РазноеИз чего делают солнечные панели – Как делают солнечные элементы

Из чего делают солнечные панели – Как делают солнечные элементы

Содержание

Как делают солнечные элементы

При выборе модуля часто задается вопрос: какая солнечная батарея лучше – монокристаллическая или поликристаллическая, а может аморфная? Ведь они самые распространенные в наш век. Чтобы найти ответ, было проведено множество исследований. Рассмотрим, что же показали результаты.

***КПД и срок службы
Монокристаллические элементы имеют КПД около 17-22%, сроки их службы не менее 25 лет. Эффективность поликристаллических может достигать 12-18%, служат они тоже не менее 25 лет. КПД аморфных составляет 6-8% и снижается гораздо быстрее кристаллических, работают они не более 10 лет.

***Температурный коэффициент
В реальных условиях использования солнечные батареи нагревается, что приводит к снижению номинальной мощности на 15-25%. Средний температурный коэффициент для поли и моно составляет -0,45%, аморфного -0,19%. Это значит, что при повышении температуры на 1°C от стандартных условий кристаллические батареи будут менее производительными, чем аморфные.

***Потеря эффективности
Деградация солнечных монокристаллических и поликристаллических модулей зависит от качества исходных элементов – чем больше в них бора и кислорода, тем быстрее снижается КПД. В поликремниевых пластинах меньше кислорода, в монокремниевых – бора. Поэтому при равных качествах материала и условий использования особой разницы между степенью деградации тех и других модулей нет, в среднем она составляет около 1% в год. В производстве аморфных батарей используется гидрогенизированный кремний. Содержанием водорода обусловлена его более быстрая деградация. Так, кристаллические деградируют на 20% через 25 лет эксплуатации, аморфные быстрее в 2-3 раза. Однако некачественные модели могут потерять эффективность на 20% уже в первый год использования. Это стоит учесть при покупке.

***Стоимость
Тут превосходство полностью на стороне аморфных модулей – их цена ниже, чем кристаллических, из-за более дешевого производства. Второе место занимают поли, моно же самые дорогие.

***Размеры и площадь установки
Монокристаллические батареи более компактны. Для создания массива требуемой мощностью понадобится меньшее количество панелей по сравнению с другими видами. Так что при установке они займут немного меньше места. Но прогресс не стоит на месте, и по соотношению мощность/площадь поликристаллические модули уже догоняют моно. Аморфные же пока отстают от них – для их установки понадобится в 2,5 раза больше места.

***Светочувствительность
Здесь лидируют аморфно-кремниевые модули. У них лучший коэффициент преобразования солнечной энергии из-за водорода в составе элемента. Поэтому они, по сравнению с кристаллическими, в условиях слабой освещенности работают эффективнее. Моно и поли, при плохом освещении работают примерно одинаково – значительно реагируют на изменение интенсивности света.

***Годовая выработка
В результате тестирования модулей разных производителей было установлено, что монокристаллические за год вырабатывают больше электроэнергии, чем поликристаллические. А те в свою очередь производительнее, чем аморфные, несмотря на то, что последние вырабатывают энергию и при слабой освещенности.

Можно сделать вывод, что солнечные батареи моно и поли имеют небольшие, но важные различия. Хотя mono все-таки эффективнее и отдача от них больше, но poly все равно будут пользоваться большей популярностью. Правда, это зависит от качества продукции. Тем не менее, большинство крупных солнечных электростанций собраны на базе полимодулей. Связано это с тем, что инвесторы смотрят на общую стоимость проекта и сроки окупаемости, а не на максимальную эффективность и долговечность.

Теперь об аморфных батареях. Начнем с преимуществ: метод их изготовления самый простой и малобюджетный, потому что не требуется резка и обработка кремния. Это отражается в невысокой стоимости конечной продукции. Они неприхотливы – их можно установить куда угодно, и не привередливы – пыль и пасмурная погода им не страшны.

Однако у аморфных модулей есть и недостатки, перекрывающие их достоинства: по сравнению с вышеописанными видами, у них самый низкий КПД, они быстрее деградируют – эффективность снижается на 40% менее чем за 10 лет, и требуют много места для установки.

fishki.net

Из чего сделаны солнечные батареи: их разновидности, принцип работы

С того момента, когда в далеком 1839 году французский ученый Александр Беккерель случайно наткнулся на непонятное явление, связанное с воздействием света на некоторые материалы, произошло много событий. И наткнувшись на старую публикацию в физическом журнале, немецкий физик Генрих Герц уже не случайно проводит опыты, облучая ультрафиолетовым светом цинковые разрядники резонатора.

Его исследования привели к открытию того, что сейчас называется «внешний фотоэффект». Далее эстафету принял русский ученый Александр Столетов, который, исследуя это явление, сделал несколько важнейших открытий и вывел первый закон фотоэффекта. В начале ХХ века Альберт Эйнштейн, взяв за основу гипотезу Макса Планка, дал принципиальное объяснение фотоэффекта.

С тех пор многие выдающиеся ученые занимались изучением фотоэффекта, надеясь найти этому явлению практическое применение. И решение было найдено. Вначале итальянец Джакомо Луджи Чамичан создает прототип, а уже в 1954 году американская компания Bell Laboratories объявила о том, что ее специалистами создана первая в мире солнечная батарея, вырабатывающая электрический ток под воздействием солнечного света. Это и был фотоэффект в действии.

Так что же это такое, из чего сделаны солнечные батареи, как они работают.

Как правило, когда говорят «солнечная батарея», подразумевают, что это один или несколько фотопреобразователей, которые, будучи облучены солнечным светом, преобразовывают его в электричество. Главный элемент преобразования солнечного излучения в электричество – это, конечно же, материал, который, будучи освещенным, преобразовывает поток света в электроэнергию. Материал этот – полупроводник.

В электротехнике, электронике используются, как правило, два полупроводника – германий (Ge) и кремний (Si). В фотовольтаике в большинстве своем используется кремний как наиболее распространенный и дешевый. Германий – редкий элемент, дорогой, поэтому он используется в исключительных случаях.


Структура солнечной батареи

Для изготовления солнечных фотопреобразователей используются два вида кремния – монокристаллический и поликристаллический. Как уже явствует из характеристик, монокристаллические фотопреобразователи изготавливаются из кристаллов кремния, выращенных искусственно.

Эти кристаллы затем по специальной технологии нарезаются на тонкие пластины, из которых изготавливаются сами фотопреобразователи. Нарезанные пластины тщательнейшим образом проверяются на точность нарезки, толщину самой пластины, отсутствие физических дефектов.

Этот контроль необходим для последующей сборки самого солнечного модуля, так как малейшее отклонение параметров хотя бы одного элемента влечет за собой значительные потери мощности всего солнечного модуля. Пластины монокристаллического кремния окрашены в равномерный темно-серый цвет – это естественный цвет кристаллов кремния.


Кремниевые фотоэлементы
Поликристаллический (слева), монокристаллический (справа)

В отличие от монокристаллов, поликристаллические фотопреобразователи изготавливаются методом литья. Такие фотопреобразователи более просты и доступны. Если солнечные элементы из монокристаллического кремния представляют собой восьмиугольники строго выдержанного размера (допуск ± несколько микрометров), то поликристаллические элементы – как правило, прямоугольной формы с голубовато-синим отливом. К кремнию для получения особых свойств добавляют определенное количество мышьяка (As) и бора (B).

Преобразование света в электричество

Это и есть практическое применение фотоэффекта – прямое преобразование энергии света в энергию электрическую. Собственно, реакция материала на облучение светом зависит от кристаллической структуры полупроводника. Структурно каждый фотоэлемент состоит из двух слоев. Один слой в кристаллической решетке имеет переизбыток электронов и называется областью электронов.

Второй слой, соответственно испытывает недостаток электронов и называется дырочной областью (в электронике места, в которых должны быть электроны, но они там отсутствуют, называются дырками). Граница между этими слоями называется электронно-дырочный p-n переход. В зависимости от типа полупроводника свойства перехода могут быть другими. Тогда он называется дырочно-электронный n-p переход.


Принцип работы фотоэлемента

Под воздействием света эти два слоя начинают взаимодействовать, электроны из одного слоя начинают замещать дырки в другом слое. При этом возникает электродвижущая сила, превращая, по сути, эти два слоя в электроды обычной батарейки.

Теперь, чтобы использовать эту электрическую энергию, остается только подпаять к поверхности каждого слоя тонкие проводники и подключить нагрузку. Следует отметить, что этот процесс не вызывает никаких химических реакций в полупроводнике, а, следовательно, солнечная батарея, набранная из таких фотопреобразователей, может служить очень долго.

