) протекает такой процесс:

Pb + SO42? ? 2e? ->PbSO4

При заряде АКБ эти реакции протекают в обратном направлении.

Электролит в свинцово-кислотном автомобильном аккумуляторе имеет разную плотность в зависимости от степени заряженности АКБ. Как уже говорилось выше, концентрированная кислота аккумуляторного сорта имеет плотность 1,835 гр/см3. Плотность электролита на заряженном аккумуляторе лежит в диапазоне 1,127-1,300 гр/см3. При разрядке аккумулятора автомобиля в результате электрохимической реакции из электролита расходуется серная кислота и его плотность падает. Пока через батарею проходит ток разряда кислота рядом с электродами расходуется в результате вышеописанной реакции. Идёт диффузия H

2SO4 из объёма к электродам. Таким образом, поддерживается напряжение на выводах аккумулятора.

В начале разрядки процесс диффузии кислоты в электроды. Это объясняется тем, что в активной массе электродов поры ещё не забиты сульфатом. По мере того, как на них образуется слой сульфата и забивает поры, процесс диффузии притормаживается. В теории процесс разряда может идти до того момента, пока электролит не превратится в воду. Но на практике разряд идёт до тех пор, пока плотность не опуститься до значения 1,15 гр/см3. К моменту падения плотности до 1,15 гр/см3 выделяется столько сульфата свинца, что его хватило для закупоривания активной массы пластин. По плотности электролита можно судить о степени заряженности АКБ. Для этого можно использовать таблицу, представленную ниже.

Плотность электролита, г/см. куб. (+15 гр. Цельсия) Напряжение, В (в отсутствии нагрузки) Напряжение, В (с нагрузкой 100 А) Степень заряда АКБ, % Температура замерзания электролита, гр. Цельсия
Плотность электролита, г/см. куб. (+15 гр. Цельсия) Напряжение, В (в отсутствии нагрузки) Напряжение, В (с нагрузкой 100 А) Степень заряда АКБ, % Температура замерзания электролита, гр. Цельсия
1,11 11,7 8,4 0 -7
1,12 11,76 8,54 6 -8
1,13 11,82 8,68 12,56 -9
1,14 11,88 8,84 19 -11
1,15 11,94 9 25 -13
1,16 12 9,14 31 -14
1,17 12,06 9,3 37,5 -16
1,18 12,12 9,46 44 -18
1,19 12,18 9,6 50 -24
1,2 12,24 9,74 56 -27
1,21 12,3 9,9 62,5 -32
1,22 12,36 10,06 69 -37
1,23 12,42 10,2 75 -42
1,24 12,48 10,34 81 -46
1,25 12,54 10,5 87,5 -50
1,26 12,6 10,66 94 -55
1,27 12,66 10,8 100 -60

Полностью заряженный элемент АКБ автомобиля выдаёт напряжение 2,5-2,7 вольт без нагрузки на выводах. При подключении нагрузки напряжение проседает до 2,1 вольта за несколько минут. За это время успевает сформироваться слой PbSO4 на поверхности отрицательных электродов. То есть, напряжение одного элемента на подключённой к автомобилю АКБ составляет примерно 2,15 вольта.

Если разряжать аккумулятор автомобиля небольшим током (10 процентов от номинальной ёмкости), то через час разрядки напряжение элемента снижается до 2 вольт. Это происходит из-за того, что в этом момент быстро формируется большое количество PbSO4, который забивает поры активной массы. В результате растёт внутреннее сопротивление элементов АКБ и падает концентрация электролита. Через некоторое время процесс разрядки выходит на прямую (см. график).

График разрядки аккумулятора

Эта прямая соответствует балансу плотностью электролита около электродов и в остальном объёме. Постепенно кислота поступает из объёма к электродам и вступает в реакцию с выделением сульфата свинца. Плотность электролита постепенно снижается, а напряжение падает медленнее, чем на начальной стадии. И на конечной стадии, когда активная масса блокируется образовавшимся сульфатом свинца, реакция замедляется и напряжение быстро падает.

Контроль за состоянием электролита в АКБ?

От владельца автомобиля требуется периодически контролировать уровень электролита в аккумуляторе и его плотность. Для контроля уровня электролита можно использовать стеклянную трубочку. Если её под рукой нет, то можно использовать прозрачный пластиковый корпус от старой шариковой ручки. Для измерения уровня электролита отворачиваете пробки банок батареи и погружаете трубочку до пластин. Затем с верхнего конца плотно зажимаете пальцем и поднимаете. Уровень электролита в трубочке должен составлять 10-12 миллиметров.

В случае нехватки электролита долейте дистиллированной воды до необходимого уровня. Лучше покупайте дистиллированную воду в аптеке. В автомобильных магазинах под видом дистиллированной воды часто продают обычную водопроводную. Выше требуемого уровня воды также заливать не следует. В необслуживаемых автомобильных аккумуляторах (ссылка на материал) доливка дистиллированной воды не требуется. У них сниженный расход воды и они, как правило, имеют крышку с системой рециркуляции электролита.

Внимание! Не допускайте эксплуатации аккумуляторной батареи с уровнем электролита ниже верхней части пластин. Это значительно сокращает срок его службы.

Для того, чтобы измерить плотность Вам потребуется ареометр. Это приспособление представляет собой запаянную стеклянную трубку, в которой находиться ртуть или дробь. На верхнем конце ареометра имеется градуированная шкала. Диапазон измерений плотности 1,100-1,300 гр/см3. Ареометр помещён в разборную колбу с грушей.

Ареометр

Вам нужно опустить нижнюю часть в банку и набрать электролита. После этого вынимаете и смотрите, на каком значении находится уровень электролита. Сам ареометр будет плавать в электролите наподобие поплавка. На некоторых моделях ареометров шкала со значениями может быть заменена надписями «Полный заряд», «Половина», «Разряжен».

Как поднять плотность электролита?

Выше уже говорилось о том, что в результате гидролиза воды и нагрева АКБ под капотом уровень электролита постепенно уменьшается и растёт его плотность. Поэтому периодически нужно доливать дистиллированной воды. А что, если плотность электролита на заряженном аккумуляторе автомобиля, наоборот, меньше нормы (1,275 гр/см

3)? Тогда нужно поднять концентрацию кислоты.

