РазноеКак проверить мультиметром катушку индуктивности – Диагностика катушки зажигания при помощи тестера (мультиметра): 4 основные причины и 6 признаков неисправности катушки

Как проверить мультиметром катушку индуктивности – Диагностика катушки зажигания при помощи тестера (мультиметра): 4 основные причины и 6 признаков неисправности катушки

Содержание

Как прозвонить дроссель мультиметром

Проверка проволочных и непроволочных резисторов

Для проверки проволочного и непроволочного резисторов постоянного и переменного сопротивления необходимо проделать следующее: произвести внешний осмотр; проверить работу движущего механизма переменного резистора и состояние его частей; по маркировке и размерам определить номинальную величину сопротивления, допустимую мощность рассеяния и класс точности; омметром измерить действительную величину сопротивления и определить отклонение от номинала; у переменных резисторов измерить еще и плавность изменения сопротивления при движении ползунка. Резистор исправен, если нет механических повреждений, величина его сопротивления находится в допустимых пределах данного класса точности, а контакт ползунка с токопроводящим слоем постоянен и надежен.

Проверка конденсаторов всех типов

К электрическим неисправностям относятся: пробой конденсаторов; короткое замыкание пластин; изменение номинальной емкости сверх допуска из-за старения диэлектрика, попадания на него влаги, перегрева, деформации; повышение тока утечки из-за ухудшения изоляции. Полная или частичная потеря емкости электролитических конденсаторов происходит в результате высыхания электролита.

Простейший способ проверки исправности конденсатора — внешний осмотр, при котором обнаруживаются механические повреждения. Если при внешнем осмотре дефекты не обнаружены, проводят электрическую проверку. Она включает: проверку на короткое замыкание, на пробой, на целость выводов, проверку тока утечки (сопротивление изоляции), измерение емкости. При отсутствии специального прибора емкость можно проверить другими способами, зависящими от емкости конденсаторов.

Конденсаторы большой емкости (1 мкФ и выше) проверяют пробником (омметром), подключая его к выводам конденсатора. Если конденсатор исправен, то стрелка прибора медленно возвращается в исходное положение. Если же утечка велика, то стрелка прибора не вернется в исходное положение.

Конденсаторы средней емкости (от 500 пФ до 1 мкФ) проверяют с помощью последовательно подключенных к выводам конденсатора телефонов и источника тока. При исправном конденсаторе в момент замыкания цепи в телефонах прослушивается щелчок.

Конденсаторы малой емкости (до 500 пФ) проверяют в цепи тока высокой частоты. Конденсатор включают между антенной и приемником. Если громкость приема не уменьшится, значит, обрывов выводов нет.

Проверка катушек индуктивности

Проверка исправности катушек индуктивности начинается с внешнего осмотра, в ходе которого убеждаются в исправности каркаса, экрана, выводов; в правильности и надежности соединений всех деталей катушки между собой; в отсутствии видимых обрывов проводов, замыканий, повреждения изоляции и покрытий. Особое внимание следует обращать на места обугливания изоляции, каркаса, почернение или оплавление заливки.

Электрическая проверка катушек индуктивности включает проверку на обрыв, обнаружение короткозамкнутых витков и определение состояния изоляции обмотки. Проверка на обрыв выполняется пробником. Увеличение сопротивления означает обрыв или плохой контакт одной или нескольких жил. Уменьшение сопротивления означает наличие межвиткового замыкания. При коротком замыкании выводов сопротивление равно нулю.

Для более точного представления о неисправности катушки необходимо измерить индуктивность. В заключение рекомендуется проверить работоспособность катушки в таком же заведомо исправном аппарате, для которого она предназначена.

Проверка силовых трансформаторов, трансформаторов и дросселей низкой частоты

По конструкции и технологии изготовления силовые трансформаторы, трансформаторы и электрические дроссели НЧ имеют много общего. Те и другие состоят из обмоток, выполненных изолированным проводом, и сердечника. Неисправности трансформаторов и дросселей НЧ делятся на механические и электрические.

К механическим неисправностям относятся: поломка экрана, сердечника, выводов, каркаса и крепежной арматуры, к электрическим — обрывы обмоток; замыкания между витками обмоток; короткое замыкание обмотки на корпус, сердечник, экран или арматуру; пробой между обмотками, на корпус или между витками одной обмотки; уменьшение сопротивления изоляции; местные перегревы.

Проверку исправности трансформаторов и дросселей НЧ начинают с внешнего осмотра. В ходе его выявляют и устраняют все видимые механические дефекты. Проверка на короткое замыкание между обмотками, между обмотками и корпусом производится омметром. Прибор включают между выводами разных обмоток, а также между одним из выводов и корпусом. Так же проверяется и сопротивление изоляции, которое должно быть не менее 100 МОм для герметизированных трансформаторов и не менее десятков МОм для негерметизированных.

Самая сложная проверка на межвитковые замыкания. Известно несколько способов проверки трансформаторов.

1. Измерение омического сопротивления обмотки и сравнение результатов с паспортными данными. (Способ простой, но не точный, особенно при малой величине омического сопротивления обмоток и малом числе короткозамкнутых витков.)

2. Проверка катушки с помощью специального прибора — анализатора короткозамкнутых витков.

3. Проверка коэффициентов трансформации на холостом ходу. Коэффициент трансформации определяется как отношение напряжений, показываемых двумя вольтметрами. При наличии межвитковых замыканий коэффициент трансформации будет меньше нормы.

4. Измерение индуктивности обмотки.

5. Измерение потребляемой мощности на холостом ходу. У силовых трансформаторов одним из признаков короткозамкнутых витков является чрезмерный нагрев обмотки.

Простейшая проверка исправности полупроводниковых диодов

Простейшая проверка исправности полупроводниковых диодов заключается в измерении их прямого Rnp и обратного Rо6p сопротивлений. Чем больше соотношение Rо6p/Rnp, тем выше качество диода. Для измерения диод подключается к тестеру (омметру) или к ампервольтомметру. При этом выходное напряжение измерительного прибора не должно превышать максимально допустимого для данного полупроводникового прибора.

Простая проверка транзисторов

При ремонте бытовой радиоаппаратуры возникает необходимость проверить исправность полупроводниковых триодов (транзисторов) без выпайки их из схемы. Один из способов такой проверки — измерение омметром сопротивления между выводами эмиттера и коллектора при соединении базы с коллектором и при соединении базы с эмиттером. При этом источник коллекторного питания отключается от схемы. При исправном транзисторе в первом случае омметр покажет малое сопротивление, во втором — порядка нескольких сотен тысяч или десятков тысяч ом.

Проверка транзисторов, не включенных в схему, на отсутствие коротких замыканий производится измерением сопротивления между их электродами. Для этого омметр подключают поочередно к базе и эмиттеру, к базе и коллектору, к эмиттеру и коллектору, меняя полярность подключения омметра. Поскольку транзистор состоит из двух переходов, причем каждый из них представляет собой полупроводниковый диод, проверить транзистор можно так же, как проверяют диод. Для проверки исправности транзисторов омметр подключают к соответствующим выводам транзистора. У исправного транзистора прямые сопротивления переходов составляют 30 — 50 Ом, а обратные 0,5 — 2 МОм. При значительных отклонениях этих величин транзистор можно считать неисправным. Для более тщательной проверки транзисторов используются специальные приборы.

Как проверить дроссель, обмотки трансформатора, катушки индуктивности, электромагнитное реле. Методика испытаний (10+)

Проверка дросселя, трансформатора, реле

Материал является пояснением и дополнением к статье:
Проверка электронных элементов, радиодеталей. Применение б/у
Как проверить исправность детали. Методика испытаний. Какие детали можно использовать б/у.

Обмотки катушек индуктивности могут иметь четыре вида неисправностей.

Обрыв

Обмотка трансформатора или дросселя может быть оборвана. Это означает, что ее выводы не имеют гальванического контакта друг с другом. Выяснить это можно с помощью тестера. При измерениях не касайтесь пальцами сразу обоих выводов. Сопротивление Вашего тела может внести искажения в результаты измерения. Конечно для катушек с относительно малым числом витков и довольно толстым проводом обмотки, спутать проводимость человеческого тела с проводимостью обмотки затруднительно. Но я встречал катушки с омическим сопротивлением в десятки килоом.