Во многих странах, в исследовательских центрах проводятся работы, которые призваны решить проблему повышения эффективности солнечных батарей. Пробуются комбинации различных материалов для использования их в качестве фотоэлементов. В тонкослойные кремниевые элементы добавляют в различных пропорциях галлий, мышьяк, медь, кадмий. Причем эти присадки могут быть как в чистом виде, так и в комбинациях материалов, например, арсенид галлия (GaAs).

Кроме того, на эффективность солнечных батарей большое влияние оказывает если не совпадение, то максимальная схожесть как физических (размеры), так и электрических (вольт-амперные характеристики) элементов, входящих в один солнечный модуль. В процессе эксплуатации солнечных батарей может возникнуть ситуация, при которой один или несколько фотопреобразователей могут быть затенены.

Таким образом, они на какой-то промежуток времени исключаются из рабочей конфигурации модуля. Но, будучи включенными в общую цепь, они могут разогреваться и, как следствие, выйти из строя. Отвод тепла от фотопреобразователей, постоянно облучаемых солнцем, также является достаточно серьезной проблемой, над решением которой работают многие ученые.

Разновидности солнечных батарей

Существуют несколько наиболее широко распространенных типов солнечных батарей. В первую очередь это, конечно же, солнечные панели, собранные на базе кремниевых фотопреобразователей. Наиболее высокая эффективность у модулей, изготовленных на базе монокристаллического кремния.


Монокристаллический модуль

Коэффициент полезного действия таких модулей по последним данным в некоторых случаях может достигать 23%. В среднем же достигается значение эффективности, равное 18%. Более дешевые панели собраны на базе поликристаллического кремния.

Эффективность таких фотопреобразователей ниже и средний показатель ее не превышает 16%. Однако за счет того, что поликристаллические элементы имеют прямоугольную форму, они более полно заполняют корпус модуля. Поэтому значения мощностей, вырабатываемых модулями на базе монокристаллического и поликристаллического кремния, будут отличаться друг от друга на весьма незначительную величину.


Поликристаллический модуль

Наиболее дешевые гелиевые батареи выполнены на базе аморфного кремния. Эти модули имеют наименьшую эффективность – порядка 8%, но и стоимость производимого электричества у этих устройств также самая низкая.


Модуль на базе аморфного кремния

Следует также отметить гелиевые панели на базе теллурида кадмия (CdTe), выполненные по тонкопленочной технологии. Пленка толщиной в несколько сотен микрометров из этого полупроводника наносится на панель. Производство этих панелей является наименее вредоносным по сравнению с производством панелей других видов. Эффективность этих батарей достигает 12%.


Модуль на базе теллурида кадмия

В последнее время получают распространение гелиевые модули на основе полупроводникового соединения, в состав которого входят индий, галлий, медь и селен (CIGS). Эти модули, как и модули из теллурида кадмия, изготавливаются по тонкопленочной технологии. Их эффективность достигает 15%.


Модуль на базе CIGS

Разумеется, потребителю вовсе не обязательно знать, как устроена и работает его домашняя солнечная электростанция. Ведь никого не интересует, как устроен, скажем, телевизор. Мы просто смотрим передачи. Но, покупая телевизор, мы уже знаем его характеристики, знаем фирму, которая его выпускает, слышали отзывы о нем.

А вот, чтобы выбрать себе оборудование для домашней электростанции, нужно иметь хотя бы приблизительное представление о том, что именно вы собираетесь приобрести и как это будет работать. И нет сомнений в том, что элементарные знания об устройстве тех или иных элементов помогут вам сделать правильный выбор.

solarb.ru

Как и из чего делают солнечные батареи?

85% солнечных батарей производятся на основе моно и поли кремния. Технология их производства достаточно трудная, длительная и энергоемкая.

Как и из чего делают солнечные батареи?

Как и из чего делают солнечные батареи?



Так как же их делают? Обо всем по порядку.

Получение «солнечного» кремния

В качестве сырья используется кварцевый песок с высоким массовым содержанием диоксида кремния (SiO2). Он проходит многоступенчатую очистку, чтобы избавиться от кислорода. Происходит путем высокотемпературного плавления и синтеза с добавлением химических веществ.

Очищенный кремний представляет собой просто разрозненные куски. Для упорядочивания структуры и выращиваются кристаллы по методу Чохральского.

Как и из чего делают солнечные батареи?

Как и из чего делают солнечные батареи?

Происходит это так: куски кремния помещаются в тигель, где раскаляются и плавятся при t 1500 С. В расплав опускается затравка – так сказать, образец будущего кристалла. Атомы, располагаются в четкую структуру, нарастают на затравку слой за слоем. Процесс наращивания длительный, но в результате образуется большой, красивый, а главное однородный кристалл.

Как и из чего делают солнечные батареи?

Как и из чего делают солнечные батареи?

Обработка

Этот этап начинается с измерения, калибровки и обработки монокристалла для придания нужной формы. Дело в том, что при выходе из тигля в поперечном сечении он имеет круглую форму, что не очень удобно для дальнейшей работы. Поэтому ему придается псевдо квадратная форма. Далее обработанный монокристалл стальными нитями в карбид — кремниевой суспензии или алмазно — импрегнированной проволокой режется на пластинки толщиной 250-300 мкм. Они очищаются, проверяются на брак и количество вырабатываемой энергии.

Создание фотоэлектрического элемента

Чтобы кремний мог вырабатывать энергию, в него добавляют бор (B) и фосфор (P). Благодаря этому слой фосфора получает свободные электроны (сторона n-типа), сторона бора – отсутствие электронов, т.е. дырки (сторона p-типа). По причине этого между фосфором и бором появляется p-n переход. Когда свет будет падать на ячейку, из атомной решетки будут выбиваться дырки и электроны, появившись на территории электрического поля, они разбегаются в сторону своего заряда. Если присоединить внешний проводник, они будут стараться компенсировать дырки на другой части пластинки, появится напряжение и ток. Именно для его выработки с обеих сторон пластины припаиваются проводники.

Сборка модулей

Пластинки соединяются сначала в цепочки, потом в блоки. Обычно одна пластина имеет 2 Вт мощности и 0,6 В напряжения. Чем больше будет ячеек, тем мощнее получится батарея. Их последовательное подключение дает определенный уровень напряжения, параллельное увеличивает силу образующегося тока. Для достижения необходимых электрических параметров всего модуля последовательно и параллельно соединенные элементы объединяются. Далее ячейки покрывают защитной пленкой, переносят на стекло и помещают в прямоугольную рамку, крепят распределительную коробку. Готовый модуль проходит последнюю проверку – измерение вольт — амперных характеристик. Все, можно использовать.

Соединение самих солнечных батарей тоже может быть последовательным, параллельным или последовательно-параллельным для получения требуемых силы тока и напряжения.

Как и из чего делают солнечные батареи?

Как и из чего делают солнечные батареи?

Производство поликристаллических батарей отличается только выращиванием кристалла. Есть несколько способов производства, но самый популярный сейчас и занимающий 75% всего производства это Сименс — процесс. Суть метода заключается в восстановлении силана и осаждении свободного кремния в результате взаимодействия парогазовой смеси из водорода и силана с поверхностью кремниевых слитков, разогретой до 650-1300°C. Освободившиеся атомы кремния, образовывают кристалл с древовидной (дендритной) структурой.

Как и из чего делают солнечные батареи?

Как и из чего делают солнечные батареи?

Разновидность солнечных батарей

Как и из чего делают солнечные батареи?

Как и из чего делают солнечные батареи?


Условно виды солнечных батарей определяются по полупроводнику, используемому для их изготовления. Чаще всего им является кремний, но сегодня активно разрабатываются и другие элементы. Цель таких изысканий – удешевление производства, уменьшение размеров и повышение эффективности продукции.

Монокристаллические и поликристаллические

Создаются на базе кристаллического кремния. Представляют собой прямоугольный каркас из алюминия с объединенными ячейками (чаще всего их 36, 60 или 72) размерами 125 на 125 или 156 на 156 мм, защищенными специальным каленым стеклом. Оно отлично пропускает лучи света, в том числе рассеянные, обеспечивает герметизацию и защиту полупроводников от механических повреждений и воздействия окружающей среды. В настоящее время появились и гибкие модели, без жесткого каркаса и стекла, с использованием моно и поли ячеек.

Как и из чего делают солнечные батареи?

Как и из чего делают солнечные батареи?

Монокристалл

Производится на основе монокристаллического кремния, конечное изделие обладает квадратной формой, обычно со скошенными краями, однородного черного или темно-синего цвета. Отдача при прямом излучении: 17-22%. Мощность снижается постепенно: каждые 25 лет приблизительно на 20%. Минимальный срок службы – 30 лет.