Внимание! Во время работ с кислотой одевайте резиновые перчатки и защитные очки. Если вы будете самостоятельно разводить электролит из концентрированной кислоты и дистиллированной воды, помните, что нельзя наливать воду в кислоту. В этом случае начинается реакция гидратации с выделением большого количества тепла. В результате вода закипает и провоцирует брызги кислоты, что очень опасно. Поэтому при разбавлении нужно лить кислоту в воду.

При поднятии плотности электролита может быть два варианта. Если средняя плотность по всем банкам не ниже 1,2 гр/см3, то нужно поднять плотность постепенным разбавлением.

Для каждой из банок нужно проделать следующие действия:

  • Откачиваете как можно больше электролита из банки. Для этого можно использовать резиновую грушу или ту же колбу. После этого в банку заливаете электролит (плотность 1,275-1,29 гр/см3) половину откачанного объёма;
  • Для того чтобы электролит перемешался, можно дать на выводы нагрузку (например, подключить автомобильную лампочку) или просто подождать некоторое время;
  • Затем делаете замер плотности. Если она не поднялась до нужного уровня, то заливаете электролит в половину от оставшегося объема;
  • Перемешивание и снова замер;
  • Доводите плотность кислоты до требуемого уровня.

Если плотность электролита ниже 1,2 гр/см3, то здесь уже нужно его менять полностью. То есть, сливать старый и заливать новый, требуемой плотности. Но, если электролит имеет такую низкую плотность в заряженном состоянии, то возникают сомнения в целесообразности его дальнейшего использования. В этом случае электролит имеет смысл менять только если АКБ относительно новая (до года). Иногда встречаются аккумуляторы автомобиля с такой плотностью электролита прямо из магазина. Если это уже отработавшая несколько лет батарея, то лучше купить новую. При утилизации аккумуляторов отработавший электролит также идет на переработку.

Что мы узнали?

Из этой статьи читатели должны были узнать о том, какая кислота залита в аккумулятор автомобиля, какую плотность она должна иметь. Отдельно были рассмотрены химические реакции, проходящие в автомобильном аккумуляторе с участием электролита. Также были даны рекомендации по поддержанию уровня и плотности электролита и приспособлениях, которые для этого требуются. Советуем также прочитать статью «Кипит аккумулятор на машине: причины и устранение». Если у вас остались вопросы или есть пожелания, пишите их в комментариях.

Опубликовано в Аккумуляторы

generator-prosto.ru

чтобы больше не было отвратительно читать то, что люди о них пишут

Случайно узрел статью с комментариями к ней, и так злость во мне закипела по поводу безграмотности людей в области кислотных (свинцовых в простонародье) аккумуляторов, что не выдержал и решил написать «гикам» (чтобы быть гиком, как оказывается, мало купить дорогой телефон) краткую статью об аккумуляторах. С рассмотрением тех ошибок, которые мне постоянно мусолят глаза и вызывают праведное желание их исправить.

Начнем с названия. Я очень часто вижу что тремя буквами А-К-Б называют все что можно зарядить, абсолютно любой аккумулятор. Особенно тремя буквами люди любят называть аккумуляторы типа Li-ion. На самом-же деле АКБ аббревиатура от Аккумуляторная Кислотная Батарея. Под ними подразумевается лишь один тип аккумулятора — свинцовый кислотный. С современной точки зрения это название вызывает некоторый когнитивный диссонанс т.к. на данный момент значение слова «батарейка» т.е. гальванического элемента который зарядить нельзя перешло на слово «батарея». И получается как будто бы из-за слова «аккумуляторная» это аккумулятор который зарядить можно, а из-за слова «батарея» это как будто батарейка которую зарядить нельзя. В реальности-же батарея — просто цепь гальванических элементов и со словом «батарейка» имеет общий лишь корень.

Далее перейдем к некоторым мифам, а именно главный миф — АКБ для автомобиля имеет некие существенные отличия от АКБ для ИБП. И вот нельзя их применять и там и там.

С химической точки зрения любые АКБ абсолютно одинаковы. Как-же они устроены? Очень кратко — если аккумулятор заряжен, то один электрод представляет собой свинцовую решетку с нанесенной на нее пастой из PbO2, второй -такую-же решетку с пастой губчатого свинца. Электролитом служит раствор серной кислоты. В процессе разряда PbO2 восстанавливается и взаимодействуя с серной кислотой образует PbSO4. Свинец на другом электроде окисляется и опять-же образует PbSO4. В конце разрядки мы имеем обе решетчатые пластины заполненные (более или менее) сульфатом свинца. При зарядке аккумулятора происходит электролиз и из сульфата свинца вновь образуется диоксид и металлический свинец.

Конечно-же, тут нужно подчеркнуть, что электроды при этом не равны и путать их полярность не стоит т.к. еще на стадии производства в намазку электродов вводятся соответствующие добавки, улучшающие их эксплуатационные свойства. При этом добавки полезные для одного электрода вредны для другого. В очень старые времена, где-то в начале прошлого века, в условиях простых аккумуляторов, вероятно, была допустима переполюсовка аккумулятора по ошибке или с какими-то целями и он какое-то время после этого работал. В том что она допустима сейчас я сомневаюсь.

Таких ячеек в 12В аккумуляторе 6 шт, в 6В — 3 шт. и т.д. Многих вводит в заблуждение значение напряжения на аккумуляторах. Причем значений напряжения номинального, заряда, разряда. С одной стороны, аккумуляторы называются 12В (и 6В, 24В тоже есть, по-моему, даже 4В изредка встречаются) но на корпусе тех-же аккумуляторов для ИБП производитель указывает напряжение выше 13.5В.

Например:

Тут мы видим, что в форсированном режиме напряжение заряда может быть аж 15В.

Все разъяснит кривая напряжения на АКБ:

Слева мы видим напряжение для аккумулятора из 12 ячеек (24В номинальных), 6 (12В номинальных) и, самое полезное, для одной ячейки. Там-же отмечены области нежелательных напряжений при разряде/ заряде. Из кривой можно сделать выводы:

  1. Напряжение 12В, 24В и т.д. являются номинальными и показывают лишь число гальванических ячеек (путем деления на два) в батарее. Это просто название для удобства.
  2. Напряжение при заряде могут достигать 2.5 В/ ячейку что для 12В аккумулятора соответствует 15В.
  3. Напряжение заряженной батареи считается допустимым при значении 2.1-2.2 В/ячейку, что для 12В аккумулятора соответствует 12.6-13.2В.