Вашему вниманию подборка материалов:

Практика проектирования электронных схем Искусство разработки устройств. Элементная база. Типовые схемы. Примеры готовых устройств. Подробные описания. Онлайн расчет. Возможность задать вопрос авторам

Замыкание обмоток

Если трансформатор или дроссель имеют несколько обмоток, то электрическая изоляция между ними может нарушиться. Выявить замыкание обмоток можно, проверив сопротивление между выводами разных обмоток. Оно должно быть равно бесконечности. Опять же не примите за замыкание обмоток проводимость своего тела.

Короткозамкнутые витки

Внутри одной обмотки вследствие нарушения изоляции провода может возникнуть замыкание между витками. Возникнут, так называемые, короткозамкнутые витки. Такую катушку эксплуатировать нельзя, так как эти витки экранируют магнитное поле. Выявить эту неисправность можно только специальным прибором, устройство которого я опишу в одной из следующих статей. Подпишитесь на рассылку новостей.

Нарушения магнитопровода

В в катушках индуктивности и трансформаторах применяются сердечники из различных ферромагнитных материалов. Это может быть трансформаторное железо и ферриты. Феррит — довольно колкий материал. При ударах в нем могут возникать сколы и трещины. Трещины изменяют магнитную проницаемость феррита и, соответственно, параметры катушек индуктивности. В сердечниках иногда делаются зазоры. Механические нагрузки могут повлиять на величину зазора и на параметры катушки. Проверить соответствие индуктивности обмотки номинальной можно с помощью прибора для измерения индуктивности.

Проверка электромагнитных реле

Электромагнитные реле состоят из электромагнита (катушки индуктивности) и контактов. Про катушки индуктивности мы уже поговорили. Добавлю только, что реле постоянного тока не чувствительны к короткозамкнутым виткам, а реле переменного тока чувствительны.

Для проверки контактов необходимо тестером проверить наличие проводимости между нормально замкнутыми выводами и отсутствие проводимости между нормально разомкнутыми. Далее на реле надо подать напряжение, соответствующее параметрам реле, и проверить наличие проводимости между нормально разомкнутыми выводами и отсутствие проводимости между нормально замкнутыми.

Я встречался с такой экзотической неисправностью реле, когда контакты просто приварились друг к другу. Нормально разомкнутые контакты перестали размыкаться при отсутствии напряжения на обмотке.

К сожалению в статьях периодически встречаются ошибки, они исправляются, статьи дополняются, развиваются, готовятся новые. Подпишитесь, на новости, чтобы быть в курсе.

Если что-то непонятно, обязательно спросите!
Задать вопрос. Обсуждение статьи.

Дроссель, катушка индуктивности. Принцип работы. Математическая модель.
Катушка индуктивности, дроссель в электронных схемах. Принцип работы. Применение.

Изготовление дросселя, катушки индуктивности своими руками, самому, са.
Расчет и изготовление катушки индуктивности, дросселя. Типовые электронные схемы.

Проверка биполярного, полевого транзисторов, МОП, FET, MOSFET. Провери.
Как проверить исправность биполярного и полевого транзисторов. Методика испытани.

Практика проектирования электронных схем. Самоучитель электроники.
Искусство разработки устройств. Элементная база радиоэлектроники. Типовые схемы.

Плавная регулировка яркости свечения люминесцентных ламп дневного свет.
Схема драйвера для плавной регулировки яркости свечения ламп дневного света. Дра.

Прямоходовый однотактный импульсный преобразователь напряжения, источн.
Как сконструировать прямоходовый импульсный преобразователь. В каких ситуациях о.

Чтобы понять, как работает схема, необходимо знать не только состав элементов, но и точно представлять, что делает конкретный элемент или их группа. В этой статье будем разбираться с тем, что такое дроссель, как он устроен и работает в различных устройствах и схемах.

Что такое дроссель, внешний вид и устройство

Дроссель — это один из видов катушки индуктивности, представляет собой специальную медную проволоку, намотанную на сердечник. Но не всё так просто, бывают они и без сердечника, называются бескаркасные или воздушные. Внешне некоторые похожи на трансформатор. Отличие в том, что дроссель имеет только одну обмотку, а у трансформатора их две или больше. Если вывода только два, то перед вами точно не трансформатор.

Дроссели без сердечника представляют собой намотанную спиралью проволоку. Как выглядит дроссель в электротехнике разобрались, теперь поговорим о его конструкции.

Что такое дроссель: это намотанная в виде спирали медная проводка с сердечником или без

Как уже говорили, сердечник у дросселя может быть, а может и не быть. Сердечник может быть из токопроводящего материала — металла, а может из магнитного. Наличие или отсутствие сердечника, а также его тип (не только материал, но и форма) влияют на параметры катушки индуктивности.

Элементы без сердечников применяются для отсечения высоких частот, с сердечником чаще применяют для накопления энергии. Есть и ещё один момент: если сравнить дроссели с одинаковыми параметрами с сердечником и без, то те которые его имеют, размером намного меньше. Чем лучше проводимость сердечника, тем меньше идёт проволоки и меньшие размеры имеет элемент.

Схематическое изображение дросселя с магнитным сердечником и без

Несколько слов о проволоке, которую используют для намотки дросселя. Это специальный изолированный провод. Изоляция — тонкий слой диэлектрического лака, он незаметен, но изолирует хорошо. Так что, при самостоятельной намотке катушки, не используйте обычную проволоку, только специальную, покрытую изоляцией.

Дроссель на схеме обозначается графическим изображением полуволны. Если он с магнитным сердечником, добавляется черта. Если требуется какой-то специальный металл это также указывается рядом со схематическим изображением. Также может быть указан диаметр провода (L1).

Свойства, назначение и функции

Теперь разберём, что такое дроссель с точки зрения электрики. Если говорить коротко — это элемент, который сглаживает ток в цепи, что отлично видно на графике. Если подать на него переменный ток, увидим, что напряжение на катушке возрастает постепенно, с некоторой задержкой. После того, как напряжение убрали, в цепи еще какое-то время протекает ток. Это происходит так как поле катушки продолжает «толкать» электроны благодаря запасённой энергии. То есть, на дросселе ток не может появляться и исчезать мгновенно.

Ток на дросселе возрастает плавно и так же плавно снижается. Глядя на эти графики становится понятно, что дроссель — это элемент, сглаживающий ток

Это свойство и используют, когда надо ограничить ток, но есть ограничения по нагреву (желательно его избежать). То есть дроссель используют как индуктивное сопротивление, задерживающее или сглаживающее скачки тока. Как и резистор, катушка индуктивности имеет определённое сопротивление, что вызывает падение напряжение и ограничивает ток. Вот только греется намного меньше. Потому его часто используют как индуктивную нагрузку.

У дросселя есть два свойства, которые тоже используют в схемах.

  • так как это подвид катушки индуктивности, то он может запасать заряд;
  • отсекает ток определённой частоты (задерживаемая частота зависит от параметров катушки).

В некоторых устройствах (в люминесцентных лампах) дроссель ставят именно для накопления заряда. Во всякого рода фильтрах его используют для подавления нежелательных частот.

Виды и примеры использования

Чтобы более точно усвоить, что такое дроссель, поговорим о конкретном применении этого элемента в схемах. Его можно увидеть практически в любой схеме. Их ставят, если надо развязать (сделать независимыми друг от друга) участки, работающие на разной частоте. Они сглаживают резкие скачки тока (увеличение и падение), используются для подавления шумов. В некоторых схемах работают как стартовые, способствуя увеличению напряжения в момент старта. В зависимости от назначения, делятся на следующие виды:

  • Сглаживающие. В силу индуктивности, препятствуют резкому повышению или понижению тока.
  • Фильтрующие. Специально подобранные параметры отсекают (подавляют) выбросы на определённых частотах (или в целом диапазоне). Ставят их и на входе статических конденсаторов.
  • Сетевые. Ставят в приборах, питающихся от однофазной сети. Служат для предохранения аппаратуры от перенапряжения.
  • Моторные. Ставят на входе электроприводов, чтобы сгладить пусковые токи.

Практически в любой схеме есть этот элемент

Как видите, дроссели в электрике имеют широкое применение. Есть они в любой бытовой аппаратуре, даже в лампах. Не тех, которые работают с лампами накаливания, а тех, которые называют лампами дневного света, а так же в экономках и в светодиодных. Просто там они очень небольшого размера. Если разобрать плеер, проигрыватель, блок питания, — везде можно найти катушку индуктивности.