Поликристалл

Изготавливаются из поликристаллического кремния. Это такие же прямоугольники, только вместо однородных ячеек синяя или ярко — синяя неоднородная поверхность. По эффективности немного проигрывают mono, эффективность составляет – 12-18%, среднегодовая выработка соответственно будет меньше, но зато выигрывают по стоимости – создание таких фотоэлементов обходится дешевле.

Как и из чего делают солнечные батареи?

Как и из чего делают солнечные батареи?

Аморфные

Производятся по тонкопленочной технологии. Могут быть, как в жестком исполнении, так и гибкими, если в качестве подложки используется лента из металла или полимеров. Внешне имеют однородный блекло серый цвет. КПД 5 — 6%, прекрасно работает в условиях слабой освещенности и запыленности. Мощность снижается быстро – уже в первый год эксплуатации до 20%. Средний срок эксплуатации – 10 лет.

Как и из чего делают солнечные батареи?

Как и из чего делают солнечные батареи?

Как и из чего делают солнечные батареи?

Как и из чего делают солнечные батареи?

Арсенид — галлиевые

Самые производительные панели, вследствие соединения галлия и мышьяка, но дорогие. Объясняется это дефицитом галлия и со спецификой материала – так как арсенид — галлия хрупок, его использование в качестве подложки затруднено. В связи с этими сложностями, целесообразность использования оправдывается в системах, где стоимость не важна, а необходима максимальная отдача на ограниченной площади и небольшой вес. Как правило, используются только в космических аппаратах. КПД не рекордные 25-30%, но благодаря устойчивости к высоким температурам, возможно применение концентраторов для достижения коэффициента полезного действия до 40%, а в случаях отбора тепла и поддержания температуры до 150⁰С они «разгоняются» до рекордных КПД 60%.

Как и из чего делают солнечные батареи?

Как и из чего делают солнечные батареи?

Редкоземельные материалы

Как и из чего делают солнечные батареи?

Как и из чего делают солнечные батареи?

Существует несколько типов солнечных панелей из редких металлов, и не все они имеют КПД выше, чем у монокристаллических кремниевых модулей. Однако способность работать в экстремальных условиях позволяет производителям таких солнечных панелей выпускать конкурентоспособную продукцию и проводить дальнейшие исследования.

Панели из теллурида кадмия активно используются при облицовке зданий в экваториальных и аравийских странах, где их поверхность нагревается днем до 70-80 градусов Основными сплавами, применяемыми для изготовления фотоэлектрических элементов, являются теллурид кадмия (CdTe), селенид индия- меди-галлия (CIGS) и селенид индия-меди (CIS).

Кадмий – токсический металл, а индий, галлий и теллур являются довольно редкими и дорогостоящими, поэтому массовое производство солнечных панелей на их основе даже теоретически невозможно. КПД таких панелей находится на уровне 25-35%, хотя в исключительных случаях может доходить до 40%.

Ранее их применяли в основном в космической отрасли, а сейчас появилось новое перспективное направление. Из-за стабильной работы фотоэлементов из редких металлов при температурах 130-150°C их используют в солнечных тепловых электростанциях. При этом лучи солнца от десятков или сотен зеркал концентрируются на небольшой панели, которая одновременно генерирует электроэнергию и обеспечивает передачу тепловой энергии водяному теплообменнику.

В результате нагрева воды образуется пар, который заставляет вращаться турбину и генерировать электроэнергию. Таким образом солнечная энергия преобразуется в электрическую одновременно двумя путями с максимальной эффективностью.

Как и из чего делают солнечные батареи?

Как и из чего делают солнечные батареи?

Полимерные и органические аналоги

Фотоэлектрические модули на основе органических и полимерных соединений начали разрабатывать только в последнем десятилетии, но исследователи уже добились значительных успехов.

Наибольший прогресс демонстрирует европейская компания Heliatek, которая уже оснастила органическими солнечными панелями несколько высотных зданий. Толщина её рулонной пленочной конструкции типа HeliaFilm составляет всего 1 мм. При производстве полимерных панелей используются такие вещества, как углеродные фуллерены, фталоцианин меди, полифенилен и другие. КПД таких фотоэлементов уже достигает 14-15%, а стоимость производства в разы меньше, чем кристаллических солнечных панелей.

Остро стоит вопрос срока деградации органического рабочего слоя. Пока что достоверно подтвердить уровень его КПД через несколько лет эксплуатации не представляется возможным. Преимуществами органических солнечных панелей являются: возможность экологически безопасной утилизации; дешевизна производства; гибкая конструкция.

К недостаткам таких фотоэлементов можно отнести относительно низкий КПД и отсутствие достоверной информации о сроках стабильной работы панелей. Возможно, что через 5-10 лет все минусы органических солнечных фотоэлементов исчезнут, и они станут серьезными конкурентами для кремниевых пластин.

Сравнение моно, поли и аморфных солнечных батарей

Как и из чего делают солнечные батареи?

Как и из чего делают солнечные батареи?

При выборе модуля часто задается вопрос: какая солнечная батарея лучше – монокристаллическая или поликристаллическая, а может аморфная? Ведь они самые распространенные в наш век. Чтобы найти ответ, было проведено множество исследований. Рассмотрим, что же показали результаты.

КПД и срок службы

Монокристаллические элементы имеют КПД около 17-22%, сроки их службы не менее 25 лет. Эффективность поликристаллических может достигать 12-18%, служат они тоже не менее 25 лет. КПД аморфных составляет 6-8% и снижается гораздо быстрее кристаллических, работают они не более 10 лет.

Температурный коэффициент

В реальных условиях использования солнечные батареи нагревается, что приводит к снижению номинальной мощности на 15-25%. Средний температурный коэффициент для поли и моно составляет -0,45%, аморфного -0,19%. Это значит, что при повышении температуры на 1°C от стандартных условий кристаллические батареи будут менее производительными, чем аморфные.

Потеря эффективности

Деградация солнечных монокристаллических и поликристаллических модулей зависит от качества исходных элементов – чем больше в них бора и кислорода, тем быстрее снижается КПД. В поликремниевых пластинах меньше кислорода, в монокремниевых – бора. Поэтому при равных качествах материала и условий использования особой разницы между степенью деградации тех и других модулей нет, в среднем она составляет около 1% в год. В производстве аморфных батарей используется гидрогенизированный кремний. Содержанием водорода обусловлена его более быстрая деградация. Так, кристаллические деградируют на 20% через 25 лет эксплуатации, аморфные быстрее в 2-3 раза. Однако некачественные модели могут потерять эффективность на 20% уже в первый год использования. Это стоит учесть при покупке.

Стоимость

Тут превосходство полностью на стороне аморфных модулей – их цена ниже, чем кристаллических, из-за более дешевого производства. Второе место занимают поли, моно же самые дорогие.

Размеры и площадь установки

Монокристаллические батареи более компактны. Для создания массива требуемой мощностью понадобится меньшее количество панелей по сравнению с другими видами. Так что при установке они займут немного меньше места. Но прогресс не стоит на месте, и по соотношению мощность/площадь поликристаллические модули уже догоняют моно. Аморфные же пока отстают от них – для их установки понадобится в 2,5 раза больше места.

Светочувствительность

Здесь лидируют аморфно-кремниевые модули. У них лучший коэффициент преобразования солнечной энергии из-за водорода в составе элемента. Поэтому они, по сравнению с кристаллическими, в условиях слабой освещенности работают эффективнее. Моно и поли, при плохом освещении работают примерно одинаково – значительно реагируют на изменение интенсивности света.

Годовая выработка

В результате тестирования модулей разных производителей было установлено, что монокристаллические за год вырабатывают больше электроэнергии, чем поликристаллические. А те в свою очередь производительнее, чем аморфные, несмотря на то, что последние вырабатывают энергию и при слабой освещенности.

Можно сделать вывод, что солнечные батареи моно и поли имеют небольшие, но важные различия. Хотя mono все-таки эффективнее и отдача от них больше, но poly все равно будут пользоваться большей популярностью. Правда, это зависит от качества продукции. Тем не менее, большинство крупных солнечных электростанций собраны на базе полимодулей. Связано это с тем, что инвесторы смотрят на общую стоимость проекта и сроки окупаемости, а не на максимальную эффективность и долговечность.

Теперь об аморфных батареях

Начнем с преимуществ: метод их изготовления самый простой и малобюджетный, потому что не требуется резка и обработка кремния. Это отражается в невысокой стоимости конечной продукции. Они неприхотливы – их можно установить куда угодно, и не привередливы – пыль и пасмурная погода им не страшны.

Однако у аморфных модулей есть и недостатки, перекрывающие их достоинства: по сравнению с вышеописанными видами, у них самый низкий КПД, они быстрее деградируют – эффективность снижается на 40% менее чем за 10 лет, и требуют много места для установки.