Теоретически, батарею можно зарядить и до значений 2.4 В/ячейку или даже немного выше, однако, такая зарядка будет негативно сказываться как на состоянии электродов, так и на концентрации электролита. Однажды, перед сдачей в утиль, я легко зарядил 12В батарею до напряжения ок. 14.5В (уже не помню точное значение).

Итак, автор статьи с которой я начал, решил, что напряжение заряда автомобильной АКБ и АКБ от ИБП отличаются. Это неверно, у них одинаковый тип электродов и одинаковая концентрация серной кислоты в электролите (подобранная давным-давно экспериментальным путем, чтобы предоставлять максимальное напряжение и минимальном саморазряде). Однако, что-же происходит в батарее, почему ее нельзя заряжать при слишком высоком значении напряжения?

Почему в автомобильную АКБ нужно подливать воду, а в АКБ от ИБП не нужно? Эти вопросы позволяют нам плавно перейти в область напряжения разложения воды. Как я написал выше, при зарядке аккумулятора происходит электролиз. Однако, не весь ток расходуется на превращение PbSO4 в PbO2 и Pb. Часть тока будет неизбежно расходоваться и на разложение воды, составляющей значительную часть электролита:

2h3O = 2h3 + O2

Теоретический расчет дает значение напряжения для этой реакции ок. 1.2В. Напоминаю, что напряжение на ячейке при заряде заведомо более 2В. К счастью, активно вода начинает разлагаться только выше 2В, а в промышленности для получения водорода и кислорода из нее процесс ведут и вовсе при 2.1-2.6В (при повышенной температуре). Как бы то ни было, тут мы приходим к выводу, что в конце процесса заряда АКБ будет неизбежно происходить процесс разложения воды в электролите на элементы. Образующиеся кислород и водород попросту улетучиваются из сферы реакции.

Про них бытуют следующие мифы:

1. Водород крайне взрывоопасен! Перезарядишь аккумулятор — и как минимум лишишься комнаты, где тот был!

На самом деле, водорода в процессе электролиза выделяется ничтожно мало по сравнению с объемом комнаты. Водород взрывается при концентрации от 4% в воздухе. Если мы допустим, что электролиз ведется в комнате размером 3*3*3 метра или 27 метров куб., то нам понадобится наполнить помещение 27*0.04=1.1 метров куб. водорода. Для получения такого количества h3 нужно было бы полностью разложить ок. 49 моль воды или 884 грамма ее. Если кто-то наблюдал электролиз, то поймет насколько это много. Или попробуем перейти ко времени. При силе тока в стандартной зарядке для крупногабаритных АКБ в 6А, уравнение Фарадея дает время, необходимое для получения этого количества водорода, аж 437 часов или 18.2 дня. Чтобы наполнить комнату водородом до взрывоопасной концентрации нужно забыть про зарядку на 2 с половиной недели! Но даже если это случится, концентрация серной кислоты просто будет расти пока ее раствор не приобретет слишком высокое сопротивление для жалких 12В зарядки и сила тока не станет ничтожной. Да и водород попросту улетучится.

Очень редко случаются взрывы непосредственно в корпусах крупногабаритных АКБ из-за того, что выделяющийся водород по какой-то причине не может покинуть замкнутого пространства. Но и в этом случае нечего страшного не бывает — чаще всего взрыва хватает только на небольшую деформацию верхней части корпуса, но не на разрыв свинцовых соединений. И АКБ еще может работать дальше даже после таких повреждений.

2. При электролизе может образоваться смертельно ядовитый и, не менее взрывоопасный чем водород, сероводород!

Не наш, периодически попадался миф в англоязычных постах. Теоретически конечно возможно подать такое большое напряжение и создать т.о. такую большую силу тока, что на катоде начнется процесс восстановления сульфат-иона. Напряжение для этого будет достаточным, а продукты восстановления не будут успевать диффундировать подальше от электрода и восстановление будет идти дальше. Но зарядка в пределах десятка-трех вольт и с ограничением силы тока в 6А на такое едва ли способна. Однажды, я наблюдал процесс восстановления сульфата до SO2, да, это возможно; однокурсницы по ошибке что-то сделали не то во время опыта. Но это большая редкость т.к. там концентрация серной кислоты была заметно выше той, что используется в АКБ, была иная конструкция электрода и иной его материал и, естественно, напряжения и сила тока были были непомерными. И SO2 не h3S.

3. При электролизе мышьяк и сурьма из материала решеток будут восстанавливаться до ядовитых арсина и стибина!

Действительно, решетки содержат относительно много сурьмы, мышьяка в современных решетках, вероятно, нет вообще. При работе АКБ та решетка на которой происходит восстановление, т.е. катод, разрушению не может подвергаться. Выделяйся даже каким-то образом стибин, он бы тут-же взаимодействовал с PbSO4, восстанавливая его до металла.

Однако, некоторая практическая неприятность тут есть. Газообразные водород и кислород могут увлекать за собой капельки электролита, создавая аэрозоль серной кислоты. Аэрозоль серной кислоты, даже концентрированной, для человека не опасен и просто вызывает кашель. Однако, серная кислота — кошмар для тканей и бумаги. Стоит даже небольшому количеству серной кислоты попасть на одежду и там обязательно появятся дырки или ткань разорвется по этому месту. Через недели, если кислоты много, через месяц, но одежда истлеет.

Так что газовыделения опасаться не стоит с бытовой точки зрения или стоит, но нужно ориентироваться именно на аэрозоль серной кислоты.

Итак, вода начала разлагаться на водород кислород, ее в электролите становится все меньше, что-же дальше? Если это АКБ в котором электролит просто налит в виде слоя жидкости, то начнется повышение саморазряда из-за повышения концентрации серной кислоты. Занятно, что это будет сопровождаться небольшим повышением напряжения (концентрация кислоты растет) на ячейке. Именно поэтому автовладельцы должны постоянно контролировать концентрацию серной кислоты в своих АКБ (при помощи ареометра) и доливать туда воду.

Процедура доливания воды — необходимая часть процесса обслуживания любой АКБ!

Кроме одного их типа, и мы сейчас об этом поговорим.