Дроссель в лампах дневного света

Для работы лампы дневного света необходим пуско-регулирующий аппарат. В более «старом» варианте он состоит из дросселя и стартера. Зачем дроссель в люминесцентной лампе? Он выполняет сразу две задачи:

  • При пуске накапливает заряд, необходимый для розжига лампы (пусковой).
  • Во время работы сглаживает возможные перепады тока, обеспечивая стабильное свечение лампы.

Как подключается дроссель в светильнике дневного света

В схеме люминесцентной лампы с электромагнитным ПРА, дроссель включается последовательно с лампой, стартер — параллельно. При неисправности одного из элементов или сгорании лампы, она просто не зажигается. Принцип работы этого узла такой. При включении напряжения в 220 В недостаточно для старта лампы. Пока она холодная, имеет очень большое сопротивление и ток течёт через постепенно разогревающиеся катоды лампы, затем через стартер.

В стартере есть биметаллический контакт, который при прохождении тока нагревается, начинает изгибаться. В какой-то момент он касается второго неподвижного контакта, замыкая цепь. Тут в работу вступает дроссель, пока грелся контакт стартера, он накапливал энергию. В момент когда происходит разряд стартера, он выдаёт накопленную энергию, увеличивая напряжение. В момент старта оно может достигать 1000 В. Этот разряд провоцирует разгон электродов, вырывая их из катодов лампы. Высвобождённые электроды начинают движение, ударяются о люминесцентное покрытие лампы, она начинает светиться. Дальше ток протекает не через стартер, а через лампу, так как её сопротивление стало ниже. В этом режиме дроссель работает на сглаживание скачков тока. Как видим, катушка индуктивности работает и как стартовая, и как стабилизирующая.

Зачем нужен дроссель в блоке питания

Как уже говорили, дроссель сглаживает пульсации тока. Если он при этом обладает значительным сопротивлением, параметры можно подобрать так, чтобы подавить определённые частоты.

Дроссель для сглаживания пульсаций

Второе назначение дросселя в блоке питания — сглаживание тока. Для этого используют низкочастотные дросселя с сердечниками из магнитной стали. Пластины друг от друга изолированы слоем диэлектрика (могут быть залиты лаком). Это необходимо чтобы избавится от самоиндукции и токов Фуко. Катушки такого типа имеют индуктивность порядка 1 Гн, так что сглаживают любые колебания тока, гасят его выбросы.

Как проверить дроссель мультиметром

Что такое дроссель и для чего его применяют разобрались, теперь ещё стоит научиться определять его работоспособность. Если мультиметр может измерять индуктивность, всё несложно. Просто проводим измерение. Если параметры дросселя нам неизвестны, выставляем самый большой предел измерений. Обычно это несколько сотен Генри. На шакале обозначаются русскими Гн или латинской буквой H.

Установив переключатель мультиметра в нужное положение, щупами касаемся выводов катушки. На экране высвечивается какое-то число. Если цифры малы, переводим переключатель в одно из следующих положений, ориентируясь по предыдущим показателям.

Функция измерения индуктивности есть далеко не во всех мультиметрах

Например, если высветилось 10 мГн, выставляем предел измерения ближайший больший. После этого повторно проводим измерения. В этом случае на экране высветится индуктивность измеряемого дросселя. Имея паспортные данные, можно сравнить реальные показатели с заявленными. Они не должны сильно отличаться. Если разница велика, надо дроссель менять.

Если мультиметр простой, функции измерения индуктивности в нём нет, но есть режим измерения сопротивлений, также можно проверить его работоспособность. Но в данном случае мы будем измерять не индуктивность, а сопротивление. Измерив сопротивление обмотки мы просто сможем понять, работает дроссель или он в обрыве.

Так можно проверить исправность дросселя для ламп дневного света

Для прозвонки дросселя тестером переводим переключатель мультиметра в положение измерения сопротивлений. Выставляем предел измерений, лучше выставить нижний,чтобы видеть сопротивление обмотки. Далее щупами прикасаемся к концам обмотки. Должно высветиться какое-то сопротивление. Оно не должно быть бесконечно большим (обрыв) и не должно быть нулевым (короткое). В обоих случаях дроссель нерабочий, все остальные значения — признак работоспособности.

Чтобы убедиться в отсутствии короткого замыкания на витках дросселя, можно перевести мультиметр в режим прозвонки и прикоснуться щупами к выводам. Если звенит — короткое есть, где-то есть пробой, а это значит, что нужен другой дроссель.

Как проверить дроссель — 5 причин неисправности балласта ламп дневного света. Проверка ПРА и ЭПРА отличия.

как проверить дроссель лампы дневного светаЛампы дневного света, несмотря на популяризацию светодиодного освещения, до сих пор остаются одним из распространенных видов осветительных приборов в домах, гаражах и производственных помещениях.

Когда такой светильник перестает гореть, первым делом грешат на саму лампочку или стартер. А если они не виноваты, как проверить другой не менее важный элемент – дроссель?

Для чего нужен дроссель

Во-первых, определимся, что же такое дроссель или как его еще называют балласт. По сути, это обыкновенная катушка индуктивности с ферромагнитным сердечником.

Вот так она выглядит в разрезе.
дроссель для ламп дневного света в разрезе что внутри

В схемах балласт нужен для трех функций:

  • контроля тока, чтобы он не превышал номинала
  • образование за счет индуктивности кратковременного импульса повышенного напряжения
  • сглаживания возможных пульсаций в сети 220В

Подключается он последовательно, а параллельно ему монтируется стартер.схема подключения светильника дневного света с двумя лампами

Стартер необходим для поджига лампы.

Как работает лампа дневного света

схема светильника дневного света со стартером принцип работыНапряжение, которое подводится к спиральным электродам на концах лампы, изначально недостаточно для ее розжига. И тут на помощь приходит дроссель и стартер.

После появления напряжения в стартере, внутри образуется разряд, который нагревает биметаллический электрод.как работает стартер лампы дневного света

Из-за нагрева форма электрода меняется и происходит его замыкание.как зажигается лампа дневного света принцип работы

В результате чего, резко возрастает ток и электроды раскаляются. Ток ограничивается только сопротивлением самого дросселя.

У стартера контакты постепенно остывают и размыкаются. При размыкании, благодаря дросселю, в лампе возникает эффект самоиндукции, с образованием высоковольтного импульса и электрического разряда напряжением до 1000В.111_DNaT

От этого разряда создается ультрафиолетовое свечение ртутных паров, которыми заполнена колба. Оно оказывает воздействие на люминофор, и только благодаря ему, мы и можем различать свет в привычном для нас спектре.

111_DNaT

Если для кого-то это объяснение слишком заумно, то вот одно из самых простых и понятных видео, объясняющих на доступном всем языке, как же работает лампа ЛДС.

Получается, что сам процесс включения люминесцентной лампы дневного света довольно длителен и занимает 5 этапов:

  • подача 220В из розетки и замыкание контактов стартера
  • разогрев спиралей электродов
  • размыкание контактов стартера
  • подача высоковольтного импульса от дросселя
  • образование тлеющего разряда в колбе и поддержка его внешним напряжением 220В + шунтирование стартера и исключение его из схемы

111_DNaTКак видно из процесса запуска, при неисправности ламп, виноватыми могут быть три элемента:

  • сама лампочкалюстра из лампочек дневного света
  • стартерстартер для лампы дневного света в разобранном состоянии
  • дроссельдроссель для ламп ЛДС как найти неисправность

При этом, чаще всего повреждаются лампочки и стартера – из-за перегоревших вольфрамовых нитей и конденсаторов.нити накала внутри ламп дневного света

Узнать об этом проще всего – заменив стартер или лампочку. Тем более, что стоят они копейки. А вот как быстро узнать о неисправности дросселя?

Как проверить дроссель ПРА без мультиметра

Без специальных измерительных приборов о неисправности ПРА может свидетельствовать эффект огненной змейки. Вы визуально сможете наблюдать ее внутри лампы.

О чем это говорит? А говорит это в первую очередь о том, что есть превышение максимально допустимого тока. Из-за чего заряд потерял стабильность.

Также может наблюдаться неустойчивое свечение или мерцание лампы. При поломке балласта, светильник не загорится с первого раза.

В результате, стартер будет постоянно запускаться и отключаться, запускаться и отключаться. От таких частых пусков, возле спиралей на концах лампы появляются почернения.из-за чего оьбразуются почерения на концах люминесцентной лампы

Еще один способ проверки без измерительных приборов и мультиметра – контрольная лампочка. Мощность ее должна быть примерно такой же, как и мощность самого дросселя.

Подключаете ее последовательно по следующей схеме с ПРА и смотрите как она светит.схема проверки дросселя без мультиметра с помощью простой лампочки

  • если не горит совсем – в балласте обрыв, дроссель неисправен
  • горит ярко – в балласте межвитковое короткое замыкание
  • моргает или светит в половину накала – дроссель исправен

схема проверки дросселя без мультиметра с помощью простой лампочки

Проверка балласта ПРА мультиметром

Но чтобы точно убедиться в повреждении дросселя, все таки лучше воспользоваться мультиметром и провести замеры.проверка дросселя лампы дневного света мультиметром

Повреждение дросселя может быть пяти видов:

  • замыкание разных обмоток
  • замыкание витков в одной обмотке
  • неисправность магнитопровода
  • пробой на корпус

Какой-то из проводов, которым намотан дроссель может просто оборваться. Выявляется это легко.

Переводите мультиметр в режим измерения сопротивления и касаетесь щупами выводов дросселя. Если высвечиваются показания ”бесконечность” это и свидетельствует об обрыве.как проверить дроссель лампы дневного света на обрыв мультиметром

При замерах только не касайтесь голых кончиков щупов руками. Иначе замерите сопротивление своего тела, а не дросселя.111_dormult

Кстати, обрыв из всех видов поломок, выявить проще всего. Это можно сделать даже без мультиметра, с помощью обычной индикаторной отвертки.

Ничего выключать и разбирать не нужно, провода тоже не отсоединяются. Если индикатор светится во входной клемме ПРА:как проверить ПРА лампы дневного света на обрыв и неисправность

а на выходе свечения нет:проверка дросселя лампы дневного света без мультиметра индикаторной отверткой

то считайте что обрыв вы нашли.

Замыкание обмоток

дросселя двухобмоточные для ламп дневного светаНекоторые дросселя могут иметь не одну, а две обмотки. В нормальном режиме они должны быть изолированы между собой.схема двухобмоточного дросселя для лампы ЛДС

Но изоляция может высохнуть или нарушиться.

Чтобы узнать о замыкании, мультиметром проверьте выводы не одной, а разных обмоток. Если у вас высветятся непонятно малые цифры, то значит обмотки замкнуты.

Межвитковое замыкание

Если дроссель у вас постоянно грелся, то его лакированная изоляция проводов, могла высохнуть. И один или несколько близлежащих витков, просто спекутся между собой.межвитковое замыкание катушки дросселя

Найти такое повреждение очень трудно, даже при помощи мультиметра.

Нужно точно знать изначальные значения сопротивления обмотки, чтобы было с чем сравнивать. Если у вас замкнулись один или два витка, то разницу обычным тестером вы и не увидите.

Найти витковое замыкание можно при спекании достаточно большого количества проводников. Тогда разницу будет видно сразу.111_nastlampa

Нормальный (не китайский дроссель), имеет примерно следующие сопротивления:

  • мощностью на 20Вт — сопротивление от 55 до 60 Омкак проверить дроссель лампы дневного света мультиметром
  • мощностью на 40Вт – сопротивление от 24 до 30 Омпроверка баласта лампы дневного света на обрыв или межвитковое замыкание
  • мощностью на 80Вт – сопротивление от 15 до 20 Омкак найти межвитковое замыкание дросселя баласта лампы дневного света

Магнитопровод

Сердечник дросселя выполнен из ферромагнитных материалов. А они (ферриты), довольно капризны сами по себе.дроссель или баласт лампы дневного света в разрезе

При эксплуатации, на поверхности запросто могут образоваться трещинки или сколы. Если такое произошло, значит у дросселя изменятся параметры катушек индуктивности.как найти неисправность балласта дневного света

Еще в сердечниках из-за механических нагрузок могут измениться специальные зазоры.

Проверить индуктивность дросселя можно не всеми мультиметрами. Большинство к сожалению, такой функции лишены.мультиметр с функцией проверки индуктивности

Однако опять же, чтобы понять проблему, вам нужно знать первоначальные значения данной индуктивности.

Пробой на корпус

О неисправности катушки может свидетельствовать ее нулевое сопротивление относительно корпуса. Здесь ничего сложного в проверке нет.проверка мультиметром пробоя на корпус дросселя лампы ЛДС

Один щуп мультиметра подносите к металлическим частям корпуса, а другим касаетесь к выводам катушки дросселя.

Проверять можно и в режиме прозвонки цепи. Если звукового сигнала не будет, значит пробоя нет.

Повреждение электронного дросселя

ПРА и ЭПРА разницаА если балласт у вас электронный, как проверить его? ЭПРА как сокращенно их называют, уже не похож на индуктивную катушку.

Все современные модели выпускаются с электронными дросселями без стартеров.ПРА и ЭПРА разница

ЭПРА расшифровывается как — электронная пуско-регулирующая аппаратура.
У нее множество электронных компонентов напаяны на плату и помещены в один корпус.электронное ПРА для ламп ЛДС проверка на неисправность

Прозвонить мультиметром всего лишь два конца здесь уже не получится. Придется последовательно шаг за шагом проверять все элементы схемы.

Начинать лучше с предохранителя. Вызваниваете его целостность в режиме прозвонки.проверка предохранителя у ЭПРА лампы ЛДС

Далее осматриваете конденсаторы. У тех, которые в виде бочонков, можно определить повреждение даже визуально, по вздутию нижней части.как найти неисправность и проверить электронный баласт ламп дневного света

Еще внимательно проглядите все места пайки. Какие-то ножки могут отвалиться и контакт пропадет.поиск причин неисправности ламп дневного света с ЭПРА

Диоды и транзисторы также проверяются мультиметром, после переключения его в соответствующий режим измерения.как найти и проверить ЭПРА для ламп дневного света

Данные сопротивлений берите из таблиц в интернете, согласно их расцветки.проверка сопротивлений на ЭПРА

И сравнивайте с теми фактическими замерами, которые у вас получились.

В общем, чтобы проверить и отремонтировать электронный дроссель, понадобятся минимальные навыки радиолюбителя.

Вот очень хорошее и подробное видео по проверке каждого элемента на плате ЭПРА, с заменой поврежденных деталей на исправные. Тем более, что повреждений здесь оказалось не одно, а несколько.

Что такое дроссель в электрике: устройство, назначение, проверка

Чтобы понять, как работает схема, необходимо знать не только состав элементов, но и точно представлять, что делает конкретный элемент или их группа. В этой статье будем разбираться с тем, что такое дроссель, как он устроен и работает в различных устройствах и схемах.

Содержание статьи

Что такое дроссель, внешний вид и устройство

Дроссель — это один из видов катушки индуктивности, представляет собой специальную медную проволоку, намотанную на сердечник. Но не всё так просто, бывают они и без сердечника, называются бескаркасные или воздушные. Внешне некоторые похожи на трансформатор. Отличие в том, что дроссель имеет только одну обмотку, а у трансформатора их две или больше. Если вывода только два, то перед вами точно не трансформатор.

Дроссели без сердечника представляют собой намотанную спиралью проволоку. Как выглядит дроссель в электротехнике разобрались, теперь поговорим о его конструкции.

Что такое дроссель: это намотанная в виде спирали медная проводка с сердечником или без

Что такое дроссель: это намотанная в виде спирали медная проводка с сердечником или без

Как уже говорили, сердечник у дросселя может быть, а может и не быть. Сердечник может быть из токопроводящего материала —  металла, а может из магнитного. Наличие или отсутствие сердечника, а также его тип (не только материал, но и форма) влияют на параметры катушки индуктивности.

Элементы без сердечников применяются для отсечения высоких частот, с сердечником чаще применяют для накопления энергии. Есть и ещё один момент: если сравнить дроссели с одинаковыми параметрами с сердечником  и без, то те которые его имеют, размером намного меньше. Чем лучше проводимость сердечника, тем меньше идёт проволоки и меньшие размеры имеет элемент.

Схематическое изображение дросселя с магнитным сердечником и без

Схематическое изображение дросселя с магнитным сердечником и без

Несколько слов о проволоке, которую используют для намотки дросселя. Это специальный изолированный провод. Изоляция — тонкий слой диэлектрического лака, он незаметен, но изолирует хорошо. Так что, при самостоятельной намотке катушки, не используйте обычную проволоку, только специальную, покрытую изоляцией.

Дроссель на схеме обозначается графическим изображением полуволны. Если он с магнитным сердечником, добавляется черта. Если требуется какой-то специальный металл это также указывается рядом со схематическим изображением. Также может быть указан диаметр провода (L1).

Свойства, назначение и функции

Теперь разберём, что такое дроссель с точки зрения электрики. Если говорить коротко — это элемент, который сглаживает ток в цепи, что отлично видно на графике. Если подать на него переменный ток, увидим, что напряжение на катушке возрастает постепенно, с некоторой задержкой. После того, как напряжение убрали, в цепи еще какое-то время протекает ток. Это происходит так как поле катушки продолжает «толкать» электроны благодаря запасённой энергии. То есть, на дросселе ток не может появляться и исчезать мгновенно.

Ток на дросселе возрастает плавно и так же плавно снижается. Глядя на эти графики становится понятно что такое дроссель с точки зрения электрических параметров. Это элемент, сглаживающий ток

Ток на дросселе возрастает плавно и так же плавно снижается. Глядя на эти графики становится понятно, что дроссель —  это элемент, сглаживающий ток

Это свойство и используют, когда надо ограничить ток, но есть ограничения по нагреву (желательно его избежать). То есть дроссель используют как индуктивное сопротивление, задерживающее или сглаживающее скачки тока. Как и резистор, катушка индуктивности имеет определённое сопротивление, что вызывает падение напряжение и ограничивает ток. Вот только греется намного меньше. Потому его часто используют как индуктивную нагрузку.

У дросселя есть два свойства, которые тоже используют в схемах.

  • так как это подвид катушки индуктивности, то он может запасать заряд;
  • отсекает ток определённой частоты (задерживаемая частота зависит от параметров катушки).

В некоторых устройствах (в люминесцентных лампах) дроссель ставят именно для накопления заряда. Во всякого рода фильтрах его используют для подавления нежелательных частот.

Виды и примеры использования

Чтобы более точно усвоить, что такое дроссель, поговорим о конкретном применении этого элемента в схемах. Его можно увидеть практически в любой схеме. Их ставят, если надо развязать (сделать независимыми друг от друга) участки, работающие на разной частоте. Они сглаживают резкие скачки тока (увеличение и падение), используются для подавления шумов. В некоторых схемах работают как стартовые, способствуя увеличению напряжения в момент старта. В зависимости от назначения, делятся на следующие виды:

  • Сглаживающие. В силу индуктивности, препятствуют резкому повышению или понижению тока.
  • Фильтрующие. Специально подобранные параметры отсекают (подавляют) выбросы на определённых частотах (или в целом диапазоне). Ставят их и на входе статических конденсаторов.
  • Сетевые. Ставят в приборах, питающихся от однофазной сети. Служат для предохранения аппаратуры от перенапряжения.
  • Моторные. Ставят на входе электроприводов, чтобы сгладить пусковые токи. Практически в любой схеме есть этот элемент

    Практически в любой схеме есть этот элемент

Как видите, дроссели в электрике имеют широкое применение. Есть они в любой бытовой аппаратуре, даже в лампах. Не тех, которые работают с лампами накаливания, а тех, которые называют лампами дневного света, а так же в экономках и в светодиодных. Просто там они очень небольшого размера. Если разобрать плеер, проигрыватель, блок питания, — везде можно найти катушку индуктивности.

Дроссель в лампах дневного света

Для работы лампы дневного света необходим пуско-регулирующий аппарат. В более «старом» варианте он состоит из дросселя и стартера. Зачем дроссель в люминесцентной лампе? Он выполняет сразу две задачи:

  • При пуске накапливает заряд, необходимый для розжига лампы (пусковой).
  • Во время работы сглаживает возможные перепады тока, обеспечивая стабильное свечение лампы.
Как подключается дроссель в светильнике дневного света

Как подключается дроссель в светильнике дневного света

В схеме люминесцентной лампы с электромагнитным ПРА, дроссель включается последовательно с лампой, стартер — параллельно. При неисправности одного из элементов или сгорании лампы, она просто не зажигается. Принцип работы этого узла такой. При включении напряжения в 220 В недостаточно для старта лампы. Пока она холодная, имеет очень большое сопротивление и ток течёт через постепенно разогревающиеся катоды лампы, затем через стартер.

В стартере есть биметаллический контакт, который при прохождении тока нагревается, начинает изгибаться. В какой-то момент он касается второго неподвижного контакта, замыкая цепь. Тут в работу вступает дроссель, пока грелся контакт стартера, он накапливал энергию. В момент когда происходит разряд стартера, он выдаёт накопленную энергию, увеличивая напряжение. В момент старта оно может достигать 1000 В. Этот разряд провоцирует разгон электродов, вырывая их из катодов лампы. Высвобождённые электроды начинают движение, ударяются о люминесцентное покрытие лампы, она начинает светиться. Дальше ток протекает не через стартер, а через лампу, так как её сопротивление стало ниже. В этом режиме дроссель работает на сглаживание скачков тока. Как видим, катушка индуктивности работает и как стартовая, и как стабилизирующая.

Зачем нужен дроссель в блоке питания

Как уже говорили, дроссель сглаживает пульсации тока. Если он при этом обладает значительным сопротивлением, параметры можно подобрать так, чтобы подавить определённые частоты.

Дроссель для сглаживания пульсаций

Дроссель для сглаживания пульсаций

Второе назначение дросселя в блоке питания —  сглаживание тока. Для этого используют низкочастотные дросселя с сердечниками из магнитной стали. Пластины друг от друга изолированы слоем диэлектрика (могут быть залиты лаком). Это необходимо чтобы избавится от самоиндукции и токов Фуко. Катушки такого типа имеют индуктивность порядка 1 Гн, так что сглаживают любые колебания тока, гасят его выбросы.

Как проверить дроссель мультиметром

Что такое дроссель и для чего его применяют разобрались, теперь ещё стоит научиться определять его работоспособность. Если мультиметр может измерять индуктивность, всё несложно. Просто проводим измерение. Если параметры дросселя нам неизвестны, выставляем самый большой предел измерений. Обычно это несколько сотен Генри. На шакале обозначаются русскими Гн или латинской буквой H.

Установив переключатель мультиметра в нужное положение, щупами касаемся выводов катушки. На экране высвечивается какое-то число. Если цифры малы, переводим переключатель в одно из следующих положений, ориентируясь по предыдущим показателям.

Функция измерения индуктивности есть далеко не во всех мультиметрах

Функция измерения индуктивности есть далеко не во всех мультиметрах

Например, если высветилось 10 мГн, выставляем предел измерения ближайший больший. После этого повторно проводим измерения. В этом случае на экране высветится индуктивность измеряемого дросселя. Имея паспортные данные, можно сравнить реальные показатели с заявленными. Они не должны сильно отличаться. Если разница велика, надо дроссель менять.

Если мультиметр простой, функции измерения индуктивности в нём нет, но есть режим измерения сопротивлений, также можно проверить его работоспособность. Но в данном случае мы будем измерять не индуктивность, а сопротивление. Измерив сопротивление обмотки мы просто сможем понять, работает дроссель или он в обрыве.

Так можно проверить исправность дросселя для ламп дневного света

Так можно проверить исправность дросселя для ламп дневного света

Для прозвонки дросселя тестером переводим переключатель мультиметра в положение измерения сопротивлений. Выставляем предел измерений, лучше выставить нижний,чтобы видеть сопротивление обмотки. Далее щупами прикасаемся к концам обмотки. Должно высветиться какое-то сопротивление. Оно не должно быть бесконечно большим (обрыв) и не должно быть нулевым (короткое). В обоих случаях дроссель нерабочий, все остальные значения —  признак работоспособности.

Чтобы убедиться в отсутствии короткого замыкания на витках дросселя, можно перевести мультиметр в режим прозвонки и прикоснуться щупами к выводам. Если звенит — короткое есть, где-то есть пробой, а это значит, что нужен другой дроссель.

Как проверить дроссель мультиметром — частые неисправности

замеры мультиметром

В широком понимании слова, дроссель является специальным ограничительным элементом.

Перед тем, как проверить дроссель мультиметром, нужно помнить, что тестирование выполняется несколькими способами, включая применение контрольного или заведомо исправного осветительного элемента, а также специального прибора.

 

Конструктивные особенности

Любые лампы дневного света, содержащие во внутренней части люминесцентные частицы, очень хорошо подходят для освещения в жилых помещениях.

Мягкость свечения светового потока обуславливается специально подобранным газовым составом, поэтому осветительный прибор может генерировать источник света:

  • в желтоватых тонах;
  • в холодных белых тонах;
  • в теплых белых тонах.

Полностью безопасная эксплуатация люминесцентной лампы обеспечивается наличием в конструкции осветительного прибора специального элемента, называемого дросселем. По своим внешним характеристикам такое устройство имеет схожесть с катушкой индуктивности, дополненной сердечником на основе ферримагнитных сплавов.

дроссели силовые

Cиловые дроссели EPCOS AG

В процессе работы источника света, наличие дросселя эффективно стабилизирует генерируемое осветительным прибором свечение, что исключает негативное воздействие мерцания. Таким образом, неисправность дроссельного элемента становится основной причиной пульсации светового потока.

Перед приобретением элементов для установки в светильник с лампами дневного света, настоятельно рекомендуется уточнять в точке реализации наличие гарантии на продукцию, что позволит в случае определения заводского дефекта осуществить замену.

Особенности дросселя

Вне зависимости от конструкции, назначение дросселя люминесцентных источников света представлено:

  • защитой от перепадов в показателях напряжения;
  • разогревом катода;
  • созданием напряжения достаточного уровня для запуска светильника;
  • ограничением силовых показателей электрического тока непосредственно после запуска;
  • стабилизацией процессов работы осветительного прибора.
дроссель - чертеж

Конструкция дросселя

Экономически обоснованным является подключение одного дроссельного устройства сразу на пару осветительных приборов. Стандартное электромагнитное пускорегулирующее устройство, помимо дросселя, представлено стартером и парой конденсаторов.

Характеристики ЭмПРА

Дроссели электромагнитного типа характеризуются доступной стоимостью, простой конструкцией и высокими показателями надежности, а основные недостатки таких устройств представлены:

  • пульсирующим световым потоком, вызывающим усталость органов зрения;
  • порядка 10-15% потери электрической энергии;
  • шумностью работы в пусковой момент;
  • недостаточно устойчивым запуском в низкотемпературных условиях;
  • большими размерами и ощутимым весом;
  • продолжительным запуском источника света.
виды дросселей

ЭМПРА дроссель

Как правило, комплект бывает представлен лампами и дросселями, а самостоятельная замена баланса предполагает приобретение элемента с аналогичными параметрами.

Следует отметить, что любые подбираемые люминесцентные источники света и дроссели, в обязательном порядке должны быть равными по мощности, что сделает срок службы осветительного прибора максимально продолжительным.

Характеристики электронного балласта

Электронные балласты относятся к категории современных устройств, в которых практически полностью нивелированы недостатки электромагнитного дросселя. Схематично, такой элемент является единым блоком, производящим запуск осветительного прибора и поддерживающим процесс горения посредством образования определенной последовательности в изменении уровня напряжения.

Преимущества электронного балласта представлены:

  • любой скоростью запуска;
  • отсутствием необходимости устанавливать стартер;
  • исключено проявление мерцания;
  • максимальными показателями световой отдачи;
  • компактными размерами и небольшим весом устройства;
  • оптимальными условиями функционирования.
балласт для ламп

Так выглядит электронный балласт

Электронные балласты стоят на порядок выше электромагнитных устройств, что обуславливается сложностью схемы с наличием фильтров, корректирующих коэффициент мощности моментов, инвертора и балласта. Некоторые модели электронного устройства дополняются системой защиты от включения осветительного прибора без лампы.

Удобство эксплуатации электронных балластов в лампах дневного света энергосберегающего типа, обусловлено установкой источников света непосредственно в цокольную часть стандартных патронов.

Самые часты неисправности

Как правило, источники неисправности, которые связаны с эксплуатацией люминесцентных ламп, представлены сбоями в работе электрической схемы ПРА и стартера. Посредством оценивания характерных визуальных эффектов, можно достоверно определить причины неисправности:

неисправности дросселей

  • наличие «огненной змейки», вьющейся внутри колбы, является результатом превышения допустимых токовых значений и нестабильности электрического разряда;
  • темная колба на участке расположения выходных цокольных контактов, свидетельствует о несоответствии показателей тока на пуск и работу с вольт-амперными характеристиками;
  • перегорание спиралей в лампах дневного света, может стать результатом изоляционной изношенности обмотки пускорегулирующего устройства.

Достаточно часто встречаются проблемы, сопровождающиеся появлением запаха гари или сторонних звуков. В этом случае можно предположить появление межвиткового замыкания на индукционной катушке.

Если люминесцентный источник света не включается, то чаще всего такая проблема является результатом неисправности пускорегулирующего устройства или обмоточного обрыва, поэтому важно правильно выполнить проверку дросселя и стартера тестером.

Как проверить дроссель лампы дневного света мультиметром

Самым износостойким элементом в конструкции светильников с лампами дневного света является дроссель, поломка которого встречается достаточно редко. Неисправность такого элемента может быть представлена обрывом или обмоточным перегоранием, нарушениями межвитковой изоляции в электропроводах.

Обе неисправности могут быть выявлены при подключении тестера в виде мультиметра к дроссельным выводам на замеры сопротивления. Об обрыве и перегорании свидетельствует наличие бесконечного сопротивления.

лампы дневного света дроссель

Стартер и дроссель для люминесцентных ламп

Как правило, перегорание сопровождается появлением неприятного запаха, исходящего от пришедшей в негодность детали.

Наличие ничтожно малых показателей сопротивления при замерах, чаще всего является результатом нарушения изоляции на проводах, межвиткового замыкания на обмотке, или обмоточного замыкания на сердечнике.

Любые описанные выше процессы проверки являются справедливыми исключительно в случае применения электромагнитных пускорегулирующих устройств, так как электронные балласты исключают наличия в схеме стартера.

Как проверить стартер люминесцентной лампы

Процесс проверки осветительных приборов люминесцентного типа предполагает не только контроль спиральной целостности внутри колбы, но также работоспособности дроссельной и стартерной системы.

После того, как будет вскрыт корпус светильника, источники света проверяются на отсутствие почернений в колбе и сохранение функциональной активности стартера, работающего в неблагоприятных условиях температурных колебаний. Осмотру подлежат:
  • конденсаторы, которые не должны быть вздутыми, деформированными или лопнувшими под воздействием избыточного напряжения в электрической сети;
  • колба источника света, которая не должна быть почерневшей.

Конденсаторная целостность проверяется посредством мультиметра в режиме омметра с максимально возможными пределами измерения сопротивления.

Если показатели на тестере составляют меньше 2,0 МОм, то, можно предположить наличие в конденсаторе недопустимой токовой утечки. Как показывает практика, оптимальным вариантом при проведении самостоятельных ремонтных работ, станет полноценная замена всех пришедших в негодность элементов (стартера и дросселя), новыми устройствами аналогичного типа.