Как и из чего делают солнечные батареи?

Как и из чего делают солнечные батареи?


Мощность солнечных панелей для автономных систем выбирается исходя из необходимой вырабатываемой мощности, времени года и географического положения.

Необходимая вырабатываемая мощность определяется мощностью, требуемой потребителям электроэнергии, которые планируется использовать. При расчете стоит учитывать потери на преобразование постоянного напряжения в переменное, заряд-разряд аккумуляторов и потери в проводниках.

Солнечное излучение величина не постоянная и зависит от многих факторов – от времени года, времени суток, погодных условий и географического положения. Эти факторы также должны учитываться при расчете количества необходимой мощности солнечных панелей. Если планируется использование системы круглогодично, то расчет должен производиться с учетом самых неблагоприятных месяцев с точки зрения солнечного излучения.

При расчете для каждого конкретного региона необходимо проанализировать статистические данные о солнечной активности за несколько лет. На основании этих данных, определить усредненную действительную мощность солнечного потока на квадратный метр земной поверхности. Эти данные можно получить у местных или международных метеослужб. Статистические данные позволят с минимальной погрешностью спрогнозировать количество солнечной энергии для вашей системы, которая будет преобразована солнечными панелями в электроэнергию.



near-future.ru

Солнечные батареи: принцип работы, как сделать своими руками в домашних условиях

Использование солнечной энергии для обеспечения жизненных потребностей в 21 веке является актуальным вопросом не только для корпораций, но и для населения. Теперь использование солнечных батарей для получения экологической электроэнергии привлекает много людей своей доступностью, автономностью, неиссякаемостью и минимальными вложениями. Теперь эти явления настолько привычны и обыденны, что уже давно прочно обосновались в нашу каждодневную жизнь.

Данный источник электроэнергии используется для освещения, функционирования бытовых электроприборов и отопления. Уличные фонари на солнечных батареях используются повсеместно в городской черте, на дачных участках и территориях загородных коттеджей.

Содержание

Принцип работы солнечной батареи

Устройство предназначено для непосредственного преобразования лучей солнца в электричество. Этот действие называется фотоэлектрическим эффектом. Полупроводники (кремневые пластины), которые используются для изготовления элементов, обладают положительными и отрицательными заряженными электронами и состоят их двух слоев n-слой (-) и р-слой (+). Излишние электроны под воздействием солнечного света выбиваются из слоев и занимают пустые места в другом слое. Это заставляет свободные электроны постоянно двигаться, переходя из одной пластины в другую вырабатывая электричество, которое накапливается в аккумуляторе.

Как работает солнечная батарея, во многом зависит от ее устройства. Первоначально фотоэлементы изготавливались из кремния. Они и сейчас очень популярны, но поскольку процесс очистки кремния достаточно трудоемок и затратен, разрабатываются модели с альтернативными фотоэлементами из соединений кадмия, меди, галлия и индия, но они менее производительны.

КПД солнечных батарей с развитием технологий вырос. На сегодняшний день это показатель возрос от одного процента, который регистрировался в начале столетия, до более двадцати процентов. Это позволяет в наши дни использовать панели не только для обеспечения бытовых нужд, но и производственных.

Технические характеристики

Устройство солнечной батареи довольно простое, и состоит из нескольких компонентов:

  • Непосредственно фотоэлементы / солнечная панель;
  • Инвертор, преобразовывающий постоянный ток в переменный;
  • Контроллер уровня заряда аккумулятора.

Аккумуляторы для солнечных батарей купить следует с учетом необходимых функций. Они накапливают и отдают электроэнергию. Запасание и расход происходит в течение всего дня, а ночью накопленный заряд только расходуется. Таким образом, происходит постоянное и непрерывное снабжение энергией.

Чрезмерная зарядка и разрядка батареи укорачивает ее эксплуатационный срок. Контроллер заряда солнечной батареи автоматически приостанавливают накопление энергии в аккумуляторе, когда он достиг максимальных параметров, и отключают нагрузку устройства при сильной разрядке.

(Tesla Powerwall — аккумулятор для солнечных панелей на 7 КВт — и домашняя зарядка для электромобилей)

Сетевой инвертор для солнечных батарей является самым важным элементом конструкции. Он преобразовывает полученную от солнечных лучей энергию в переменный ток различной мощности. Являясь синхронным преобразователем, он совмещает выходное напряжение электрического тока по частоте и фазе со стационарной сетью.

Фотоэлементы могут соединяться как последовательно, так и параллельно. Последний вариант увеличивает параметры мощности, напряжения и тока и позволяет устройству работать, даже если один элемент потеряет функциональность. Комбинированные модели изготовлены с использованием обеих схем. Эксплуатационный срок пластин около 25 лет.

Установка солнечных батарей

Если конструкции будут использоваться для электрообеспечения жилых пространств, то место установки следует выбирать тщательно. Если панели будут загорожены высотными зданиями или деревьями, то трудно будет получить необходимую энергию. Их необходимо разместить там, где поток солнечных лучей максимален, то есть на южную сторону. Конструкцию лучше установить под наклоном, угол которого равен географической широте месторасположения системы.

Солнечные панели должны размещаться таким образом, чтобы хозяин имел возможность периодически очищать поверхность от пыли и грязи или снега, поскольку это приводит к более низкой способности выработки энергии.

Солнечная батарея своими руками

Те, кто хочет сэкономить, задумываются, как сделать солнечную батарею в домашних условиях самостоятельно, чтобы она обладала необходимыми эксплуатационными параметрами и полностью обеспечивала энергетические потребност. Это особенно актуально для мест отдаленных от главных артерий цивилизации.

Солнечные батареи своими руками в домашних условиях изготавливаются из соответствующих элементов, которые можно купить в открытом доступе в специализированных компаниях или через интернет магазины. Если кремниевые пластины должны приобретаться у производителей, то остальные элементы, такие как лента, рамка, пленка, стекло, припой и прочее можно вполне обнаружить и дома в хозяйстве.

Солнечная батарея своими руками из подручных средств изготавливается некоторыми умельцами из медных листов, зажимов, мощных электроплит, соли и из других материалов. Такие кустарные устройства не смогут полностью обеспечить необходимой электроэнергией и могут использоваться лишь в небольших масштабах.

Лучше всего солнечные батареи купить у производителя, поскольку они обладают гарантией и необходимыми функциональными и эксплуатационными параметрами, и, значит, не подведут. Производство солнечных батарей базируется на применении новейших технологий, которые постоянно развиваются, предлагая более усовершенствованные модели. В зависимости от размеров устройств, они могут использовать для различных целей в местах, где нет снабжения электроэнергией. Они встречаются на калькуляторах, часах, различных мобильных устройствах.

Так, например, рюкзак с солнечной батареей будет незаменимым помощником тех, кто любит путешествовать с комфортом. Он накопит достаточно энергии, чтобы зарядить фонарик для освещения туристической палатки или чтобы во время похода заряжать необходимые гаджеты. Судя по отзывам, солнечные батареи используются часто и с удовольствием для удовлетворения разнообразных нужд не только на природе, но и в быту.

Современные устройства со встроенными солнечными модулями

  • Power bank с солнечной батареей – внешний накопитель с фотоэлементами для преобразования солнечных лучей в заряд аккумулятора. Он обладает несколькими портами и предназначен для зарядки смартфонов или планшетов. Это незаменимое устройство для тех кто, много времени тратят в дороге и пользуются гаджетами. Устройство, зависимо от модели может дополняться различными функциями, как, к примеру, фонариком.
  • Робот конструктор – наборы с различными элементами, из которых можно собрать несколько конструкций, которые двигаются автономно. Это лучшая игрушка для любознательных детей. Робот конструктор на солнечной батарее купить интересно будет не только малышам, но и вполне взрослым дяденькам, поскольку захватывающим является не только движение робота, но и сам процесс сборки.
  • Уличные садовые светильники на солнечных батареях – идеальное решение для сада, огорода или приусадебного участка. Благодаря накопленному заряду они будут светиться всю ночь. Для этого не нужно прокладывать специальную проводку. Их можно брать с собой на рыбалку или семейный поход. Чрезвычайная мобильность, компактность и удобство делают фонари самыми востребованными изделиями на солнечных батареях.

Возможности эксплуатации настолько разнообразны, а технологии так быстро развивается, что скоро солнечные модули охватят все сферы жизни современного человека.

mbhn.ru

О чем умалчивают производители солнечных батарей

«Зеленая» энергетика последние годы развивается достаточно стремительно. В Китае в прошлом году построили крупнейшую в мире солнечную электростанцию (в 5 раз больше площади Манхеттена). Так же хорошо растет солнечная энергетика и в России.