Иметь аккумулятор, в котором болтается слой едкой, по отношению к металлам, жидкости конечно-же неудобно, а потому попытки избавиться непосредственно от жидкости предпринимались давно, начались чуть ли не в первой половине 20-го века. К слову сказать, не то чтобы слой серной кислоты прямо плескался вокруг электродов. В реальности она неплохо распределена между электродами и окружающими их сепараторами даже в дешевых моделях. Итак, первым вариантом было использование стекловолокна. Достаточно просто окружить электроды стекловолокном которое пропитано серной кислотой и большинство проблем решится. Этот тип АКБ носит название AGM (absorbent glass mat) и таких АКБ для ИБП подавляющее большинство.

Хотя такие АКБ малого форм-фактора и зачастую позиционируются как те, которые можно эксплуатировать в любом положении, с этим нельзя вполне согласиться. Вскрытие крышки стандартного дешевого AGM аккумулятора показывает, что никаких особых крышек там нет, а следовательно, электролит от вытекания удерживают лишь капиллярные силы. Я почти уверен, что если погонять AGM аккумулятор перевернутым вверх дном, то уже после одной зарядки из него польется серная кислота под давление газов.

Второй распространенный тип интереснее, это т.н. гелевые АКБ. А получаются они благодаря следующему. Если подкислять растворимые силикаты, то будет происходить выделение кремневой кислоты:

Na2SiO3 + h3SO4 = Na2SO4 + SiO2 + h3O

Если исходный раствор силиката не отличается качеством, то кремневая кислота будет выделяться в виде стекловидной массы, но если он достаточно чист, то кремневая кислота осадится в виде красивого куска однородного полупрозрачного геля. На этом и основан способ получения гелевых АКБ — простое добавление силикатов к электролиту вызывает его затвердение в гелеобразную массу. Соответственно, вытекать оттуда уже нечему и АКБ действительно можно эксплуатировать в любом положении. Сам по себе процесс образования геля не повышает емкости АКБ и не улучшает его качеств, однако, производители его используют при производстве наиболее качественных моделей, а потому эти АКБ отличаются высоким качеством и большей емкостью. Занятно, что в обоих случаях носителем электролита является SiO2 в той или иной форме.

Оба типа АКБ объединяются в славный тип VRLA — valve-regulated lead-acid battery который и применяется в ИБП. Формально они считаются необслуживаемыми и терпящими эксплуатацию в любом положении, но это не совсем так. Более того, многие уже встречались с эффектом, когда буквально несколько мл воды возвращают к жизни, казалось бы, дохлую АКБ от ИБП. Так получается, потому что и эти аккумуляторы не капли не застрахованы от электролиза воды в электролите, а следовательно, и пересыхания. Все происходит точно так-же, как в крупногабаритных АКБ. А вот самые дорогие и крутые необслуживаемые АКБ содержат катализатор для рекомбинации выделяющихся газов обратно в воду и вот уже у них корпус действительно выполнен абсолютно герметичным. Обращаю внимание, что по-настоящему герметичным и необслуживаемым может быть и аккумулятор типа AGM и GEL, но они-же могут ими и не быть и не содержать катализатора рекомбинации кислорода и водорода. Тогда, несмотря на казалось бы продвинутую конструкцию, пользователю придется либо чаще покупать новые аккумуляторы, либо доливать воду при помощи шприца.

Хотелось бы добавить несколько слов о режимах разряда. Производители АКБ указывают какой ток максимально допустим для той или иной модели, но нужно понимать, что аккумулятор — просто смесь химических веществ и ЭДС генерируется исключительно химическим путем. Это не конденсатор который, по электрогидравлической аналогии, можно сравнить с неким механическим сосудом (с гибкой мембраной). Хотя АКБ могут выдавать очень большие значения силы тока, в реальности они лучше всего эксплуатируются как раз при небольших токах, что в разряде, что в заряде. Поэтому ИБП, рассчитанные на заряды небольших АКБ, при работе с крупногабаритными будут заряжать их в наиболее щадящем режиме. Впрочем, в течении далеко не одних суток. Интересно обратить внимание на то, что чем выше мощность ИБП, тем больше аккумуляторов последовательно предпочитает собирать производитель. Тут все логично — большие токи разряда маленькие АКБ выдерживают очень плохо.

Подводя итоги:

  1. Малогабаритные и крупногабаритные АКБ идентичны по устройству.
  2. Для подавляющего большинства АКБ любого размера доливание воды является необходимой частью текущего обслуживания.
  3. Лишь немногие из дорогих моделей АКБ содержат механизм рекомбинации газов и могут быть названы действительно необслуживаемыми.
  4. Сам по себе водород, который выделяется при заряде (а это равно постоянной работе в ИБП) АКБ, не является существенной угрозой или проблемой.
  5. Нужно очень внимательно работать с АКБ, тщательно избегая пролива даже малейших капель электролита, или лишитесь одежды.
  6. Разряд и заряд малыми токами являются наиболее предпочтительными режимами эксплуатации АКБ.

Утащено с HABRа, автор — @JohnHenry89


Михаил 05 ноября 2018 Автомобиль: Лендровер фрил 2

Взрываются все же.
Мой знакомый во время зарядки подошел к аккумулятору с сигаретой. Взрывом его опалило так, что сгорела слизистая носа и он перестал чувствовать запахи и вкусы еды. Точнее аромат, который мы считаем вкусом. Например отличить картон от клубники без слизистой носа вы не сможете. Знакомый грузин и любит хорошую еду, для него это было очень неприятно. К счастью нос и восприятие вкуса восстановились где-то через месяц.
Аккумулятор цел, и помещение естественно тоже.

Дмитрий К.

Курить вообще вредно. Об этом все знают, но не всегда ожидают, что вот прям настолько вредно

Павел 20 июня 2018 Автомобиль: Nissan

Отличная статья, спасибо!

Администратор

Рады для вас стараться!