Видео на тему

Как измерить емкость и индуктивность с помощью осциллографа. » Хабстаб

Сегодня на рынке продается множество приборов, измеряющих емкость и индуктивность, только стоят они в несколько раз дороже китайского мультиметра. Тот кому каждый день необходимо производить замеры емкости или индуктивности непременно купит себе такой, а что делать если такая необходимость возникает крайне редко? В таком случае можно применить описанный ниже метод.
Известно, что если на интегрирующую RC цепочку подать прямоугольный импульс, то форма импульса изменится и будет такой как на картинке.
Как измерить емкость и индуктивность с помощью осциллографа.
Время, за которое напряжение на конденсаторе достигнет 63% от подаваемого, называется тау. Формула по которой считается тау изображена на рисунке.
Как измерить емкость и индуктивность с помощью осциллографа.
В таком случае говорят, что интегрирующая цепочка сгладила фронты прямоугольного импульса.
Так же известно, что если на параллельный LC контур подать прямоугольный импульс, в контуре возникнут затухающие колебания, частота, которых равна резонансной частоте контура. Резонансная частота контура находится по формуле Томсона, из которой можно выразить индуктивность.
Как измерить емкость и индуктивность с помощью осциллографа.
Подключается контур через конденсатор малой емкости, чем меньше тем лучше, который ограничивает ток, поступающий в контур. Давайте рассмотрим, как конденсатор малой емкости ограничивает ток.
Для того, чтобы конденсатор зарядился до номинального напряжения ему надо передать определенный заряд. Чем меньше емкость конденсатора, тем меньший заряд ему необходим, чтобы напряжение на обкладках достигло напряжения импульса. Когда мы подаем импульс, конденсатор, малой емкости, очень быстро заряжается и напряжение на обкладках конденсатора становится равно напряжению импульса. Так как напряжение конденсатора и импульса равны, нет разности потенциалов, следовательно ток не течет. При чем ток может перестать течь через конденсатор спустя некоторое время от начала импульса, а оставшуюся часть времени импульса энергия к контуру подводится не будет.
Для проведения эксперимента нам потребуется генератор импульсов прямоугольной формы с частотой 5-6KHz.
Можно собрать его по схеме на рисунке ниже или воспользоваться генератором сигналов, я делал обоими способами.
Как измерить емкость и индуктивность с помощью осциллографа.
Теперь, вспомнив, как ведет себя при подаче прямоугольного импульса интегрирующая RC цепочка и параллельный LC контур, соберем простую схему изображенную на картинке.
Как измерить емкость и индуктивность с помощью осциллографа.
Сначала измерим емкость конденсатора, место его подключения на схеме обозначено С?. Резистора 1K под рукой не нашлось, поэтому я использовал 100 Ohm и вместо конденсатора 10pF использовал конденсатор 22pF. В принципе номинал резистора можно выбрать любой, но не ниже 50 Ohm, иначе сильно просядет напряжение генератора.
В данном эксперименте я буду использовать генератор сигналов, выходное сопротивление которого равно 50 Ohm. Включим генератор и установим амплитуду 4V, если собирать генератор по схеме то регулировать амплитуду можно, изменяя напряжение питания.
Как измерить емкость и индуктивность с помощью осциллографа.
Подключим щупы осциллографа параллельно конденсатору. На осциллографе должна появиться следующая картинка.
Как измерить емкость и индуктивность с помощью осциллографа.
Немного увеличим её.
Как измерить емкость и индуктивность с помощью осциллографа.
Измерим время, за которое напряжение на конденсаторе достигает 63% от напряжения импульса или 2,52V.
Как измерить емкость и индуктивность с помощью осциллографа.
Оно равно 14,8uS. Так как сопротивление генератора включено последовательно с нашей цепочкой его необходимо учесть, в итоге активное сопротивление равно 150 Ohm. Разделим значение тау(14,8 uS) на сопротивления(150 Om) и найдем емкость, она равна 98,7 nF . На конденсаторе написано, что емкость равна 100nF.

Теперь измерим индуктивность. На схеме место подключения катушки индуктивности обозначено L?. Подключаем катушку, включаем генератор и подключаем щуп осциллографа параллельно контуру. На осциллографе увидим такую картинку.

Как измерить емкость и индуктивность с помощью осциллографа.
Увеличиваем развертку.
Как измерить емкость и индуктивность с помощью осциллографа.
Видим, что период колебаний равен 260KHz.
Ёмкость щупа равна 100pF и в данном случае её необходимо учесть потому, что она составляет 10% от емкости контура. Суммарная емкость контура равна 1,1nF. Теперь подставим в форму для нахождения индуктивности, емкость конденсатора(1,1nF) и частоту колебаний(260KHz). Для таких вычислений я пользуюсь программой Coil32.
Как измерить емкость и индуктивность с помощью осциллографа.
Получилось 340,6uH, судя по маркировке индуктивность равна 347uH и это отличный результат. Этот способ позволяет измерять индуктивность с погрешность до 10% .
Теперь мы знаем как измерить емкость конденсатора и индуктивность катушки, используя осциллограф.

Как проверить микросхему на работоспособность мультиметром

При работе с электронными схемами часто требуется проверить исправность микросхем и ее составных частей, не выпаивая при этом их из платы. Для этой цели существуют несколько методов определения, начиная с визуального осмотра, заканчивая прозвоном с помощью специальных приборов. Наиболее надежной и доступной является проверка с использованием мультиметра.

Что такое мультиметр?

Мультиметр — это универсальное комбинированное измерительное устройство, которое объединяет функции нескольких измерительных устройств, то есть измеряет практически все показатели цепи. Самый маленький набор функций мультиметра — это измерение напряжения, тока и сопротивления. Однако современные производители не останавливаются на достигнутом, а вместо этого добавляют ряд функций, таких как емкостное измерение конденсаторов, частоты тока, проверка диодов (измерение падения напряжения на pn-переходе), звуковых датчиков, измерений температуры и измерения определенных параметров транзистора, встроенный генератор низких частот и многое другое.

Проверка электросхемы

Мультиметр может быть:

  • Аналоговый. В данном типе приборов присутствует индикатор, который имеет несколько шкал (по одной на каждый вид измерения).
  • Цифровой. Наиболее привычный вариант с цифровым табло. Показывает более точные значения. Имеет большее распространение по сравнению с аналоговым.

Устройство микросхемы

В составе микросхемы встречаются радиоэлементы, которые проверяются различными способами.

Конденсаторы, резисторы и диоды

Мультиметром можно проверить работоспособность конденсатора микросхемы, подключив прибор к его выходам. В очень короткий период времени значение сопротивления, отображаемое на устройстве, должно увеличиться с нескольких единиц до бесконечности. При изменении положения щупа также следует обратить внимание на это изменение.

Чтобы узнать, работает ли резистор в цепи должным образом, необходимо определить его сопротивление. Значение этого атрибута должно быть больше нуля, но не бесконечно большим. Если показатель на дисплее прибора не равен нулю или бесконечен во время теста, резистор работает нормально.

Испытание резистора

Процесс проверки диодов не очень сложен. Сначала необходимо определить сопротивление между катодом и анодом в одном порядке, затем изменить положение черного и красного проводов устройства. Работоспособность диода будет указываться стремлением к бесконечности числа, отображаемого на экране.

Проверка диода

Индукционные катушки, тиристоры и стабилитроны

Чтобы проверить катушку на наличие неисправностей, также может понадобиться мультиметр. Если провод в мотке где-нибудь оборвется, устройство обязательно подаст сигнал. Все, что нужно сделать, чтобы проверить катушку, — это измерить ее сопротивление: оно не должно быть бесконечным. Стоит помнить, что не все доступные сегодня мультиметры могут проверять индуктивность.

Если необходимо определить, исправен ли такой компонент в микросхеме, как тиристор, необходимо выполнить следующие шаги:

  1. Сначала подключить красный провод к аноду, а черный — к катоду. Сразу после этого на экране устройства отображается информация, указывающая, что сопротивление стремится к бесконечности.
  2. Подсоединить контрольный электрод к аноду и наблюдать, как сопротивление уменьшается от бесконечности до нескольких единиц.
  3. После завершения процесса анод и электрод можно отсоединить друг от друга. В результате сопротивление, отображаемое на экране мультиметра, должно оставаться неизменным, равным нескольким Ом.
  4. Если во время теста все показатели в норме, то тиристор работает нормально и неисправностей нет.

Проверка катушки

Шлейф

Прозвонок шлейфа:

  1. Устанавливается режим измерения на мультиметре.
  2. Нужно проверить режим прозвона. Для проверки достаточно того, чтобы контакты щупа соприкоснулись. Если все в порядке, мультиметр подаст звуковой сигнал. В случае отсутствия звукового сопровождения нужно поменять прибор или заняться его ремонтом.
  3. Приклеить конец шлейфа к столу.
  4. Поместить красный щуп мультиметра на первый конец шлейфа и первый контакт.
  5. Поставить черный щуп на второй контакт и другой конец шлейфа.

Важно! Кабель состоит из тонких медных проводов, которые легко ломаются, поэтому шлейф не должен сгибаться.

Проверка микросхемы

Сложность проверки во многом зависит не только от метода, но и от устройства и особенностей конструкции микросхем. В конце концов, эти детали электронных вычислительных устройств, хотя и имеют одинаковые принципы построения, часто сильно отличаются друг от друга.

Например:

  • Самый простой способ проверки — метод, относящийся к серии «КР142». Они имеют только три выхода, поэтому, когда какое-либо напряжение подается на один из входов, на выходе может использоваться контрольное устройство. После этого можно сразу сделать выводы о состоянии элемента.
  • Более сложными типами являются «K155», «K176». Чтобы проверить их, необходимо использовать модуль с источником тока с определенным индикатором напряжения, который специально выбран для микросхемы. Характер проверки такой же, как и в первом варианте: просто подается напряжение на вход и проверяется выходной контакт с помощью мультиметра.
  • Если необходимо выполнить более сложные тесты, которые не подходят для тестирования с помощью простого мультиметра, придется использовать специальный тестер цепи. Эти устройства могут быть изготовлены отдельно или приобретены в продаже. Тестеры могут помочь определить, работает ли конкретный узел цепи правильно. Как правило, данные, полученные во время теста, отображаются на экране устройства.

Важно! Напряжение, подаваемое на микросхему (микроконтроллер), не должно превышать нормальное значение или, наоборот, быть ниже требуемого уровня. Предварительная проверка может быть проведена на специально подготовленной испытательной доске.

Испытание микросхемы

Проверка стабилизатора

Электронные компоненты, такие как стабилитроны, выглядят как диоды, но их использование в радиотехнике несколько иное. Стабилитроны обычно используются для стабилизации питания в цепях малой мощности. Они подключены параллельно с нагрузкой. Когда напряжение слишком высокое, стабилитрон пропустит свой собственный ток, вызывая падение напряжения. Эти компоненты не могут работать при высоких токах, когда начинается нагрев, так как это приводит к тепловому отказу.

Весь процесс похож на то, как проверяют диод. Это можно сделать в режиме тестирования резистора или диода с использованием обычного мультиметра. Как и диод, работающий стабилитрон может проводить ток в одном направлении.

Как проверить микросхему мультиметром

Первое и самое важное правило: можно проверять только полностью отключенную цепь, ни при каких обстоятельствах нельзя подключаться к проводам под напряжением.

Микросхема с помощью мультиметра проверяется по следующему алгоритму:

1. Устанавливается щуп в разъемы мультиметра:

— Красный штекер щупа в гнездо VΩmA

— Черный щуп в разъеме COM

2. Устройство включается поворотом регулятора, выбирается нужный режим, отмеченный нужным условным знаком. После этого на экране устройства должны отображаться цифры.

3. Проверяется правильность работы мультиметра. Это делается путем соприкосновением контактов датчика . Если прибор работает нормально, то будет слышен звуковой сигнал, а на экране появится значение, близкое к нулю.

Как проверить работоспособность радиодеталей внешним осмотром

Внешний осмотр платы проводится в случаях, когда под рукой нет никаких приборов. Надежность этого способа не так велика. Если внимательно присмотреться к каждому элементу, есть вероятность обнаружить видимые дефекты. Например, это может быть сгоревший контакт или физическое повреждение Такой метод проверки устраняет необходимость в специальном оборудовании с мультиметром. Если дефекты видны невооруженным глазом, никакое оборудование не может быть использовано.

Важно! В противном случае все же придется прибегнуть к помощи специального оборудования.

Меры безопасности

При использовании мультиметра необходимо строго соблюдать следующие правила электробезопасности:

  • Нельзя применять мультиметр во влажной среде.
  • Запрещается изменять режим работы и предел измерения в течение процесса.
  • Измерение параметров, превышающих высший предел измерения прибора, запрещено.
  • Запрещено включать в работу мультиметр с неисправным измерительным щупом.

Часто для проведения ремонтных и монтажных работ в радиоэлектронике требуется проверить работоспособность элементов платы. Выпаять и проверить каждый из них отдельно не представляется возможным, поэтому нужно знать, как проверить микросхему мультиметром, не выпаивая. Мультиметровая проверка будет наилучшим выбором. Это универсальный прибор, который прост в работе и доступен большинству пользователей.

11.10. Проверка микросхем.

При помощи омметра можно производить проверку тех микросхем, которые представляют собой набор диодов или биполярных транзисторов. Таковы, например, диодные сборки и матрицы КДС111, КД906 и микросхемы К159НТ, К198НТ и другие. Проверка диода, транзистора производится по уже описанной методике. Если неизвестно назначение выводов сборки или микросхемы, оно также может быть определено, хотя из-за наличия нескольких транзисторов в одном корпусе приходится проводить более громозд­кие измерения. При этом нужно установить систему подключения омметра к выводам, чтобы выполнить все возможные комбинации.

Электроника играет ведущую роль в научно-технической революции. Внедрение электронных приборов в различные сферы человеческой деятельности в значительной мере способствует успешному решению сложнейших научно-технических проблем, повышению производительности физического и умственного труда, улучшению экономических показателей производства. В настоящее время, на основе достижений электроники развивается все отрасли промышленности и сельское хозяйство. В то же время, технология изготовления электронных приборов, их конструирование, создание новой элементной базы, базируются на использовании разнообразных свойств материалов и физико-химических процессов. При изготовлении электронной техники используется электроннолучевая, ультразвуковая и лазерная обработки материалов и сварка; фотолитография, электронная и рентгеновская литография и многое другое. Поэтому развитие электроники не мыслимо без создания новых материалов, способов из обработки и совершенствования технологий изготовления электронной аппаратуры. Дальнейший прогресс электроники тесно связан с достижениями в других областях науки и техники.

  • Винокуров Е.Б. Электроника. Учебное пособие. Тамбов: Тамб. гос. тех. ун-т, 2004, 80 с.

  • Горошков Б.И., Горошков А.Б.Электронная техника. Учебное пособие. – 2-е изд., стер. – М.: Академия, 2008, 320 с.

  • Гусев В. Г. Электроника и микропроцессорная техника. Учебник для студентов высших учебных заведений. — М.: Высшая. школа, 2006. — 425с.

  • Забродин Ю.С. Промышленная электроника. Учебник для студентов энергетических и электромеханических специальностей вузов. — М.: Альянс, 2008, — 342с.

  • Игумнов Д. В., Костюнина Г. П. Основы полупроводниковой электроники. Учеб. пособие для студентов вузов, обучающихся по специальности 351400 — «Приклад. Информатика». — М.: Горячая линия-Телеком, 2005. — 325с.

  • Марченко А. Л. Основы электроники. Учебное пособие для вузов. — М. : ДМК Пресс, 2008. — 296 с.

  • Полупроводниковые приборы: транзисторы. Справочник. /Под общей редакцией Н.Н. Горюнова. М.: Энергоатомиздат, 1985. – 904 с.

  • Основы промышленной электроники. Учебное пособие. / Под редакцией В.Г. Герасимова. – 3-е изд., перераб. и доп. – М.: Высшая школа, 1986. – 336 с.

  • Основы электроники. Гершунский Б. С. Киев. Вища школа, 1977. — 344 с.

  • Новиков Ю. Н., Усов В.С. Электроника и схемотехника. Полупроводниковые приборы: устройство, принцип действия, применение в усилителях: учебное пособие. – СПб.: Издательство Политехнического университета, 2010. — 387с.

  • Пасынков В. В., Чиркин Л. К. Полупроводниковые приборы. Учеб. пособие для вузов. — СПб: Лань, 2006. — 453с.

  • Розеншер Э., Винтер Б., Оптоэлектроника. / Перевод с французкого под ред. О.Н. Ермакова. – М.: Техносфера, 2004. – 592 с.

  • Шаньгин Е.С. Основы электроники: Учеб. пособие. – Уфа, изд-во УГАТУ, 2007, – 168 с.

  • ГОСТ 25529 — 82. Диоды полупроводниковые. Термины, определения и буквенные обозначения параметров.

  • ГОСТ 20332-84. Тиристоры. Термины, определения и буквенные обозначения параметров.

  • ГОСТ 20003-74. Транзисторы биполярные. Термины, определения и буквенные обозначения параметров.

  • ГОСТ 19095-73. Транзисторы полевые. Термины, определения и буквенные обозначения параметров.

  • ГОСТ 19480-89. Микросхемы интегральные. Термины, определения и буквенные обозначения электрических параметров.

  • Добавить комментарий

    Ваш адрес email не будет опубликован. Обязательные поля помечены *