Но рассчитывая, что наше будущее будет состоять сплошь из солнечных электростанций нужно не забывать следующее…

Производство солнечных панелей является энергоемким процессом. В настоящее время большая часть энергии, используемой для создания солнечных панелей, связана с переработкой ископаемого сырья, поэтому даже производство этих экологически полезных продуктов может способствовать загрязнению и глобальному потеплению.Приблизительно 600 кВтч энергии используется для производства каждого квадратного метра солнечных батарей, чего достаточно для освещения 1000 лампочек мощностью 60 Вт в течение десяти часов. Средняя энергосистема использует около двух или трех панелей, каждая из которых имеет площадь около 2 м2. При установке в выгодном месте солнечная панель может производить до 200 кВтч на квадратный метр электроэнергии в год.

Поэтому энергия, используемая в процессе производства панели, компенсируется только через несколько лет эксплуатации.

Исходным материалом для изготовления солнечных батарей служит трихлорсилан, ядовитый и взрывоопасный продукт. При его перегонке и восстановлении при помощи водорода, получают чистый кремний. Побочным продуктом, на этом этапе производства, является соляная кислота. Далее, кремний плавят и получают слитки, из которых делают элементы солнечных батарей. Для производства солнечных панелей требуется использование многих опасных химических веществ. Яды, такие как мышьяк, хром и ртуть, также являются побочными продуктами производственного процесса. Эти химические вещества могут нанести серьезный ущерб окружающей среде, если их правильно не утилизировать.

При соблюдении технологий улавливания и очистки токсичных газов и жидкостей, производство не будет вредным, но часто, особенно в развивающихся странах, такое оборудование не устанавливается на предприятиях, что приводит к загрязнению окружающей среды. Энергия, используемая в производстве солнечных панелей, не является единственной энергетической затратой. Необходимо также учитывать энергию, используемую для их транспортировки, особенно если панели импортируются из другой части мира. Утилизация солнечных батарей — большая проблема. Многие из материалов, используемых для их изготовления, трудно перерабатывать, а сам процесс рециркуляции требует большого количества энергии.

Недостатки использования солнечной энергии:
1.- Неравномерное распределение энергии Солнца по поверхности планеты. Одни области более солнечные, чем другие;
2. — В пасмурные дни и ночью солнечная энергия недоступна;
3. — Необходимость использования больших площадей под солнечные источники энергии;
4. — Содержание токсичных веществ в фотоэлементах;
5. — Низкий КПД солнечных батарей, среднее значение эффективности не превышает 20%;
6. — Высокая стоимость солнечных фотоэлементов;
7. — Поверхность солнечных панелей и зеркал (для термовоздушных ЭС) нужно очищать от попадающих загрязнений;
8. — При нагреве солнечных элементов, значительно падает эффективность их работы;
9. — Сложная утилизация солнечных панелей.

Так можно ли считать солнечную энергетику не добавочной, а перспективной в глобальных масштабах?

Вот вам еще Крупнейшая термальная солнечная электростанция, а вот Крупнейшая плавучая солнечная электростанция

masterok.livejournal.com

Виды солнечных батарей: кремние, полмерные, аморфные

На вопрос «Что входит в состав системы электроснабжения, питающейся от солнечной энергии?», первое, что хочется ответить – это солнечные батареи. И это, безусловно, окажется правильным ответом. Конечно, подобная система включает в себя не только солнечные панели, туда также входят аккумуляторы, преимущественно гелевые (подробнее здесь), инверторы, контроллеры и другие устройства, каждое из которых выполняет свою функцию. Но солнечная панель – это тот элемент, с которого начинается весь процесс накопления и преобразования солнечной энергии. Вот только выбирая этот незаменимый элемент солнечной системы, каждый покупатель обязательно столкнется с проблемой выбора — «потеряться» в многообразии типов солнечных батарей несложно. Поэтому сегодняшнюю статью мы решили посвятить такой актуальной теме, как виды солнечных батарей.

Сегодня на рынке солнечных модулей представлено несколько различных образцов. Отличаются они друг от друга технологией изготовления и материалами, из которых их производят. На рисунке ниже приведена классификация солнечных батарей.
Классификация солнечных панелей

Солнечные батареи на основе кремния

Батареи, основой которым служит кремний, на сегодняшний день являются самыми популярными. Объясняется это широким распространением кремния в земной коре, его относительной дешевизной и высоким показателем производительности, в сравнении с другими видами солнечных батарей. Как видно из рисунка выше кремниевые батареи производят из моно- и поликристаллов Si и аморфного кремния.

Ячейка монокристаллической панели Монокристаллические солнечные батареи представляют собой силиконовые ячейки, объединенные между собой. Для их изготовления используют максимально чистый кремний, получаемый по методу Чохральского. После затвердевания готовый монокристалл разрезают на тонкие пластины толщиной 250-300 мкм, которые пронизывают сеткой из металлических электродов (рис. нарезка). Используемая технология является сравнительно дорогостоящей, поэтому и стоят монокристаллические батареи дороже, чем поликристаллические или аморфные. Выбирают данный вид солнечных батарей за высокий показатель КПД (порядка 17-22%).

Ячейка поликристаллической панели Для получения поликристаллов кремниевый расплав подвергается медленному охлаждению. Такая технология требует меньших энергозатрат, следовательно, и себестоимость кремния, полученного с ее помощью меньше. Единственный минус: поликристаллические солнечные батареи имеют более низкий КПД (12-18%), чем их моно «конкурент». Причина заключается в том, что внутри поликристалла образуются области с зернистыми границами, которые и приводят к уменьшению эффективности элементов.

В таблице 1 приведены основные различия между моно и поли солнечными элементами.

Таблица 1

Показатель Моно элементы Поли элементы
Кристаллическая структура Зерна кристалла параллельны
Кристаллы ориентированы в одну сторону
Зерна кристалла не параллельны
Кристаллы ориентированы в разные стороны
Температура производства 1400 °С 800-1000 °С
Цвет Черный Темно-синий
Стабильность Высокая Высокая, но меньше, чем у моно
Цена Высокая Высокая, но меньше, чем у моно
Период окупаемости 2 года 2-3 года

Батареи из аморфного кремния

Аморфная панельЕсли проводить деление в зависимости от используемого материала, то аморфные батареи относятся к кремниевым, а если в зависимости от технологии производства – к пленочным. В случае изготовления аморфных панелей, используется не кристаллический кремний, а силан или кремневодород, который тонким слоем наносится на материал подложки. КПД таких батарей составляет всего 5-6%, у них очень низкий показатель эффективности, но, несмотря на эти недостатки, они имеют и ряд достоинств:

  • Показатель оптического поглощения в 20 раз выше, чем у поли- и монокристаллов.
  • Толщина элементов меньше 1 мкм.
  • В сравнении с поли- и монокристаллами имеет более высокую производительность при пасмурной погоде.
  • Повышенная гибкость.

Помимо описанных выше видов кремниевых солнечных батарей, существуют и их гибриды. Так для большей стабильности элементов используют двухфазный материал, представляющий собой аморфный кремний с включениями нано- или микрокристаллов. По свойствам полученный материал сходен с поликристаллическим кремнием.

Из чего делают пленочные батареи?

Разработка пленочных батарей обусловлена:

  1. Потребностями в снижении стоимости солнечных батарей.
  2. Необходимостью в улучшении производительности и технических характеристик.

На основе CdTe

Исследования теллурида кадмия, как светопоглощающего материала для солнечных батарей начались еще в 70-х годах. В то время его рассматривали как один из оптимальных вариантов для использования в космосе, сегодня же батареи на основе CdTe являются одними из самых перспективных в земной солнечной энергетике. Так как кадмий является кумулятивным ядом, то дискуссии возникают лишь по одному вопросу: токсичен или нет? Но исследования показывают, что уровень кадмия, высвобождаемого в атмосферу, ничтожно мал, и опасаться его вреда не стоит. Значение КПД составляет порядка 11%. Согласитесь, цифра небольшая, зато стоимость ватта мощности таких батарей на 20-30% меньше, чем у кремниевых.

На основе селенида меди-индия

Как понятно из названия, в качестве полупроводников используются медь, индий и селен, иногда некоторые элементы индия замещают галлием. Такая практика объясняется тем, что большая часть производящегося на сегодня индия требуется для производства плоских мониторов. Именно поэтому с целью экономии индий замещают на галлий, который обладает схожими свойствами. Пленочные солнечные батареи на основе селенида меди-индия имеют КПД равный 15-20%. Следует иметь в виду, что без использования галлия эффективность солнечных батарей возрастает примерно на 14%.