Написать сообщение

avto-oko.ru

Самый действенный способ восстановления аккумулятора

Приветствую вас друзья. Сегодня я расскажу вам о самом эффективном способе восстановления емкости у свинцово-кислотных аккумуляторов.
В период даже самой правильной эксплуатации, аккумулятор каждый день теряет свою емкость. И в один прекрасный момент его заряда не хватает, чтобы завести двигатель автомобиля. Обостряется данный пример с приходом холодов.
Самый действенный способ восстановления аккумулятора
Естественно автолюбитель ставит аккумулятор на зарядку и спустя некоторое время видит, что батарея не заряжается, а напряжение при зарядке стоит как в норме – 14,4-14,7 В или выше (12,6 без зарядника).
Самый действенный способ восстановления аккумулятора
Тогда если есть нагрузочная вилка проверка производится ей и выясняется, что под нагрузкой напряжение сильно просаживается. Все указывает на потерю емкости аккумулятором. Причиной тому – сульфатация пластин.
Самый действенный способ восстановления аккумулятора
Обычно, при правильной эксплуатации это происходит примерно через 5 лет. Это очень хороший показатель. И тут есть выход – купить новый аккумулятор. Но, если вы хотите сэкономить деньги (так как батареи сейчас не из дешевых), и продлить срок службы аккумулятора ещё на пару лет, то тогда необходимо провести его обслуживание. И не простое, а специальное, которое может реанимировать батарею.

Какие аккумуляторы можно восстановить?


Этот способ подходит для батарей, которые в период своей эксплуатации не были подвержены серьезным токовым или механическим повреждения. А пришли в негодность в результате временной, естественной сульфатации.
Этот способ не подходит для аккумуляторных батарей у которых имеется внутреннее осыпание пластин, имеется внутреннее замыкание банок, имеется вздутие или иные механические повреждения.
Способ отлично подходит для десульфатации пластин и называется в народе методом «переполюсовки» аккумулятора.
Я разделю восстановление аккумуляторной батареи на три этапа.

Процесс восстановления аккумулятора


Этап первый: подготовка


Первое что не обязательно, но нужно сделать это очистить поверхность батареи от любых загрязнений. Промыть с моющим средством всё поверхность.
Далее, визуально убедиться в отсутствии повреждений на корпусе, в отсутствии вздутий и выпуклостей по сторонам.
Второе, открыть все пробки банок и убедиться в наличии электролита. Если в одной из банок его нет, то нужно убедиться в отсутствии трещин на корпусе.
Затем, с помощью фонарика осмотреть пластины внутри – осыпаний быть не должно. Тут как раз за одно можно отчетливо увидеть сульфатацию – белый налет на пластинах.
Самый действенный способ восстановления аккумулятора
Если все в порядке – доливаем в каждую банку дистиллированную воду до уровня. Не лишним будет замерить плотность электролита каждого отсека.

Этап второй: классический способ восстановления


Прежде чем переходить к переполюсовке аккумулятора, необходимо протестировать обычный способ восстановления, ставший уже классическим.
Шаг первый: заряжаем аккумулятор до полного заряда 14,4 В.
Самый действенный способ восстановления аккумулятора
Шаг второй: галогеновой лампочкой или другой нагрузкой разряжаем батарею до 10,6 В (напряжение замеряется под этой же нагрузкой).
Самый действенный способ восстановления аккумулятора
Повторяем цикл из этих двух шагов 3 раза и заряжаем батарею на полную. Проверяем емкость нагрузочной вилкой или стартером в работе машины. Если батарея восстановилась – хорошо – продолжаем эксплуатацию. Если нет, или не достаточно, то переходим к третьему этапу.

Этап третий: переполюсовка аккумуляторной батареи


Этот метод восстановления аккумулятора самый действенный из всех существующих. И реанимирует батарею почти в 90% случаях.
Шаг первый: вешаем на батарею нагрузку в виде галогенной лампы, и разряжаем аккумулятор в ноль. Лампа потухнет примерно через сутки (все зависит от начальной емкости аккумулятора). Оставляем батарею с подключенной лампой ещё на 2-3 суток, чтобы окончательно разрядить остатки.
Шаг второй: зарядка аккумулятора обратным током. Подключаем зарядное устройство наоборот: плюс к минусу, а минус к плюсу. Чтобы не испортить ваш зарядник (или чтобы не сработала защита от короткого замыкания), последовательно батареи подключаем ту же галогенную лампу. И заряжаем аккумулятор в обратной полярности. После того, как напряжение поднялось до вольт 5-6, лампу из цепи можно исключить. Ток заряда желательно ставить 5 процентов от емкости батареи. То есть если емкость 60 ампер-часов, то ток заряда в обратном направлении ставим на 3 Ампера. В это время все банки с электролитом начинают активно бурлить и шипеть –это нормально, так как идет обратный процесс.
Самый действенный способ восстановления аккумулятора
Заряжаем примерно сутки, до появления напряжения 12-14 В. В итоге у вас получилась полностью заряженная батарея у которой на выходе плюса – минус, а на минусе – плюс.
Самый действенный способ восстановления аккумулятора
Шаг третий: опять полностью разряжаем батарею галогенной лампой пару суток. Затем производим правильную зарядку плюсом к плюсу, минусом к минусу. Заряжаем на полную до 14,4 В.
На этом все действия завершены.

Результат восстановления аккумуляторной батареи


Обычно результат помогает повысить емкость аккумулятора до 70-100 % от заводской, конечно бывают и исключения.
Конкретно в моем случае удалось поднять емкость на 95% — что является отличным результатом. С пластин пропал белый налет сульфата, и они приобрели черный цвет как у нового аккумулятора. Электролит стал более прозрачным и чистым.

Видео по восстановлению аккумулятора


Я рекомендую вам посмотреть видео, где восстанавливается полностью «мертвый» аккумулятор, которому около 10 лет.
Вначале идет «раскачка» со сменой полярности питания, а почти в самом конце уже дан полный цикл переполюсовки.

sdelaysam-svoimirukami.ru

Кислота из авто аккумулятора ?

спай 07-08-2008 10:50

Можно ли использовать кислоту из аккумулятора для травления лезвия ?
А то надо менять аккумулятор, вот думаю слить кислоту или нет:


Off. Кстати, куда сейчас надо девать старый аккумулятор, мож кто знает ?

Serjant 07-08-2008 11:03
quote:
Можно ли использовать кислоту из аккумулятора для травления лезвия ?

даспай 07-08-2008 11:06

Спасибо !

ещё один вопрос….
а во что её слить ? обычная стеклянная банка подойдёт ?

ASDER_K 07-08-2008 11:12
quote:
Originally posted by спай:

а во что её слить ? обычная стеклянная банка подойдёт ?



желательно, закрывающаяся… в идеале — с притертой крышкой стеклянной…Виталий М 07-08-2008 11:35
quote:
желательно, закрывающаяся… в идеале — с притертой крышкой стеклянной…

Не дай бог просто оставить закрытой пластиковой крышкой рядом с металлом — всё покроется тонким слоем очень качественной ржавчины… Герметизировать банку как можно плотнее.спай 07-08-2008 12:07

ОК. всем спасибо !

hunter1957 07-08-2008 12:28

Электроды из свинцового сплава .В эпоху всеобщего дефицита лил дробь и картечь.

nikifor66 07-08-2008 14:38

А я лил на кухне прямо, всякие брюлики из свинца… Кальца с печатками, всевозможные сувениры… (Балбес, конечно, надышался неслабо, наверное, да и ручонки еще понят, как это — заливать расплавленный свинец в форму мокрую…)

Alhim 07-08-2008 16:25

[QУОТЕ]Оригиналлы постед бы Виталий М:
[Б]
Не дай бог просто оставить закрытой пластиковой крышкой рядом с металлом — всё покроется тонким слоем очень качественной ржавчины… Герметизировать банку как можно плотнее.
[/Б]
[/QУОТЕ]
От серняги-то… Да ничего не будет даж если ее открытой оставить. Только это… Одежду она жрет просто жудко: чуть капелька попала- после стирки обязательно дыра будет.

chief 07-08-2008 16:38
quote:
Originally posted by Виталий М:

Не дай бог просто оставить закрытой пластиковой крышкой рядом с металлом — всё покроется тонким слоем очень качественной ржавчины… Герметизировать банку как можно плотнее.

Это лишь в том случае, если какой-нибудь юморист залил в аккумулятор соляную или азотную кислоту

Balllu 07-08-2008 18:40

еще бы кто подсказал как травить в этом электролите, время выдержки и с фотками было бы вообще супер гуд.

Виталий М 07-08-2008 18:44
quote:
Это лишь в том случае, если какой-нибудь юморист залил в аккумулятор соляную или азотную кислоту

Пардон… и впрямь попутал. Просто соляная в баночке была… оставил крышку не закрытую на фиксаторы на весрстаке. В понедельник все детали заново готовить под покрытие пришлось… С той поры как о кислоте речь — вспоминается…Морган 08-08-2008 17:45
quote:
Кстати, куда сейчас надо девать старый аккумулятор, мож кто знает ?

Их покупают недорого, видел объявление.Andy 09-08-2008 23:03

Стоят в гараже два сотых аккумулятора … Выкинуть или сдать по 50 рэ — жалко …
Что можно их них сделать ???
Пока кроме гирь/гантелей — ничего на ум не приходит. Тогда — как изолировать свинец от окружающей среды (руки).

P.S.
Кстати, есть негативный опыт контакта эмалированного покрытия чугунной ванны с электролитом (при восстановлении выкипевших аккумуляторов). Несмотря на то, что постоянно смывал всё водой из душевой насадки — на дне ванны вся эмаль пошла мелкими трещинами. Так я узнал, что эмаль очень боится кислоты.

Медведко 09-08-2008 23:37

оххх, не советовал бы я вам связываться с воронением серной кислотой…
но если хочется попробывать то вот рецепт:
Берём кварцевый тазик (посуда для микроволновок) наливаем туда кислоту из аккумулятора. И соответственно греем на медленном огне. по мере испарения доливаем новую кислоту (аккуратно!!!!). затем когда начнёт появляться белый дым выключаем и убераем охлаждаться. то что мы получили это серная кислота с массовой долей ок. 98%. для оксидирования нагреваем её и засовуем туда ножичег. степень оксидирования определять визуально. естественно ножичег суём без ручки, а иначе ей *опа. затем вытащили, быстро промыли под струёй воды (аккуратно ибо если брызги попадут на одежду как заметил камрад chief будет много дырочек… у самого сейчас такие джинсы висят…), высушили при температуре 120-130 не менее, охладили и смазали машинным маслом. но по сравнению с хлоридом железа (III) или азоткой хотябы геморой неимоверный… я бы не советовал.

Balllu 14-08-2008 09:16
quote:
Originally posted by Медведко:

И соответственно греем на медленном огне. по мере испарения доливаем новую кислоту (аккуратно!!!!)



Греем это как кипятим или до кипения не доводить? и сколько электролита уходит ну скажем на стакан серной кислоты? и по времени сколько процесс изготовления ориентировочно занимает?Медведко 15-08-2008 01:03

дык…
плотность серной кты кажется 1,86 г/мл, в стакане 200 мл значит весит оно ~380 грамм. эт при концентрации 96% а при концентрации 40 это будет 892,6 грамма. т.е. для получения стаканы кислоты уйдёт более 900 грамм электролита.
доводим до кипения или просто при высокой температуре не имеет особого значения, но если кипит следите за брызгами!!!! а то 3,14здец печке и одежде
очеень долго, и делать этого я бы не советовал…

chief 15-08-2008 01:20

(В ужасе):
Свят-свят-свят!!!
Боже Вас упаси кипятить серную кислоту!
Поинтересуйтесь хотя бы температурой кипения
Разбавленная (электролит) кипит, конечно, пониже, но скажите-ка, други, у кого есть вытяжка, способная избавить Вас от брызг и паров кипящей Аш-2-Эс-О-4 ?!

Stingy 15-08-2008 01:28

Номано травит, пройденный этап. Но, дышать рекомендую через раз, а лучше вообще не дышать рядом с емкостью. Самого Бог миловал, а вот знакомый трахею обжег…

Balllu 15-08-2008 06:02
quote:
Originally posted by chief:

Разбавленная (электролит) кипит, конечно, пониже, но скажите-ка, други, у кого есть вытяжка, способная избавить Вас от брызг и паров кипящей Аш-2-Эс-О-4 ?!



Вытяжки нет, но есть гараж, улица, маленькая конфорка и удлинитель, ток вот времени нет на эксперименты ВоБлин 15-08-2008 11:26
quote:
Originally posted by ASDER_K:

желательно, закрывающаяся… в идеале — с притертой крышкой стеклянной…


А я между крышкой и горлышком полиэтиленовый пакет в два слоя прокладываю и нормально всё.

RPngvn 16-08-2008 03:24

меры предосторожности, конечно, никогда не бывают лишними, но серная кислота совсем не летучая совсем(темп. кип. 338 градусов). потому боятся паров не имеет смысла, а вот закрывать плотнее стоит, т.к. воду из воздуха тянет. воронение можно делать и аккумуляторной, толко долго, для нержавейки на пару часов может процесс затянуться. желательно подогревать градусов до 70.
стоит обратить внимание на то, что аккумуляторная серняга может содержать ощутимые количества сульфата свинца, потому обращаться аккуратно, мыть руки и посуду тщательно.

OlegYK 16-08-2008 12:10

О, если это отработавший аккумулятор, то можно его раздолбать и выпарить на костре. Мы в детстве таким образом добывали хз что, но такого бурого цвета и потом с серебрянкой его смешивали и использовали для бомбочек. )

RPngvn 16-08-2008 12:15

это был диоксид свинца
его можно в свинец перевести при желании

guns.allzip.org

§42. Кислотные аккумуляторы

Принцип действия. Аккумулятором называется химический источник тока, который способен накапливать (аккумулировать) в себе электрическую энергию и по мере необходимости отдавать ее во внешнюю цепь. Накапливание в аккумуляторе электрической энергии происходит при пропускании по нему тока от

Рис. 158. Заряд (а) и разряд (б) аккумулятора

постороннего источника (рис. 158,а). Этот процесс, называемый зарядом аккумулятора, сопровождается превращением электрической энергии в химическую, в результате чего аккумулятор сам становится источником тока. При разряде аккумулятора (рис. 158, б) происходит обратное превращение химической энергии в электрическую. Аккумулятор обладает большим преимуществом по сравнению с гальваническим элементом. Если элемент разрядился, то он приходит в полную негодность; аккумулятор же. после разряда может быть вновь заряжен и будет служить источником электрической энергии. В зависимости от рода электролита аккумуляторы разделяют на кислотные и щелочные.

Рис. 158. Заряд (а) и разряд (б) аккумулятора

На локомотивах и электропоездах наибольшее распространение получили щелочные аккумуляторы, которые имеют значительно больший срок службы, чем кислотные. Кислотные аккумуляторы ТН-450 применяют только на тепловозах, они имеют емкость 450 А*ч, номинальное напряжение — 2,2 В. Аккумуляторная батарея 32 ТН-450 состоит из 32 последовательно соединенных аккумуляторов; буква Т означает, что батарея установлена на тепловозе, буква Н — тип положительных пластин (намазные).

Устройство. В кислотном аккумуляторе электродами являются свинцовые пластины, покрытые так называемыми активными массами, которые взаимодействуют с электролитом при электрохимических реакциях в процессе заряда и разряда. Активной массой положительного электрода (анода) служит перекись свинца PbO2, а активной массой отрицательного электрода (катода) — чистый (губчатый) свинец Pb. Электролитом является 25—34 %-ный водный раствор серной кислоты.

Пластины аккумулятора могут иметь конструкцию поверхностного или намазного типа. Пластины поверхностного типа отливают из свинца; поверхность их, на которой происходят электрохимические реакции, увеличена благодаря наличию ребер, борозд и т. п. Их применяют в стационарных аккумуляторных батареях и некоторых батареях пассажирских вагонов.

В аккумуляторных батареях тепловозов применяют пластины намазного типа (рис. 159, а). Такие пластины имеют остов из сплава свинца с сурьмой, в котором устроен ряд ячеек, заполняемых пастой.

Ячейки пластин после заполнения пастой закрывают свинцовыми листами с большим количеством отверстий. Эти листы предотвращают возможность выпадания из пластин активной массы и не препятствуют в то же время доступу к ней электролита.

Исходным материалом для изготовления пасты для положительных пластин служит порошок свинца Pb, а для отрицательных— порошок , перекиси свинца PbO2, которые замешиваются на водном растворе серной кислоты. Строение активных масс в таких пластинах пористое; благодаря этому в электрохимических реакциях участвуют не только поверхностные, но и глубоколежащие слои электродов аккумулятора.

Для повышения пористости и уменьшения усадки активной массы в пасту добавляют графит, сажу, кремний, стеклянный порошок, сернокислый барий и другие инертные материалы, называемые расширителями. Они не принимают участия в электрохимических реакциях, но затрудняют слипание (спекание) частиц свинца и его окислов и предотвращают этим уменьшение пористости.

Намазные пластины имеют большую поверхность соприкосновения с электролитом и хорошо им пропитываются, что способствует уменьшению массы и размеров аккумулятора и позволяет получать при разряде большие токи.

Рис. 159. Устройство пластин (а) и общий вид (б) кислотного аккумулятора: 1 — блок намазных отрицательных пластин; 2 — выводные штыри; 3 — блок панцирных положительных пластин; 4 — панцирь; 5 — активная масса; 6 — отверстие с пробкой для заливки электролита; 7 — крышка; 8 — эбонитовый сосуд; 9 — пространство для осаждения шлама

При изготовлении аккумуляторов пластины подвергают специальным зарядно-разрядным циклам. Этот процесс носит название формовки аккумулятора. В результате формовки паста положительных пластин электрохимическим путем превращается в перекись (двуокись) свинца PbO2 и приобретает коричневый цвет. Паста отрицательных пластин при формовке переходит в чистый свинец Pb, имеющий пористую структуру и называемый поэтому губчатым; отрицательные пластины приобретают серый цвет.

В некоторых аккумуляторах применены положительные пластины панцирного типа. В них каждая положительная пластина заключена в специальный панцирь (чехол) из эбонита или стеклоткани. Панцирь надежно удерживает активную массу пластины от осыпания при тряске и толчках; для сообщения же активной массы пластин с электролитом в панцире делают горизонтальные прорези шириной около 0725 мм.

Для предотвращения замыкания пластин посторонними предметами (щупом для измерения уровня электролита, устройством для заливки электролита и др.) пластины в некоторых аккумуляторах покрывают полихлорвиниловой сеткой.

Для увеличения емкости в каждый аккумулятор устанавливают несколько положительных и отрицательных пластин; одноименные пластины соединяют параллельно в общие блоки, к которым приваривают выводные штыри. Блоки положительных и отрицательных пластин обычно устанавливают в эбонитовом аккумуляторном сосуде (рис. 159,б) так, чтобы между каждыми двумя

Рис. 160. Прохождение через электролит положительных и отрицательных ионов при разряде (а) и заряде (б) кислотного аккумулятора

пластинами одной полярности располагались пластины другой полярности. По краям аккумулятора ставят отрицательные пластины, так как положительные пластины при установке по краям склонны к короблению. Пластины отделяют одну от другой сепараторами, выполненными из микропористого эбонита, полихлорвинила, стекловойлока или другого изоляционного материала. Сепараторы предотвращают возможность короткого замыкания между пластинами при их короблении.