На основе полимеров

Полимерные панелиРазработка данного вида батарей началась сравнительно недавно. В качестве светопоглощающих материалов используются органические полупроводники, такие как полифенилен, углеродные фуллерены, фталоцианин меди и другие. Толщина пленок составляет 100 нм. Полимерные солнечные батареи имеют на сегодняшний день КПД всего 5-6%. Но их главными достоинствами считаются:

  • Низкая стоимость производства.
  • Легкость и доступность.
  • Отсутствие вредного воздействия на окружающую среду.

Применяются полимерные батареи в областях, где наибольшее значение имеет механическая эластичность и экологичность утилизации.
В таблице 2 приведены обобщенные данные о КПД разных видов солнечных батарей.

Таблица 2

КПД солнечных элементов, выпускаемых в производственных масштабах
Моно 17-22%
Поли 12-18%
Аморфные 5-6%
На основе теллурида кадмия 10-12%
На основе селенида меди-индия 15-20%
На основе полимеров 5-6%

Надеемся, что теперь Вы ясно представляете себе, из чего делают поли- и монокристаллические, пленочные, полимерные солнечные батареи и другие. Эта информация поможет Вам сделать правильный выбор при покупке солнечных модулей. Ведь система энергопотребления, основанная на солнечной энергии, является долговременной инвестицией. Переходя на альтернативные, в частности, солнечные источники энергии, Вы не только снижаете свои затраты на потребляемые энергоресурсы, но и делаете ощутимый вклад в чистоту окружающей нас среды.

Статью подготовила Абдуллина Регина

altenergiya.ru

Солнечная электростанция на дом 200 м2 своими руками / Habr

Частенько в сети проскакивают сообщения о борьбе за экологию, развитие альтернативных источников энергии. Иногда даже проводят репортажи о том, как в заброшенной деревне сделали солнечную электростанцию, чтобы местные жители могли пользоваться благами цивилизации не 2-3 часа в сутки, пока работает генератор, а постоянно. Но это всё как-то далеко от нашей жизни, поэтому я решил на своем примере показать и рассказать, как устроена и как работает солнечная электростанция для частного дома. Расскажу обо всех этапах: от идеи до включения всех приборов, а также поделюсь опытом эксплуатации. Статья получится немаленькая, поэтому кто не любит много букв могут посмотреть ролик. Там я постарался рассказать то же самое, но будет видно, как я все это сам собираю.



Исходные данные: частный дом площадью около 200 м2 подключен к электросетям. Трехфазный ввод, суммарной мощностью 15 кВт. В доме стандартный набор электроприборов: холодильник, телевизоры, компьютеры, стиральные и посудомоечные машинки и так далее. Стабильностью электросеть не отличается: зафиксированный мною рекорд — отключение 6 дней подряд на период от 2 до 8 часов.

Что хочется получить: забыть о перебоях электроэнергии и пользоваться электричеством, невзирая ни на что.

Какие могут быть бонусы: Максимально использовать энергию солнца, чтобы дом приоритетно питался солнечной энергией, а недостаток добирал из сети. Как бонус, после принятия закона о продаже частными лицами электроэнергии в сеть, начать компенсировать часть своих затрат, продавая излишки выработки в общую электросеть.

С чего начать?


Всегда есть минимум два пути для решения любой задачи: учиться самому или поручить решение задачи кому-то другому. Первый вариант предполагает изучение теоретических материалов, чтение форумов, общение с владельцами солнечных электростанций, борьбу с внутренне жабой и, наконец, покупку оборудования, а после — установку. Второй вариант: позвонить в специализированную фирму, где зададут много вопросов, подберут и продадут нужное оборудование, а могут и установить за отдельные деньги. Я решил совместить эти два способа. Отчасти потому что мне это интересно, а отчасти для того, чтобы не напороться на продавцов, которым надо просто заработать, продав не совсем то, что мне нужно. Теперь пришло время теории, чтобы понять, как я делал выбор.

На фото пример «освоения» денег на строительство солнечной электростанции. Обратите внимание, солнечные панели установлены ЗА деревом – таким образом, свет на них не попадает, и они просто не работают.

Типы солнечных электростанций


Сразу отмечу, что говорить я буду не о промышленных решениях и не о сверхмощных системах, а об обычной потребительской солнечной электростанции для небольшого дома. Я не олигарх, чтобы разбрасываться деньгами, но я придерживаюсь принципа достаточной разумности. То есть я не хочу греть бассейн «солнечным» электричеством или заряжать электромобиль, которого у меня нет, но я хочу, чтобы в моем доме все приборы постоянно работали, без оглядки на электросети.

Теперь расскажу про типы солнечных электростанций для частного дома. По большому счету, их всего три, но бывают вариации. Расположу, по росту стоимости каждой системы.

Сетевая Солнечная Электростанция — этот тип электростанции сочетает в себе невысокую стоимость и максимальную простоту эксплуатации. Состоит всего из двух элементов: солнечных панелей и сетевого инвертора. Электричество от солнечных панелей напрямую преобразуется в 220В/380В в доме и потребляется домашними энергосистемами. Но есть существенный недостаток: для работы ССЭ необходима опорная сеть. В случае отключения внешней электросети, солнечные батареи превратятся в «тыкву» и перестанут выдавать электричество, так как для функционирования сетевого инвертора нужна опорная сеть, то есть само наличие электричества. Кроме того, со сложившейся инфраструктурой электросети, работа сетевого инвертора не очень выгодна. Пример: у вас солнечная электростанция на 3 кВт, а дом потребляет 1 кВт. Излишки будут «перетекать» в сеть, а обычные счетчики считают энергию «по модулю», то есть отданную в сеть энергию счетчик посчитает, как потребленную, и за нее еще придется заплатить. Тут логично подходит вопрос: куда девать лишнюю энергию и как этого избежать? Переходим ко второму типу солнечных электростанций.

Гибридная Солнечная Электростанция – этот тип электростанции сочетает в себе достоинства сетевой и автономной электростанции. Состоит из 4 элементов: солнечные панели, солнечный контроллер, аккумуляторы и гибридный инвертор. Основа всего – это гибридный инвертор, который способен в потребляемую от внешней сети энергии подмешивать энергию, выработанную солнечными панелями. Более того, хорошие инверторы имеют возможность настройки приоритезации потребляемой энергии. В идеале, дом должен потреблять сначала энергию от солнечных панелей и только при ее недостатке, добирать из внешней сети. В случае исчезновения внешней сети инвертор переходит в автономную работу и пользуется энергией от солнечных панелей и энергией, запасенной в аккумуляторах. Таким образом, даже если электроэнергию отключат на продолжительное время и будет пасмурный день (или электричество отключат ночью), в доме всё будет функционировать. Но что делать, если электричества нет вообще, а жить как-то надо? Тут я перехожу к третьему типу электростанции.

Автономная Солнечная Электростанция – этот тип электростанции позволяет жить полностью независимо от внешних электросетей. Она может включать в себя больше 4 стандартных элементов: солнечные панели, солнечный контроллер, АКБ, инвертор.

Дополнительно к этому, а иногда вместо солнечных панелей, может быть установлена ГидроЭлектроСтанция малой мощности, ветряная электростанция, генератор (дизельный, газовый или бензиновый). Как правило, на таких объектах присутствует генератор, поскольку может не быть солнца и ветра, а запас энергии в аккумуляторах не бесконечен – в этом случае генератор запускается и обеспечивает энергией весь объект, попутно заряжая АКБ. Такая электростанция легко трансформируется в гибридную, при подключении внешней электросети, если инвертор обладает этими функциями. Основное отличие автономного инвертора от гибридного – это то, что он не умеет подмешивать энергию от солнечных панелей к энергии из внешней сети. При этом гибридный инвертор, наоборот, умеет работать в качестве автономного, если внешняя сеть будет отключена. Как правило, гибридные инверторы соразмерны по цене с полностью автономными, а если и отличаются, то несущественно.

Что такое солнечный контроллер?


Во всех типах солнечных электростанций присутствует солнечный контроллер. Даже в сетевой солнечной электростанции он есть, просто входит в состав сетевого инвертора. Да и многие гибридные инверторы выпускаются с солнечными контроллерами на борту. Что же это такое и для чего он нужен? Буду говорить о гибридной и автономной солнечной электростанции, поскольку это как раз мой случай, а с устройством сетевого инвертора могу ознакомить детальнее в комментариях, если будут запросы в комментариях.

Солнечный контроллер – это устройство, которое полученную от солнечных панелей энергию преобразует в перевариваемую инвертором энергию. Например, солнечные панели изготавливаются с напряжением кратно 12В. И АКБ изготавливаются кратно 12В, так уж повелось. Простые системы на 1-2 кВт мощности работают от 12В. Производительные системы на 2-3 кВт уже функционируют от 24В, а мощные системы на 4-5 кВт и более работают на 48В. Сейчас я буду рассматривать только «домашние» системы, потому что знаю, что есть инверторы, работающие на напряжениях в несколько сотен вольт, но для дома это уже опасно.

Итак, допустим у нас есть система на 48В и солнечные панели на 36В (панель собрана кратно 3х12В). Как получить искомые 48В для работы инвертора? Конечно, к инвертору подключаются АКБ на 48В, а к этим аккумуляторам подключается солнечный контроллер с одной стороны и солнечные панели с другой. Солнечные панели собираются на заведомо большее напряжение, чтобы суметь зарядить АКБ. Солнечный контроллер, получая заведомо большее напряжение с солнечных панелей, трансформирует это напряжение до нужной величины и передает в АКБ. Это упрощенно. Есть контроллеры, которые могут со 150-200 В от солнечных панелей понижать до 12 В аккумуляторов, но тут протекают очень большие токи и контроллер работает с худшим КПД. Идеальный случай, когда напряжение с солнечных панелей вдвое больше напряжения на АКБ.

Солнечных контроллеров существует два типа: PWM (ШИМ – Широтно-Импульсная Модуляция) и MPPT (Maximum Power Point Tracking – отслеживание точки максимальной мощности). Принципиальная разница между ними в том, что ШИМ-контроллер может работать только со сборками панелей, не превышающими напряжения АКБ. MPPT – контроллер может работать с заметным превышением напряжения относительно АКБ. Кроме того, MPPT-контроллеры обладают заметно бОльшим КПД, но и стоят дороже.

Как выбрать солнечные панели?


На первый взгляд, все солнечные панели одинаковы: ячейки солнечных элементов соединены между собой шинками, а на задней стороне есть два провода: плюс и минус. Но есть в этом деле масса нюансов. Солнечные панели бывают из разных элементов: аморфных, поликристаллических, монокристаллических. Я не буду агитировать за тот или иной тип элементов. Скажу просто, что сам предпочитаю монокристаллические солнечные панели. Но и это не всё. Каждая солнечная батарея – это четырехслойный пирог: стекло, прозрачная EVA-пленка, солнечный элемент, герметизирующая пленка. И вот тут каждый этап крайне важен. Стекло подходит не любое, а со специальной фактурой, которое снижает отражение света и преломляет падающий под углом свет таким образом, чтобы элементы были максимально освещены, ведь от количества света зависит количество выработанной энергии. От прозрачности EVA-пленки зависит, сколько энергии попадет на элемент и сколько энергии выработает панель. Если пленка окажется бракованной и со временем помутнеет, то и выработка заметно упадет.

Далее идут сами элементы, и они распределяются по типам, в зависимости от качества: Grade A, B, C, D и далее. Конечно, лучше иметь элементы качества А и хорошую пайку, ведь при плохом контакте, элемент будет греться и быстрее выйдет из строя. Ну и финишная пленка должна также быть качественной и обеспечивать хорошую герметизацию. В случае разгерметизации панелей, очень быстро на элементы попадет влага, начнется коррозия и панель также выйдет из строя.

Как правильно выбрать солнечную панель? Основной производитель для нашей страны – это Китай, хотя на рынке присутствуют и Российские производители. Есть масса OEM-заводов, которые наклеят любой заказанный шильдик и отправят панели заказчику. А есть заводы, которые обеспечивают полный цикл производства и способны проконтролировать качество продукции на всех этапах производства. Как узнать о таких заводах и брендах? Есть пара авторитетных лабораторий, которые проводят независимые испытания солнечных панелей и открыто публикуют результаты этих испытаний. Перед покупкой вы можете вбить название и модель солнечной панели и узнать, насколько солнечная панель соответствует заявленным характеристикам. Первая лаборатория – это Калифорнийская Энергетическая Комиссия, а вторая лаборатория Европейская – TUV. Если производителя панелей в этих списках нет, то стоит задуматься о качестве. Это не значит, что панель плохая. Просто бренд может быть OEM, а завод-производитель выпускает и другие панели. В любом случае, присутствие в списках этих лабораторий уже свидетельствует о том, что вы покупаете солнечные батареи не у производителя-однодневки.

Мой выбор солнечной электростанции


Перед покупкой стоит очертить круг задач, которые ставятся перед солнечной электростанцией, чтобы не заплатить за ненужное и не переплатить за неиспользуемое. Тут я перейду к практике, как и что делал я сам. Для начала, цель и исходные: в деревне периодически отключают электроэнергию на период от получаса до 8 часов. Возможны отключения как раз в месяц, так и подряд несколько дней. Задача: обеспечить дом электроснабжением в круглосуточном режиме с некоторым ограничением потребления на период отключения внешней сети. При этом, основные системы безопасности и жизнеобеспечения должны функционировать, то есть: должны работать насосная станция, система видеонаблюдения и сигнализации, роутер, сервер и вся сетевая инфраструктура, освещение и компьютеры, холодильник. Вторично: телевизоры, развлекательные системы, электроинструмент (газонокосилка, триммер, насос для полива огорода). Можно отключить: бойлер, электрочайник, утюг и прочие греющие и много потребляющие устройства, работа которых сиюминутно не важна. Чайник можно вскипятить на газовой плите, а погладить позже.

Как правило, солнечную электростанцию можно купить в одном месте. Продавцы солнечных панелей также продают всё сопутствующее оборудование, поэтому я начал поиск отталкиваясь от солнечных батарей. Один из солидных брендов – TopRay Solar. О них есть хорошие отзывы и реальный опыт эксплуатации в России, в частности, в Краснодарском крае, где знают толк в солнце. В РФ есть официальный дистрибьютор и дилеры по регионам, на вышеозначенных сайтах с лабораториями для проверки солнечных панелей этот бренд присутствует и далеко не на последних местах, то есть можно брать. Кроме того, фирма-продавец солнечных панелей TopRay, также занимается собственным производством контроллеров и электроники для дорожной инфраструктуры: системы управления трафиком, светодиодные светофоры, мигающие знаки, солнечные контроллеры и прочее. Ради любопытства даже напросился на их производство – вполне технологично и даже есть девушки, которые знают, с какой стороны подходить к паяльнику. Бывает же!

Со своим списком хотелок я обратился к ним и попросил собрать мне пару комплектаций: подороже и подешевле для моего дома. Мне задали ряд уточняющих вопросов насчет резервируемой мощности, наличия потребителей, максимальной и постоянной потребляемой мощности. Последнее вообще оказалось для меня неожиданным: дом в режиме энергосбережения, когда работают только системы видеонаблюдения, охраны, связь с инетом и сетевая инфраструктура, потребляет 300-350 Вт. То есть даже если дома никто не пользуется электричеством, на внутренние нужды уходит до 215 кВт*ч в месяц. Вот тут и задумаешься над проведением энергетического аудита. И начнешь выключать из розеток зарядки, телевизоры и приставки, которые в режиме ожидания потребляют по чуть-чуть, а набегает прилично.
Не буду томить, остановился я на более дешевой системе, так как зачастую до половины суммы за электростанцию может занимать стоимость аккумуляторов. Список оборудования получился следующим:

  1. Солнечная батарея TopRay Solar 280 Вт Моно – 9 шт
  2. Однофазный Гибридный инвертор на 5 кВт InfiniSolar V-5K-48 – 1 шт
  3. Аккумулятор AGM Парус HML-12-100 – 4 шт

Дополнительно, мне было предложено приобрести профессиональную систему крепления солнечных панелей на крышу, но я, посмотрев фотографии, решил обойтись самодельными креплениями и тоже сэкономить. Но я решил собирать систему сам и не жалел сил и времени, а монтажники работают с этими системами постоянно и гарантируют быстрый и качественный результат. Так что решайте сами: с заводскими креплениями работать гораздо приятнее и проще, а моё решение просто дешевле.

Что даёт солнечная электростанция?


Этот комплект может выдать до 5 кВт мощности в автономном режиме – именно такой мощности я выбрал однофазный инвертор. Если докупить такой же инвертор и модуль сопряжения к нему, то можно нарастить мощность до 5кВт+5кВт=10 кВт на фазу. Или можно сделать трехфазную систему, но я пока довольствуюсь и этим. Инвертор высокочастотный, а потому достаточно легкий (порядка 15 кг) и занимает немного места – легко монтируется на стену. В него уже встроено 2 MPPT-контроллера мощностью 2,5 кВт каждый, то есть я могу добавить еще столько же панелей без покупки дополнительного оборудования.

Солнечных панелей у меня на 2520 Вт по шильдику, но из-за неоптимального угла установки они выдают меньше – максимум я видел 2400 Вт. Оптимальный угол – это перпендикулярно солнцу, что в наших широтах составляет примерно 45 градусов к горизонту. У меня панели установлены под 30 градусов.