Пластины устанавливают в аккумуляторном сосуде так, чтобы между их нижней частью и дном сосуда имелось некоторое свободное пространство. В этом пространстве скапливается свинцовый осадок (шлам), образующийся вследствие отпадания отработавшей активной массы пластин в процессе эксплуатации.

Разряд и заряд. При разряде аккумулятора (рис. 160, а) положительные ионы H2+ и отрицательные ионы кислотного остатка
S04-, на которые распадаются молекулы серной кислоты H2S04 электролита 3, направляются соответственно к положительному
1 и отрицательному 2 электродам и вступают в электрохимические реакции с их активными массами. Между электродами возникает
разность потенциалов около 2 В, обеспечивающая прохождение электрического тока при замыкании внешней цепи. В результате
электрохимических реакций, возникающих при взаимодействии ионов водорода с перекисью свинца PbO2 положительного
электрода и ионов сернокислого остатка S04— со свинцом Pb отрицательного электрода, образуется сернокислый свинец PbS04 (сульфат свинца), в который превращаются поверхностные слои активной массы обоих электродов. Одновременно при этих реакциях образуется некоторое количество воды, поэтому концентрация серной кислоты понижается, т. е. плотность электролита уменьшается.

Аккумулятор может разряжаться теоретически до полного превращения активных масс электродов в сернокислый свинец и истощения электролита. Однако практически разряд прекращают гораздо раньше. Образующийся при разряде сернокислый свинец представляет собой соль белого цвета, плохо растворяющуюся в электролите и обладающую низкой электропроводностью. Поэтому разряд ведут не до конца, а только до того момента, когда в сернокислый свинец перейдет около 35 % активной массы. В этом случае образовавшийся сернокислый свинец равномерно распределяется в виде мельчайших кристалликов в оставшейся активной массе, которая сохраняет еще достаточную электропроводность, чтобы обеспечить напряжение между электродами 1,7—1,8 В.

Разряженный аккумулятор подвергают заряду, т. е. присоединяют к источнику тока с напряжением, большим напряжения аккумулятора. При заряде (рис. 160,б) положительные ионы водорода перемещаются к отрицательному электроду 2, а отрицательные ионы сернокислого остатка S04— — положительному электроду 1 и вступают в химическое взаимодействие с сульфатом свинца PbS04, покрывающим оба электрода. В процессе возникающих электрохимических реакций сульфат свинца PbS04 растворяется и на электродах вновь образуются активные массы: перекись свинца PbO2 на положительном электроде и губчатый свинец Pb — на отрицательном. Концентрация серной кислоты при этом возрастает, т. е. плотность электролита увеличивается.

Электрохимические реакции при разряде и заряде аккумулятора могут быть выражены уравнением

PbO2 + Pb + 2H2SO4 ? 2PbSO4 + 2H2O

Читая это уравнение слева направо, получаем процесс разряда, справа налево — процесс заряда.

Номинальный разрядный ток численно равен 0,1СНОМ, максимальный при запуске дизеля (стартерный режим) — примерно 3СНОМ, зарядный ток — 0,2 СНОМ, где СНОМ — номинальная емкость.

Полностью заряженный аккумулятор имеет э. д. с. около 2,2 В. Таково же приблизительно и напряжение на его зажимах, так как внутреннее сопротивление аккумулятора весьма мало. При разряде напряжение аккумулятора довольно быстро падает до 2 В, а затем медленно понижается до 1,8—1,7 В (рис. 161), при этом напряжении разряд прекращают во избежание повреждения аккумулятора. Если разряженный аккумулятор оставить на некоторое время в бездействии, то напряжение его снова восстанавливается до среднего значения 2 В. Это явление носит название «отдыха» аккумулятора. При нагрузке подобного «отдохнувшего» аккумулятора напряжение быстро понижается, поэтому измерение напряжения аккумулятора без нагрузки не дает правильного суждения о степени разряда.

При заряде напряжение аккумулятора быстро поднимается до 2,2 В, а затем медленно повышается до 2,3 В и, наконец, снова довольно быстро возрастает до 2,6—2,7 В. При 2,4 В начинают выделяться пузырьки газа, образующегося в результате разложения воды на водород и кислород. При 2,5 В оба электрода выделяют сильную струю газа, а при 2,6—2,7 В аккумулятор начинает как бы кипеть, что служит признаком окончания заряда. При отключении аккумулятора от источника зарядного тока напряжение его быстро снижается до 2,2 В.

Уход за аккумуляторами. Кислотные аккумуляторы быстро теряют емкость или даже приходят в полную негодность при

Рис. 161. Кривые напряжения кислотного аккумулятора при заряде и разряде

неправильной эксплуатации. В них происходит саморазряд, в результате которого они теряют свою емкость (примерно 0,5— 0,7 % в сутки). Для компенсации саморазряда неработающие аккумуляторные батареи необходимо периодически подзаряжать. При загрязнении электролита, а также крышек аккумуляторов, их выводов и междуэлементных соединений происходит повышенный саморазряд, быстро истощающий батарею.

Батарея аккумулятора должна быть всегда чистой, а выводы для предохранения от окисления покрыты тонким слоем технического вазелина. Периодически нужно проверять уровень электролита и степень заряженности аккумуляторов. Аккумуляторы должны периодически заряжаться. Хранение незаряженных аккумуляторов недопустимо. При неправильной эксплуатации аккумуляторов (разряде ниже 1,8—1,7 В, систематическом недозаряде, неправильном проведении заряда, длительном хранении незаряженного аккумулятора, понижении уровня электролита, чрезмерной плотности электролита) происходит повреждение их пластин, называемое сульфатацией. Это явление заключается в переходе мелкокристаллического сульфата свинца, покрывающего пластины при разряде, в нерастворимые крупнокристаллические химические соединения, которые при заряде не переходят в перекись свинца РbO2 и свинец РЬ. При этом аккумулятор становится непригодным для эксплуатации.

Рис. 158. Заряд (а) и разряд (б) аккумулятора

electrono.ru

Отправить ответ

avatar
  Подписаться  
Уведомление о