Сборка АКБ составляет 100А*ч 48В, то есть запасено 4,8 кВт*ч, но забирать энергию полностью крайне нежелательно, поскольку тогда их ресурс заметно сокращается. Желательно разряжать такие АКБ не более, чем на 50%. Это литий-железофосфатные или литий-титанатные можно заряжать и разряжать глубоко и большими токами, а свинцово-кислотные, будь то жидкостные, гелевые или AGM лучше не насиловать. Итак, у меня есть половина емкости, а это 2,4 кВт*ч, то есть порядка 8 часов в полностью автономном режиме без солнца. Этого хватит на ночь работы всех систем и еще останется половина емкости АКБ на аварийный режим. Утром уже встанет солнце и начнет заряжать АКБ, параллельно обеспечивая дом энергией. То есть дом может функционировать и автономно в таком режиме, если снизить энергопотребление и погода будет хорошей. Для полной автономии можно было бы добавить еще аккумуляторов и генератор. Ведь зимой солнца совсем мало и без генератора будет не обойтись.

Начинаю собирать


Перед покупкой и сборкой необходимо просчитать всю систему, чтобы не ошибиться с расположением всех систем и прокладкой кабелей. От солнечных панелей до инвертора у меня порядка 25-30 метров и я заранее проложил два гибких провода сечением 6 кв.мм, так как по ним будет передаваться напряжение до 100В и ток 25-30А. Такой запас по сечению был выбран, чтобы минимизировать потери на проводе и максимально доставить энергию до приборов. Сами солнечные панели я монтировал на самодельные направляющие из алюминиевых уголков и притягивал их самодельными же креплениями. Чтобы панель не сползала вниз, на алюминиевом уголке напротив каждой панели смотрит вверх пара 30мм болтов, и они являются своеобразным «крючком» для панелей. После монтажа их не видно, но они продолжают нести нагрузку.

Солнечные панели были собраны в три блока по 3 панели в каждом. В блоках панели подключаются последовательно — так напряжение удалось поднять до 115В без нагрузки и снизить ток, а значит можно выбрать провода меньшего сечения. Блоки между собой подключены параллельно специальными коннекторами, обеспечивающими хороший контакт и герметичность соединения – называются MC4. Их же я использовал для подключения проводов к солнечному контроллеру, так как они обеспечивают надежный контакт и быстрое замыкание\размыкание цепи для обслуживания.

Далее переходим к монтажу в доме. АКБ предварительно заряжены «умной» автомобильной зарядкой, чтобы выровнять напряжение и подключены последовательно для обеспечения напряжения 48В. Далее, они подключены к инвертору кабелем с сечением 25 мм кв. Кстати, во время первого подключения АКБ к инвертору будет заметная искра на контактах. Если вы не спутали полярность, то всё нормально – в инверторе установлены довольно емкие конденсаторы и они начинают заряжаться в момент подключения к аккумуляторам. Максимальная мощность инвертора – 5000 Вт, а значит ток, который может проходить по проводу от АКБ будет составлять 100-110А. Выбранного кабеля хватает для безопасной эксплуатации. После подключения АКБ, можно подключать внешнюю сеть и нагрузку дома. К клеммным колодкам цепляются провода: фаза, ноль, заземление. Тут всё просто и наглядно, но если для вас починить розетку небезопасно, то подключение этой системы лучше доверить опытным электромонтажникам. Ну и последним элементом подключаю солнечные панели: тут тоже надо быть внимательным и не перепутать полярность. При мощности в 2,5 кВт и неправильном подключении, солнечный контроллер сгорит моментально. Да что там говорить: при такой мощности, от солнечных панелей можно заниматься сваркой напрямую, без сварочного инвертора. Здоровья это солнечным панелям не добавит, но мощь солнца действительно велика. Так как я дополнительно использую разъемы MC4, перепутать полярность просто невозможно при первоначальном правильном монтаже.

Всё подключено, один щелчок выключателя и инвертор переходит в режим настройки: тут надо выставить тип АКБ, режим работы, зарядные токи и прочее. Для этого есть вполне понятная инструкция и если вы можете справиться с настройкой роутера, то настройка инвертора тоже не будет очень сложной. Надо только знать параметры АКБ и правильно их настроить, чтобы они прослужили как можно дольше. После этого, хм… После этого наступает самое интересное.

Эксплуатация гибридной солнечной электростанции


После запуска солнечной электростанции, я и моя семья пересмотрели многие привычки. Например, если раньше стирка или посудомоечная машина запускались после 23 часов, когда работал ночной тариф в электросетях, то теперь эти энергозатратные работы перенесены на день, потому что стиралка потребляет 500-2100 Вт во время работы, посудомоечная машина потребляет 400-2100 Вт. Почему такой разброс? Потому что насосы и моторы потребляют немного, а вот нагреватели воды крайне прожорливы. Гладить оказалось тоже «выгоднее» и приятнее днем: в комнате гораздо светлее, а энергия солнца полностью покрывает потребление утюга. На скриншоте продемонстрирован график выработки энергии солнечной электростанцией. Хорошо виден утренний пик, когда работала стиральная машинка и потребляла много энергии – эта энергия была выработана солнечными панелями.

Первые дни я по несколько раз подходил к инвертору, взглянуть на экран выработки и потребления. После поставил утилиту на домашний сервер, который в реальном времени отображает режим работы инвертора и все параметры электросети. К примеру, на скриншоте видно, что дом потребляет больше 2 кВт энергии (пункт AC output active power) и вся эта энергия заимствуется от солнечных батарей (пункт PV1 input power). То есть инвертор, работая в гибридном режиме с приоритетом питания от солнца, полностью покрывает энергопотребление приборов за счет солнца. Это ли не счастье? Каждый день в таблице появлялся новый столбик выработки энергии и это не могло не радовать. А когда во всей деревне отключили электричество, я узнал об этом только по писку инвертора, который оповещал о работе в автономном режиме. Для всего дома это означало только одно: живем как прежде, пока соседи ходят за водой с ведрами.

Но есть в наличии дома солнечной электростанции и нюансы:

  1. Я начал замечать, что птицы любят солнечные панели и, пролетая над ними, не могут сдержаться от счастья наличия технологичного оборудования в деревне. То есть иногда всё же солнечные панели надо мыть от следов и пыли. Думаю, что при установке под 45 градусов, все следы просто смывались бы дождями. Выработка от нескольких птичьих следов вообще не падает, но если затенена часть панели, то падение выработки становится ощутимым. Это я заметил, когда солнце пошло к закату и тень от крыши начала накрывать панели одну за другой. То есть лучше располагать панели вдали от всех конструкций, способных их затенить. Но даже вечером, при рассеянном свете, панели выдавали несколько сотен ватт.
  2. При большой мощности солнечных панелей и подкачке от 700 Ватт и более, инвертор включает вентиляторы активнее и их становится слышно, если дверь в техническое помещение открыта. Тут либо закрывать дверь, либо крепить инвертор на стену через демпфирующие прокладки. В принципе, ничего неожиданного: любая электроника греется при работе. Просто надо учитывать, что инвертор не стоит вешать там, где он может мешать звуком своей работы.
  3. Фирменное приложение умеет отправлять оповещения по электронной почте или в SMS, если произошло какое-либо событие: включение/отключение внешней сети, разряд АКБ и подобное. Вот только приложение работает по незащищенному 25 порту SMTP, а все современные почтовые сервисы, вроде gmail.com или mail.ru работают по защищенному порту 465. То есть сейчас, фактически, оповещения по почте не приходят, а хотелось бы.

Не сказать, что эти пункты как-то огорчают, ведь всегда надо стремиться к совершенству, но имеющаяся энергонезависимость того стоит.

Заключение


Полагаю, что это не последний мой рассказ о собственной солнечной электростанции. Опыт эксплуатации в различных режимах и в разное время года однозначно будет отличаться, но я точно знаю, что даже если в Новый Год отключат электричество, в моём доме будет светло. По результатам эксплуатации установленной солнечной электростанции могу отметить, что оно того стоило. Несколько отключений внешней сети прошли незаметно. О нескольких я узнал только по звонкам соседей с вопросом «У тебя тоже нет света?». Бегущие цифры выработки электричества безмерно радуют, а возможность убрать от компа UPS зная, что даже при отключении электроэнергии всё продолжит работать – это приятно. Ну а когда у нас наконец-то примут закон о возможности продажи электроэнергии частными лицами в сеть, я первый подам заявку на эту функцию, ведь в инверторе достаточно изменить один пункт и всю выработанную, но не потребленную домом энергию, я буду продавать в сеть и получать за это деньги. В общем, это оказалось довольно просто, эффективно и удобно. Готов ответить на ваши вопросы и выдержать натиск критиков, убеждающих всех, что в наших широтах солнечная электростанция – это игрушка.

habr.com

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *