РазноеГреется плюсовая клемма аккумулятора: Почему греются клеммы аккумулятора — сеть магазинов «Ампер»

Греется плюсовая клемма аккумулятора: Почему греются клеммы аккумулятора — сеть магазинов «Ампер»

Содержание

Греется плюсовая или минусовая клемма на аккумуляторе

Любой элемент у транспортного средства может выйти из строя. Ведь не всегда удается уследить за всем, что происходит с автомобилем. К тому же некоторые симптомы практически не заметны, если специально не проверять. Например, одним из таких сигналов может быть нагревание клемм АКБ.

Греется плюсовая клемма

Клеммы – это выводы тока у аккумуляторных батарей. К ним крепятся провода электропитания транспортного средства. Состоят они из свинца.

Если нагревается плюсовой контакт на батарее – это значит, что у провода плохой контакт с клеммой. Это может происходить в следствие окисления или из-за попадания воды на него.

Нагрев может спровоцировать воспламенение проводки и пожар под капотом, расплавить изоляцию, повредить корпус АКБ.

Устранить причины нагрева положительной клеммы можно следующим образом.

  1. Снять конец провода с токовывода.
  2. Очистить контакты с помощью наждачной бумаги.
  3. Желательно поменять провод, который идет от генератора на АКБ.
  4. Обратно одеть провод на клемму и достаточно сильно подтянуть конец провода, одетый на вывод тока на аккумуляторе.

Чтобы улучшить контакт необходимо подобрать нужный диаметр кольца. Тогда болтовое соединение будет плотно обхватывать клемму и не давать искриться и плавиться этому месту.

Рекомендуется производить зажимы гаек болтов двумя ключами. Таким образом можно избежать проворачивания болта или гайки.

Если после очистки контактов через несколько дней вновь образовалась белая оксидная пленка свинца, которая приводит к плохому контактированию провода с АКБ, рекомендуется проверить батарею на утечку электролита. Возможно батарея приходит в негодность. Появились трещинки на корпусе АКБ сквозь которые поступают пары электролита.

Греется минусовая клемма

Если греется минусовая клемма, то это из-за плохой контакт с кузовом. Последний используется в виде заземления. Так же могут повлиять окисления в результате поступления наружу паров электролита.

Чтобы устранить причины нагревания отрицательной клеммы, рекомендуется сделать следующее:

  1. Проверить достаточно ли хорошо соединены оба конца провода.
  2. Зачистить клемму наждачной бумагой от окислов. Если окислы все же остаются, то заменить аккумулятор на новый.

Нагрев провода массы от аккумулятора сам по себе не опасен, если он происходит из-за плохого соединения. В случае окисления и постепенного разрушения аккумулятора – это опасно для жизни остальных узлов автомобиля, на которые может перекинуться проблема. От нагрева может расплавиться корпус, а это приведет к вытеканию серной кислоты во внутреннюю часть авто.

Греются обе клеммы

Если происходит нагрев обеих клемм при запуске двигателя или во время включения дворников, подогрева зеркал или сидений, то это значит, что генератор не справляется с нагрузкой.  Энергия дополнительно берется от аккумуляторной батареи. В случае плохого контакта эти места сильно нагреваются.

Чтобы избежать перегрева обеих клемм при заводке или подключении дополнительных устройств необходимо повторить все те действия, которые были описаны выше по отдельности для минусовых и плюсовых контактов.

Внимание! При работе с аккумуляторной батареей необходимо соблюдать технику безопасности и пользоваться резиновыми перчатками. В случае протекания АКБ есть возможность повредить оголенные участки кожи рук.

Греются провода идущие от АКБ

Случается так, что греется провод, идущий к зарядному устройству. А владелец автомобиля считает, что это клемма.

Причины нагрева кабелей кроются в следующем:

  • малое сечение кабеля, которое не может выдержать нагрузки при подключении дополнительных устройств;
  • разрыв нескольких нитей внутри кабеля;
  • низкое качество кабеля.

Все это ведет к тому, что провода будут нагреваться и могут воспламениться. Рекомендуется заменить кабеля на новые и качественные. Фирменные провода прошли европейские стандарты качества и обладают масло-, бензо- и термостойкой изоляцией.

Важно! Соединять клеммы АКБ автомобиля лучше всего проводом из меди плетенного сечения.

Заключение

Плохой контакт является сигналом к тому, что владелец транспортного средства должен обратить внимание на эту проблему и вовремя ее решить. Только так можно избежать негативных последствий, к которым может привести халатность владельца автомобиля.

Перегрев клемм в АКБ: причины и опасность.

Часто водители обращают внимание, что при езде автомобиля (или даже при работе двигателя на холостом ходу) греется клемма аккумулятора. Многие не придают этому большого значения, полагая, что ничего страшного в таком состоянии нет. Но если не принять вовремя меры по поиску и устранению причины нагрева клемм, то последствия могут быть самыми тяжелыми.

Причины перегрева плюсовой и минусовой клемм в АКБ

При запуске двигателя происходит движение тока от аккумулятора до стартера и свечей, и от генератора до аккумулятора. В холодное время года сила тока может составлять 600 А. Если в машине используется провод с небольшим сечением, то он может нагреться, а вместе с ним повысится температура клемм.

Основные причины нагрева

  1. Плохой контакт клеммы и наконечника аккумулятора (т.е. недостаточно плотное и прочное прилегание). Это происходит из-за мелких дефектов, допущенных на производстве, а также вследствие естественного износа материалов, ослабления притягивающих гаек и болтов при длительной эксплуатации.
  2. Процессы окисления с внутренней стороны контактов. Чтобы устранить эту проблему, нужно вовремя проводить зачистку клемм и наконечников аккумулятора.
  3. Повышение сопротивления материалов. В процессе работы происходит преломление провода, в результате чего снижаются его свойства проводимости, увеличивается сила тока, происходит нагрев металла. Здесь выход только один – заменить провод.
  4. Плохой контакт минусовой клеммы с корпусом машины. Опытные мастера и автовладельцы советуют обращать внимание, что часто нагрев изначально происходит не в клеммах, а в проводах.

Окисление является одной из самых распространенных причин нагревания.

Происходит оно из-за того, что сами зажимы и наконечники аккумулятора изготовлены из разных металлов. По законам химии они со временем начинают окисляться в точке контакта из-за разницы в потенциалах.

Самая простая причина – плохая затяжка гайки на крепящем болту. Если есть какое-то пространство между двумя контактами, то между ними происходит образование тепловой энергии. В точку зажима может попасть вода, пыль и прочие посторонние вещества, которые усилят процессы окисления.

Случайное попадание электролита на контакты тоже может вызвать нагревание. Это достаточно опасная причина, но ее очень легко установить. Окисление здесь происходит вследствие химической реакции при взаимодействии металла с кислотой.

Опасность разогрева клемм автомобильного аккумулятора

Постоянный нагрев внутри приводит к:

  • нарушению нормальных процессов электроснабжения всех потребителей в автомобиле;
  • росту температуры внутренних пластин аккумуляторной батареи при повышении сопротивления на контактах, как следствие – закипанию и ускоренному испарению электролита;
  • пересыханию банок, осыпанию металла с пластин, снижению емкости батареи;
  • появлению трещин на корпусе, утечке электролита, полному выходу из строя АКБ.

Если нагрев происходит до температуры плавления свинца и других металлов – то это вызовет полную деформацию пластин и наконечников.

Самая большая опасность в данном случае связана с возможным взрывом и (или) пожаром, который может охватить весь автомобиль.

Как избежать нагрева:

  • диаметр кольца зажима должно быть достаточным для того, чтобы можно было максимально плотно притянуть его при закручивании гайки;
  • чтобы не было проворачивания болта, затяжку надо проводить двумя ключами;
  • нельзя допускать нарушения изоляции проводов.

Если нагрев все-таки происходит, то специалисты не рекомендуют пытаться самостоятельно определить причину такого состояния, если нет достаточного опыта в ремонте автомобильной электрики. Если обнаружилось нагревание клемм (даже небольшое) – то необходимо сразу же обратиться в автосервис, в котором мастера смогут быстро выявить все имеющиеся дефекты.

Если причина кроется в аккумуляторе – то его нужно заменить. Для этого существуют специальные фирмы, в которых принимают на утилизацию отработавшие свой ресурс автомобильные аккумуляторные батареи. Старую АКБ нельзя долго хранить в гараже или во дворе, и ни в коем случае нельзя выкидывать на обычную свалку! Нужно привезти аккумулятор в пункт приема и сдать за деньги. Тут же можно сразу приобрести новую батарею.

ООО «Стандарт» в Москве принимает старые неисправные аккумуляторы от разных видов транспорта:

  • автомобилей;
  • мотоциклов;
  • электромобилей;
  • катеров, моторных лодок, яхт и т.д.

Также компания ООО «Стандарт» предлагает большой выбор новых устройств с разными характеристиками.

7 возможных причин почему ГРЕЕТСЯ КЛЕММА АККУМУЛЯТОРА на автомобиле — О шинах

Какой бы не была причина, по которой греется клемма на аккумуляторе, это есть нехорошо. Проблему нужно искать и срочно решать. Если дефект своевременно не заметить и не устранить, то от сильного перегрева оплавится изоляция силовых кабелей, «потекут» пластиковые детали АКБ, и даже сама клемма может превратиться в бесформенную горку свинца. Пожар тоже не исключен.

С другой стороны, эта тема является довольно интересной, так как причину неадекватного нагрева клемм АКБ многие затрудняются понять, найти и устранить. Почему это происходит? Что является причиной? Где искать дефект? Нередко автолюбители пытаются обратиться и к давно подзабытым законам из школьной физики, что чаще вызывает недоумение, нежели приводит к пониманию проблемы. Хотя направление это самое верное. Потому с него и начнем.

Немного школьной физики (простыми словами)

Какие физические величины, от которых можно оттолкнуться в поисках понимания, «крутятся» в греющейся клемме аккумулятора? Их там несколько:

  • U – напряжение на клемме.
  • I – сила тока, проходящего через клемму (проводник).
  • R – сопротивление проводника.
  • S – площадь сечения проводника.
  • t – время.
  • Q – количество тепла, рассеивающегося на проводнике.

Начнем с разбора наиболее часто встречающейся ошибки при оперировании этими величинами и физическими законами, которыми они связаны. Базируется она на том, что клемма греется из-за плохого контакта, а также на законе Ома для участка цепи.

Логика такая. Чем хуже контакт, тем площадь сечения проводника S меньше. А чем меньше сечение, тем сопротивление его больше. Далее берется вышеупомянутый закон Ома:

 

И тут начинаются проблемы. Напряжение в ботовой сети автомобиля всегда одинаковое, и равняется примерно 12 В. Практически все (многие на подсознательном уровне) понимают, что чем больше ток, тем сильнее нагрев. И это правда. Но что происходит, когда ухудшается контакт? Правильно – увеличивается сопротивление R. Получается, что чем хуже контакт, тем ток в цепи должен быть меньшим. Как же в таком случае клемма может греться из-за плохого контакта? Ток же уменьшается! Должно быть наоборот: контакт ухудшается, сопротивление растет, ток падает – нагрев снижается.

Но на практике это не работает, поскольку большая половина причин, по которым греются клеммы АКБ, вызвана именно ухудшением контакта. А подвох весь в том, что для решения данной проблемы этот закон Ома применять нельзя. Не зря же он для участка цепи. А у нас далеко не участок.

Вот если клеммы закоротить куском проволоки, тогда этот закон сработает. Чем больше будет ее сопротивление, тем ток потечет меньший, и клеммы нагреваться будут слабее. И наоборот.

Но в машине помимо греющейся клеммы есть же еще потребители тока – стартер, печка, акустическая система и прочее. Все это тоже влияет на силу тока, протекающего через клемму. А на практике большие токи текут и через плохой контакт. И несмотря на то, что сопротивление там увеличилось, сила тока не уменьшается соразмерно.

Ток все равно течет. И сила его большая. Об этом можно судить по тому, что тот же стартер работает и при плохих контактах. Соответственно, даже через плохой контакт протекает ток больше 100 А. Именно поэтому закон Ома, каким бы классным он не был, для решения нашей проблемы не подходит, и вышеописанный алгоритм будет изначально ошибочным.

А правильный алгоритм будет таким. Поскольку клемма аккумулятора греется, то нас, в первую очередь, интересует величина Q. Понятно, что чем она больше, тем сильнее перегрев. Попробуем разобраться, от чего же зависит это самое Q в случае с греющейся клеммой. Для этого существует простейшая формула из школьного учебника, с помощью которой выражается закон Джоуля-Ленца:

 

Что дает нам эта формула? Все предельно просто и понятно. Она нам говорит о том, что клемма АКБ может греться по нескольким причинам – из-за тока, сопротивления или времени. Чем большими будут эти величины, тем сильнее нагрев. Соответственно, в этих направлениях и стоит искать возможную причину, по которой греется клемма аккумулятора.

Возможная причина №1. Плохие контакты

Начнем с чего попроще. А именно – с плохого контакта на самой клемме АКБ. Такое встречается чаще всего. Клеммы окисляются, загрязняются, изнашиваются, ослабляются крепежи. Результат всегда один – в месте соединения АКБ с клеммой уменьшается сечение. А это приводит к повышению сопротивления.

Поскольку потребители тока из аккумулятора способны работать даже при плохом контакте, то ток через этот участок не уменьшается. Время пока не учитываем. Примем, что оно не меняется, и стартер запускает двигатель так же быстро, как и при нормальном контакте. Смотрим на формулу, и видим, что при таком раскладе Q увеличивается. Клемма греется.

Решается проблема очень просто. Клеммы очищаются от окислов и надежно закрепляются на АКБ. Для профилактики рекомендуется смазывать их специальными составами. Если на клеммах есть трещины, деформации и другие дефекты – их надо заменить. Дешевые некачественные клеммы покупать и устанавливать не стоит.

Следует помнить, что плохие контакты могут быть не только на клеммах АКБ. Не менее часто их перегрев вызывает окисленное, ослабленное или просто грязное соединение минусового провода с кузовом автомобиля, или так называемая «масса». В некоторых моделях она подсоединена не к кузову, а к двигателю. В любом случае результат плохого контакта в этом месте будет приводить к перегреву клемм АКБ. Чинится аналогично – окислы и грязь удаляются, а клемма надежно крепится на своем месте.

Возможная причина №2. Недостаточное сечение силовых кабелей

Силовыми в автомобиле принято считать провода, которые идут, в первую очередь, к стартеру. Если накануне осуществлялась их замена, то вполне вероятно, что в целях экономии были приобретены недостаточно толстые кабели. Это означает, что их сопротивление выше, чем надо. Соответственно, по все той же формуле может наблюдаться нагрев клеммы. Причем в данном случае сама по себе клемма может и не являться источником тепла. Изначально перегреваются тонкие силовые кабели, и тепло от них передается на клеммы.

Устранение проблемы очевидно – надо установить кабели достаточного сечения.

Кроме проводов, идущих к стартеру, большие токи могут протекать и по другим цепям автомобиля. Например, тот же провод «массы» тоже должен иметь достаточное сечение. Если в автомобиле установлена мощная акустика, инвертор и прочее «прожорливое» оборудование, для их питания тоже нужны толстые провода.

Возможная причина №3. Повреждение силовых кабелей

А что, если силовые провода в автомобиле стоят, что называется, «родные», то есть с завода? По идее их толщина (сечение) должна быть достаточной, и причиной перегрева клемм они быть не могут. А вот и нет. Еще как могут.

Дело в том, что любой силовой кабель состоит из большого количества токоведущих жил. Это делается для того, чтобы проводник не только имел малое сопротивление, но также был гибким и долговечным. Но долговечный – не значит вечный. Из-за частых манипуляций с АКБ, вибраций, коррозии – жилки в силовых кабелях неминуемо разрушаются. Их со временем становится все меньше и меньше. Соответственно, общее сечение силового кабеля уменьшается, а сопротивление растет. Он начинает греться, и нагревать клемму аккумулятора.

Выход в данном случае только один – своевременная замена силовых кабелей.

Когда говорят «стартер берет на себя», то это означает, что он потребляет больше тока, чем обычно. Соответственно, сила протекающего через клеммы АКБ тока увеличивается. А как показывает все та же формула, при росте силы тока увеличивается и количество выделяемого тепла. Если, при этом, есть еще и плохие контакты, двигатель не запускается с «пол тычка» (увеличивается t), то наше Q растет по всем трем направлениям.

Стартер – довольно сложное устройство, и «брать на себя» он может по многим причинам. Все они делятся на две большие категории – механические и электрические. К механическим причинам относятся все поломки, из-за которых вращению ротора стартера оказывается сопротивление. Износ втулок, загрязнение, подклинивание, проблемы с мотором (стартеру тяжело его прокрутить) – все это оказывает механическое сопротивление. Из-за него стартер, чтобы работать, потребляет больше тока.

Вторая категория причин – по электрической части. Сюда относятся все поломки, из-за которых через стартер протекает большой ток. Возможен износ щеток, засорение коллектора, короткие замыкания в обмотках ротора, замыкания на корпус и так далее.

Возможная причина №5. Короткое замыкание в проводке

Такое случается достаточно редко при условии, что электропроводка автомобиля не подвергалась серьезным переделкам с пренебрежением мер безопасности. Например, если подключить какой-либо прибор напрямую к АКБ, побрезговав плавким предохранителем, то поломка этого прибора может вызвать короткое замыкание. При нем ток через клеммы аккумулятора вырастет в разы (здесь и закон Ома уже сработает), что может привести не только к нагреву, но и к возгоранию.

Короткое замыкание также часто встречается и в цепях, в которых есть предохранители. Нередко после выхода их из строя они заменяются на новые с большим номиналом. В результате своевременно они не срабатывают, что приводит к серьезным проблемам.

Поврежденная изоляция, небрежные скрутки, избыточная влага – все это тоже может стать причиной короткого замыкания. При этом не обязательно будет наблюдаться характерный запах и дым, а вот нагрев клемм аккумулятора может быть весьма заметным.

Возможная причина №6. Большая и длительная нагрузка на АКБ

Довольно часто клеммы аккумулятора греются тогда, когда он долго используется во время стоянки для питания мощных потребителей. Это может быть и многоваттная акустика, и холодильник, и инвертор. Сегодня в автомобиле можно включить практически все, что угодно, вплоть до чайника и кипятильника. Чем это чревато?

Когда двигатель не работает, то абсолютно вся потребляемая электроэнергия берется из аккумулятора. Если включен мощный прибор, то сила потребляемого им тока напрямую зависит от мощности. А если учесть, что он работает длительное время, то рассмотренное выше Q будет расти сразу по двум направлениям. Третье направление неминуемо тоже добавится, если мощный прибор подключен тонкими проводами, которые плохо прикручены, окислились, подгнили и так далее.

Для полного понимания этого пункта кратко рассмотрим, что значит – большая нагрузка на АКБ? Ее можно рассчитать, и сравнить в рекомендуемыми производителем параметрами. Так вот. Любая аккумуляторная батарея для автомобиля будет служить долго и надежно, если ее не разряжать в течение длительного времени токами, превышающими 1/10 ее емкости.

Это означает, что для АКБ емкостью 60 А*ч «безвредные» токи разряда не выходят за пределы 6 А. Как узнать, сколько ампер отдает батарея на питание того или иного прибора? По его мощности. Например, выехав на природу, вы включили акустическую систему мощностью всего 150 Вт. Чтобы узнать силу тока, надо эту мощность разделить на напряжение, которое в данном случае примерно 12 В. Получается, что такая музыка берет из АКБ ток порядка 12 А. Соответственно, при АКБ на 60 А*ч нагрузка на нее будет превышать рекомендуемую в два раза. Нагрев клемм – обеспечен.

Возможная причина №7. Не работает генератор

Эта причина имеет некоторые сходства с предыдущей. Если во время движения при работающем двигателе генератор прекращает работать, то все системы автомобиля начинают питаться от АКБ. Токи через клеммы соответствующие, а отсюда и нагрев. То же самое может наблюдаться, если генератор не обладает достаточной мощностью (износ или неподходящая модель), чтобы обеспечить энергией все включенные потребители.

Итоги

В итоге видим, что причину перегрева клемм аккумулятора следует искать сразу в нескольких направлениях. Чаще всего такой дефект связан, конечно же, с плохими контактами, а потому легко и недорого устраняется. Гораздо сложнее искать причину, если «виновен» стартер, генератор или внештатные потребители с большой потребляемой мощностью.
 

Схожий материал

НАБОР ДЛЯ БЫСТРОГО РЕМОНТА БЕСКАМЕРНЫХ ШИН: особенности выбора и применения

7 мифов о хранении автомобильных шин

История шин Sumitomo / Сумитомо

История шин Continental / Континенталь

Мотоциклы Индиан. История одной легенды.

Как исправить провисшую дверь на нерегулируемых петлях

Можно ли поставить аккумулятор большей емкости на автомобиль?

5 способов как узнать расход топлива на 100 км

Алгоритм проверки утечки тока в автомобиле

5 народных средств для чернения резины в домашних условиях

Вольтметр для автомобиля: как подключить и правильно использовать

Стартер берет на себя: симптомы и причины

Пусковой ток стартера: как измерить и зачем это нужно?

7 возможных причин почему ГРЕЕТСЯ КЛЕММА АККУМУЛЯТОРА на автомобиле

5 вариантов КУДА ДЕВАТЬ Б/У АККУМУЛЯТОР от автомобиля

7 возможных причин хронического НЕДОЗАРЯДА АККУМУЛЯТОРА

7 способов повысить НАПРЯЖЕНИЕ БОРТОВОЙ СЕТИ

ДЕСУЛЬФАТАЦИЯ АККУМУЛЯТОРА обычным зарядным устройством

Как определить реальную ЕМКОСТЬ АККУМУЛЯТОРА

Простая проверка системы охлаждения двигателя без разборки

5 способов как проверить термостат системы охлаждения автомобиля

33 совета на что смотреть при покупке автомобиля

7 народных средств для эффективного удаления битумных пятен с автомобиля

Простейшая противоугонка своими руками (две схемы)

Как фотографировать машину для продажи

Как ездить в гололед на машине и не попасть в ДТП

10 проверенных советов как продлить срок службы аккумулятора автомобиля

Как восстановить аккумулятор автомобиля или добить его окончательно

Как выбрать аккумулятор для автомобиля — вредные советы и заблуждения

Как заряжать гелевый аккумулятор — ответы на 5 важных вопросов

7 обязательных правил как заряжать AGM аккумуляторы

20 причин биения и вибрации руля — методика поиска неисправности

Десульфатация автомобильного аккумулятора

Как подключить вольтметр в машине и правильно им пользоваться

Что делать, если греются клеммы на аккумуляторе

Проблема греющихся аккумуляторных клемм способна доставить массу неудобств водителю. Самая главная опасность кроется в обесточивании приборов и преждевременной разрядке АКБ. Ещё хуже, если на дороге произойдёт замыкание в цепи, которое чревато пожаром. Поэтому необходимо периодически контролировать состояние аккумуляторных контактов.

Перегрев контактов аккумуляторной батареи может обнаружиться как в зимнее, так и в летнее время года. Явление может наблюдаться во время запуска мотора или уже на работающем двигателе. Контактные группы способны разогреваться настолько, что, если капнуть на них водой, то выделяется пар.

Почему греется плюсовой или минусовой контакт

На протяжении участка цепи между аккумулятором, а также стартером, генератором возникают очень большие токи. А, к примеру, в холодную пору года они могут достигать 600 ампер. Любой тонкий провод не способен справиться с такой силой тока. Поэтому используются толстые провода, рассчитанные на большие нагрузки.

Причин, почему могут греться клеммы на аккумуляторе, может быть много. Но в любом случае это какая-либо из неисправностей в электрической цепи транспортного средства. Опытные электрики знают, что при таких симптомах стоит опасаться короткого замыкания в каком-то из мест соединений. Может идти речь о повреждении кабеля. Необходимо найти неисправность и устранить её.

В числе основных причин, почему греется плюсовая клемма либо «минус», могут быть следующие:

  1. Плохой контакт с заземлением приводит к нагреванию минусового провода из-за возросшей нагрузки. Для диагностики такой проблемы достаточно увеличить число оборотов двигателя.
  2. Низкое качество самих контактов, которые обычно приобретаются вместе с аккумулятором. В этом случае греться могут сразу обе клеммы.
  3. Со временем неизбежны окислительные процессы. Обнаружить их можно, осмотрев клеммы на свет — наличие потемнений или зелёных следов говорит о том, что они окислились и требуют чистки.
  4. Ещё одна причина, почему нагревается плюсовой контакт, заключается в несоответствии размеров. Это может привести к неплотному соединению.
  5. Механическое повреждение кабеля на любом участке. Приводит к потерям тока, поступающего от генератора.

Нередко возникает такая ситуация, когда нет достаточного контакта с кузовом. Вследствие этого будет перегреваться именно отрицательная клемма вместе с проводом. Дело в том, что именно он заземлён на кузов, а дальше от него питаются стартер и генератор. Причина может крыться в самом кабеле, хотя водитель ошибочно предполагает, что виноват токовывод. А вот плюсовой контакт обычно перегревается от плохого соединения или образовавшихся окислов.

Опасность разогрева клемм АКБ

Повышенная температура контактов АКБ несёт в себе определённые угрозы для всей электрической цепи автомобиля. Такое явление чревато следующими последствиями:

  • возрастающая температура токовыводов может привести к сильному перегреву электролита в банках батареи, из-за этого рабочая масса пересыхает и осыпается, а характеристики аккумулятора существенно снижаются;
  • периодические нагревы и остывания контактов приводят к тому, что физические свойства корпуса устройства изменяются, и он частично деформируется;
  • повышение температурного режима вызывает постепенную деформацию и самих тоководов;
  • разряд батареи, который любой водитель ощутит уже при следующем запуске двигателя своего автомобиля;
  • выход из строя отдельных узлов или элементов цепи, например, предохранителей, диодного моста и так далее;
  • перегрев любого участка цепи способен стать причиной возгорания.

После запуска силового агрегата может и не наблюдаться повышения температуры на токовыводах. Зато после того как будут включены токопотребители (обогрев зеркал или сидений, освещение, аудиоустройства), начинается повышенное нагревание клеммы. В ряде случаев она бывает настолько горячей, что до неё нельзя даже дотронуться. При таком количестве работающих приборов генератор не вытягивает возросшей нагрузки. Часть электричества приходится брать от аккумуляторной батареи, и при плохих контактах клеммы будут перегреваться.

Как бороться с нагревом клемм

Любая борьба с перегревом основана на приведении в исправность электрооборудования автомобиля. Для этого необходимо проверить работоспособность всех проводников, а также не перегружать сеть излишним электрооборудованием. Также нужно оценить сечение кабеля и допустимую нагрузку на него, которая напрямую связана с количеством и мощностью электрических приборов.

Сильно греться клеммы аккумулятора могут вследствие ненадёжного соединения и плохого контакта. Зачастую это явление возникает по причине использования неподходящих токовыводов, отличающихся от рекомендованных производителем АКБ. Отдельное внимание следует уделить плотности прилегания токоведущих частей. В результате вибрации может наблюдаться их смещение.

Необходимо проверять состояние проводников в концевиках. Если окажется, что они болтаются, то их стоит дополнительно обжать и пропаять места соединений. Таким образом, они будут меньше подвержены нежелательным последствиям вибрации. Слишком повреждённые детали нужно заменять без жалости и сожаления.

Нередко повышенная температура на клеммах появляется из-за окисления либо ненадёжной фиксации. Поэтому соединения должны быть затянуты максимально туго, но без пережима. Перед затяжкой каждого соединения нужно брать наждачную шкурку и зачищать их для обеспечения лучшей токопроводности. В отдельных случаях любые профилактические мероприятия не приводят к успеху, но решением вопроса может стать полная замена токовыводов на новые.

Одним из самых опасных для токовыводов аккумуляторной батареи являются образования окислов. По этой причине возрастает сопротивление и повышается температура электропроводки. Окислы представляют собой своеобразную плёнку, которая образуется при взаимодействии влаги и кислорода. С другой стороны, вследствие возрастания температуры интенсивность процессов окисления тоже возрастает.

Поэтому их нужно удалять в обязательном порядке, а для этого зачищать контакты и открытую проводку без изоляции в местах соединений металлической щёткой. Наиболее важные участки можно дополнительно обрабатывать специальной смазкой или токопроводящими пастами. Периодически надо проводить профилактические мероприятия: очищать от следов коррозии, подтягивать места соединений.

Итак, как мы выяснили выше, недооценивать перегревающиеся клеммы ни в коем случае нельзя. Как минимум, это может грозить выходом из строя самого аккумулятора вследствие частичной, но постоянной потери мощности. Гораздо более серьёзные последствия вызывает оплавление изоляции кабелей. Может произойти короткое замыкание и возгорание транспортного средства. Вот почему регулярная профилактика состояния клемм и проводки является частью общего технического обслуживания автомобиля.

Греется плюсовая клема и стартер крутит в натяжку. [Архив]


Просмотр полной версии : Греется плюсовая клема и стартер крутит в натяжку.



вапва

07.03.2013, 20:03

Греется плюсовая клема и стартер крутит в натяжку.


протяни контакты.


вапва

07.03.2013, 20:19

в смысле…


в прямом. протяни клеммы на аккуме и на стартере.


на стартере короткое возможно, надо обмотки проверять


Дополнительно могут быть изношены втулки стартера, происходит перекос ротора, его клинит. Меняются втулки достаточно легко, заодно и на межвитковое можно проверить, и коллектор со щетками можно обслужить.


1. Заменить втулки.
2. Щетки (контактная группа).
3. Прочистить втягивающее. НО !!! Смазку (солидол, литол) не запихивать. Промыть ВД-шкой и вытереть насухо!
4. Снять окислы на клеммах АКБ (зелень, белый порошок-налет).
5. Вырезать из войлока шайбы и подложить на + и — АКБ, а потом только присоединить клеммы. Шайбы пропитать маслом моторным. На клеммы АКБ тоже можно капнуть.
Если перечисленное не поможет, то — коротыш в роторе стартера. Под замену ротор или стартер… Коротыш «лечить» безыдейно….


вапва

08.03.2013, 15:42

Стартер сегодня проверяли все ОК.Проблема осталась….


вапва

08.03.2013, 15:44

попробую поменять провод который идет от АКБ к стартеру…


вапва

08.03.2013, 19:08

не помогло….


Стартер сегодня проверяли все ОК.Проблема осталась….

Уточни как проверяли?Если втулки изношены,то в холостую он будет крутить «дай дорогу» под нагрузкой якорь становиться наперекосяк и отсюда усиление нагрузки.


Стартер сегодня проверяли все ОК.Проблема осталась….

А как стартер проверяли? Желательно снять с машины и проверить на заряженном аккуме, тогда можно отсечь другие неисправности. Если пусковое реле срабатывает, бендикс выскакивает, стартер крутится легко, то следует искать в двух местах: провод на аккум и провод на замок зажигания. По идее, стартер более ничего не должен иметь. Ну еще масса на двигателе.


вапва

09.03.2013, 15:53

всем спсб . УСЕ ОК……


Дрюн

09.03.2013, 18:15

Замерь напряжение на аккумуляторе.Если клемма греется при вращении стартера — не страшно.При пуске ток ого-го


Николай1104

17.03.2013, 10:15

с мотри втягиваяший . надо его разобрать . я встречался стакой хренью . только не знаю грелась ли клемма я не смотрел . у меня втягиваяший не разборный был . за чеканеный но русскому человеку не проблепа я про пилил с двух сторон и расчеканил . потом у видел. че за ***** там такое говно . но не че почистил промыл подложил шайбы под болты. потом за чеканил с бокситочкой и вуаля . мотор паслает как пуля . если что отпишись . а еше почитал говорят что втулки на до смотреть . то это все хрень не надо не смотри их там нет там ролики стоя подшипники . норм там все . пишут так кто не разбирал.


…. говорят что втулки на до смотреть . то это все хрень не надо не смотри их там нет там ролики стоя подшипники . норм там все . пишут так кто не разбирал.
У меня на 1,3 HCS стоят втулки, и сам разбирал, и сам менял, и крутит как пуля сейчас!


вапва

17.03.2013, 14:44

Стартер и втягующее проверяли все ОК.


Стартер и втягующее проверяли все ОК.
Осталось провод на аккум и ветка на замок, более по электрике там ничего нет, в принципе.


ЮраЗбараж

17.03.2013, 14:50

с мотри втягиваяший . надо его разобрать . я встречался стакой хренью . только не знаю грелась ли клемма я не смотрел . у меня втягиваяший не разборный был . за чеканеный но русскому человеку не проблепа я про пилил с двух сторон и расчеканил . потом у видел. че за ***** там такое говно . но не че почистил промыл подложил шайбы под болты. потом за чеканил с бокситочкой и вуаля . мотор паслает как пуля . если что отпишись . а еше почитал говорят что втулки на до смотреть . то это все хрень не надо не смотри их там нет там ролики стоя подшипники . норм там все . пишут так кто не разбирал.

Извените,но такая мисль что ето ви нерозбирали никогда… Обесняю-простой стартер(без редуктора),в нем стоят втулки (2 штуки) , стартер с редуктором(либо так званий дизельний),то в нем стоят-3 штуки втулок и 1 роликовий подшипник(находитса в чулке стартера)… Я ГОВОРЮ ЗА СТАРТЕРА ФИРМИ BOSCH для FORD ESCORT 1990-1996рр.


вапва

17.03.2013, 14:54

Я мозгом поеду с етой машиной…..По городу идет нормально как только выезжаю за город на прямую начинаются приступы…..На высоких оборотах начинает дергатся.Сбиваю газ включаю нейтральную-глохнет.На ходу после того как заглохла включаю 3 передачу — сцуко заводится и едет как ни в чем не бывало….


вапва

17.03.2013, 14:56

карб.смотрели .Трубки смотрели .Вентиляцию тоже…


вапва

17.03.2013, 14:58

Катушку зажигания поменял….


Николай1104

20.03.2013, 15:46

корбюратору хана . ставь от 9 ки солекс и все и забудь .


Николай1104

20.03.2013, 15:50

1.3 и 1.6 мотора эндура они одинаковые втулок там нет . стоят роликовые подшипники . а там уже не родной походу .или их уже поменяли на втулки . а это зря
.


Николай1104

20.03.2013, 15:51

1.3 и 1.6 мотора эндура они одинаковые втулок там нет . стоят роликовые подшипники . а там уже не родной походу .или их уже поменяли на втулки . а это зря


Николай1104

20.03.2013, 15:52

1.3 и 1.6 мотора эндура они одинаковые втулок там нет . стоят роликовые подшипники . а там уже не родной походу .или их уже поменяли на втулки . а это зря
У меня на 1,3 HCS стоят втулки, и сам разбирал, и сам менял, и крутит как пуля сейчас!


1.3 и 1.6 мотора эндура они одинаковые втулок там нет . стоят роликовые подшипники . а там уже не родной походу .или их уже поменяли на втулки . а это зря

Стартер родной стоит, и следов колхоза нет, а двигатель не эндура, а JB. Может на эндуре по другому, не знаю.


вапва

20.03.2013, 18:19

А может бензонасос не докачивает?Как его можно проверить?


А может бензонасос не докачивает?Как его можно проверить? Да трубку от насоса с карба сними, воткни в бутылку пластмассовую, предварительно выдернув предохранитель зажигания, покрути стартером и посмотри на подачу бензина.


Николай1104

21.03.2013, 15:18

Стартер родной стоит, и следов колхоза нет, а двигатель не эндура, а JB. Может на эндуре по другому, не знаю.

может быть .JB не разбирал незнаю.


вапва

21.03.2013, 17:53

попробую карб поменять.Нашел Солекс(россия) за 400 грн(БУ).Там доработок по замене не надо?Стоит Weber///


Николай1104

21.03.2013, 18:40

надо . надо пластину милиметров 8 . хотя . смотря какой мотор 1.3 надо пластину сделать так как подошва на солексе 12 сантиметров диоганаль а на weber 10 см и шпильки .болты не совподают надо пластину . а на 1.6 zitek cvh и выше можно не делать . там можно расверлить подошву и все ок .ну короче там особых проблем нет . у меня проблема была я не мог найти железо . а воздушку еше надо другую . можно и фордовскую но там тоже пластину надо делать я сделал так как от нечего делать. от пишись если что.


Николай1104

21.03.2013, 18:41

попробую карб поменять.Нашел Солекс(россия) за 400 грн(БУ).Там доработок по замене не надо?Стоит Weber///

надо . надо пластину милиметров 8 . хотя . смотря какой мотор 1.3 надо пластину сделать так как подошва на солексе 12 сантиметров диоганаль а на weber 10 см и шпильки .болты не совподают надо пластину . а на 1.6 zitek cvh и выше можно не делать . там можно расверлить подошву и все ок .ну короче там особых проблем нет . у меня проблема была я не мог найти железо . а воздушку еше надо другую . можно и фордовскую но там тоже пластину надо делать я сделал так как от нечего делать. от пишись если что.


вапва

21.03.2013, 19:05

у мну движок 1.6.Николай1104 вы себе ставили Солекс?как впечатления?


Николай1104

21.03.2013, 19:59

огонь просто огонь . проблемы все отпали . у меня 1.3 мотор как я говорил делал пластину . до этого стоял weber . такое говно . машина не как не хотела ехать .свечи заливало .на холостом вобше не работало .из глушителя черный дым как на дизиле бля. на сотку литров 25 зжирало . отвез мышину мастеру настраевал мне за 1500руб . не чего не зделал просил деньги и тут мое терпение лопнуло ПОСТАВИЛ И ЗАБЫЛ . правда у меня корбюратор не очень . поставлю новый . а так с этим пока не нагреется он досвоего провалы есть но у меня он так и был стоял на 8 ке 1.3 мотор . в морозы 30 . завожу легко . инжектора не которые не заводятся . СТАВЬ И НЕ ДУМАЙ , ДА ЗАБУДЬ
у мну движок 1.6.Николай1104 вы себе ставили Солекс?как впечатления?


Николай1104

21.03.2013, 20:00

огонь просто огонь . проблемы все отпали . у меня 1.3 мотор как я говорил делал пластину . до этого стоял weber . такое говно . машина не как не хотела ехать .свечи заливало .на холостом вобше не работало .из глушителя черный дым как на дизиле бля. на сотку литров 25 зжирало . отвез мышину мастеру настраевал мне за 1500руб . не чего не зделал просил деньги и тут мое терпение лопнуло ПОСТАВИЛ И ЗАБЫЛ . правда у меня корбюратор не очень . поставлю новый . а так с этим пока не нагреется он досвоего провалы есть но у меня он так и был стоял на 8 ке 1.3 мотор . в морозы 30 . завожу легко . инжектора не которые не заводятся . СТАВЬ И НЕ ДУМАЙ , ДА ЗАБУДЬ


Powered by vBulletin® Version 4.2.5 Copyright © 2021 vBulletin Solutions, Inc. All rights reserved. Перевод: zCarot
SEO by vBSEO ©2011, Crawlability, Inc.

Греется клемма на аккумуляторе: причины и последствия

Основным условием бесперебойной работы любого оборудования автомобиля является надежная коммутация всех элементов с выводами источника питания. При использовании большого количества потребителей высокой мощности может происходить перегрев клемм аккумулятора. Повышение температуры токопроводящих частей источника питания пагубно сказывается на внутренних процессах и может привести к преждевременному выходу из строя батареи. Рассмотри причины и методы устранения возможного разогрева контактов.

Почему греется клемма на аккумуляторе

При запуске автомобиля от аккумулятора к двигателю и обратно от генератора к батарее протекают токи повышенного значения. В зимний период максимальное показание тока может достигать значения до 600 А. В результате применения тонких проводов не рассчитанных на такой ампераж, возможен перегрев проводов и самих клемм непосредственно.

Важно! Плюсовые и минусовые провода должны быть рассчитаны на максимальные показания протекающих по ним токов.

Многие автомобилисты сталкивались с проблемой, когда нагревается клемма. Основными причинами могут быть:

  1. Плохая коммутация клемм с выводами аккумулятора. Причиной может быть как заводской брак, так и течение времени. В этой ситуации необходимо вовремя заметить и исправить.
  2. Возникновение оксидной пленки. Такие неприятности могут возникать относительно редко, тем не менее необходимо следить за чистотой выводов батареи, а также внутренней поверхности контактов.
  3. Увеличение сопротивления коммутирующих проводов. С течением времени может происходить преломление проводов, в результате чего возможен их постепенный разрыв. Из курса физики можно вспомнить, что при уменьшении площади сечения увеличивается сопротивление провода. В таком случае следует заменить неисправные проводники.
  4. В случае, когда нагревается минусовая клемма аккумулятора необходимо проверить соединения с кузовом. Очень часто автовладельцы могут путать, полагая, что греется клемма, но нагрев возникает на проводе.
  5. Греется плюсовая клемма на аккумуляторе причина здесь может быть только, если плохой контакт на наконечнике либо образовались окислы, которые необходимо устранить. В некоторых случаях перегрев может возникнуть в результате неисправности самих выводов на АКБ.

Опасность разогрева клемм для АКБ

Само явление перегрева на клеммах аккумулятора пагубно сказывается на работоспособности батареи. Рассмотрим несколько пагубных последствий систематического нагрева контакта источника питания:

  • В результате плохой коммутации может повышаться температура внутренних электродов батареи. Разогрев пластин аккумулятора приводит к интенсивному испарению электролита, такое явление может привести к преждевременному выходу из строя источника питания в результате пересыхания банок и осыпания электродов. Емкость резко уменьшается.
  • Постоянное расширение и сжатие конструктивных элементов аккумулятора в результате нагрева клемм, приводит к появлению микротрещин в корпусе откуда в последствии будет испаряться и вытекать электролит.
  • Если контакт начал постоянно перегреваться выше температуры плавления свинца, такое может привести к деформации пластин, как следствие короткое замыкание электродов.

Перегрев под нагрузкой

Часто перегрев, может происходить при запуске автомобильной техники. Двигатель запустился, начинаем подавать нагрузку контакты стали перегреваться. Происходить такое явление может по причине невозможности генератора справиться с повышенными нагрузками (современная техника оснащена огромным количеством различных приспособлений и устройств для повышения комфортности), поэтому начинается забор энергии от аккумулятора. Если на клеммах присутствует окисел, либо плохая коммутация они будут греться.

Совет! При эксплуатации автомобиля необходимо контролировать мощность потребления бортовых приборов для того, чтобы избежать возникновения разогрева клемм на источнике питания.

Способы устранить разогрев клемм

Для того, чтобы избавиться от повышения температуры на клеммах необходимо соблюдать следующие правила:

  • Первоначально необходимо использовать только исправное электрооборудование.
  • Перед установкой приборов проверить соответствие номинального значения мощности и максимальных токов для данной бортовой сети. При необходимости заменить проводники, рассчитанные на высокие токи.
  • Использовать источник питания с выводами, которые соответствуют клеммам на проводах. В случае приобретения аккумулятора с отличающимися выводами для нормальной коммутации клеммы на проводниках рекомендуется заменить.
  • Необходимо контролировать за надежностью соединений проводов с наконечниками. Рекомендуется подтягивать, а в некоторых случаях пропаивать места коммутации проводников.
  • Следует систематически контролировать поверхность выводов аккумуляторов и внутренней поверхности клемм от появления трещин, щербления и задиров. В случае их проявления необходимо затирать их шкуркой нулевкой.

 

При появлении нагрева контактов или проводов на аккумуляторе необходимо первоначально выяснить причину и отталкиваясь от этого провести правильное обслуживание всех токоведущих частей и поверхностей. Соблюдение правил эксплуатации проводящих частей источника питания может значительно продлить срок службы батареи.

Греются клеммы на аккумуляторе причины

Почему греются клеммы на аккумуляторе


Часто водители обращают внимание, что при езде автомобиля (или даже при работе двигателя на холостом ходу) греется клемма аккумулятора. Многие не придают этому большого значения, полагая, что ничего страшного в таком состоянии нет. Но если не принять вовремя меры по поиску и устранению причины нагрева клемм, то последствия могут быть самыми тяжелыми.

Причины перегрева плюсовой и минусовой клемм в АКБ

При запуске двигателя происходит движение тока от аккумулятора до стартера и свечей, и от генератора до аккумулятора. В холодное время года сила тока может составлять 600 А. Если в машине используется провод с небольшим сечением, то он может нагреться, а вместе с ним повысится температура клемм.

Основные причины нагрева

  1. Плохой контакт клеммы и наконечника аккумулятора (т.е. недостаточно плотное и прочное прилегание). Это происходит из-за мелких дефектов, допущенных на производстве, а также вследствие естественного износа материалов, ослабления притягивающих гаек и болтов при длительной эксплуатации.
  2. Процессы окисления с внутренней стороны контактов. Чтобы устранить эту проблему, нужно вовремя проводить зачистку клемм и наконечников аккумулятора.
  3. Повышение сопротивления материалов. В процессе работы происходит преломление провода, в результате чего снижаются его свойства проводимости, увеличивается сила тока, происходит нагрев металла. Здесь выход только один – заменить провод.
  4. Плохой контакт минусовой клеммы с корпусом машины. Опытные мастера и автовладельцы советуют обращать внимание, что часто нагрев изначально происходит не в клеммах, а в проводах.

Окисление является одной из самых распространенных причин нагревания. Происходит оно из-за того, что сами зажимы и наконечники аккумулятора изготовлены из разных металлов. По законам химии они со временем начинают окисляться в точке контакта из-за разницы в потенциалах.

Самая простая причина – плохая затяжка гайки на крепящем болту. Если есть какое-то пространство между двумя контактами, то между ними происходит образование тепловой энергии. В точку зажима может попасть вода, пыль и прочие посторонние вещества, которые усилят процессы окисления.

Случайное попадание электролита на контакты тоже может вызвать нагревание. Это достаточно опасная причина, но ее очень легко установить. Окисление здесь происходит вследствие химической реакции при взаимодействии металла с кислотой.

Опасность разогрева клемм автомобильного аккумулятора

Постоянный нагрев внутри приводит к:

  • нарушению нормальных процессов электроснабжения всех потребителей в автомобиле;
  • росту температуры внутренних пластин аккумуляторной батареи при повышении сопротивления на контактах, как следствие – закипанию и ускоренному испарению электролита;
  • пересыханию банок, осыпанию металла с пластин, снижению емкости батареи;
  • появлению трещин на корпусе, утечке электролита, полному выходу из строя АКБ.

Если нагрев происходит до температуры плавления свинца и других металлов – то это вызовет полную деформацию пластин и наконечников.

Самая большая опасность в данном случае связана с возможным взрывом и (или) пожаром, который может охватить весь автомобиль.

Как избежать нагрева:

  • диаметр кольца зажима должно быть достаточным для того, чтобы можно было максимально плотно притянуть его при закручивании гайки;
  • чтобы не было проворачивания болта, затяжку надо проводить двумя ключами;
  • нельзя допускать нарушения изоляции проводов.

Если нагрев все-таки происходит, то специалисты не рекомендуют пытаться самостоятельно определить причину такого состояния, если нет достаточного опыта в ремонте автомобильной электрики. Если обнаружилось нагревание клемм (даже небольшое) – то необходимо сразу же обратиться в автосервис, в котором мастера смогут быстро выявить все имеющиеся дефекты.

Если причина кроется в аккумуляторе – то его нужно заменить. Для этого существуют специальные фирмы, в которых принимают на утилизацию отработавшие свой ресурс автомобильные аккумуляторные батареи. Старую АКБ нельзя долго хранить в гараже или во дворе, и ни в коем случае нельзя выкидывать на обычную свалку! Нужно привезти аккумулятор в пункт приема и сдать за деньги. Тут же можно сразу приобрести новую батарею.

ООО «Стандарт» в Москве принимает старые неисправные аккумуляторы от разных видов транспорта:

  • автомобилей;
  • мотоциклов;
  • электромобилей;
  • катеров, моторных лодок, яхт и т.д.

Также компания предлагает большой выбор новых устройств с разными характеристиками.

Греется клемма на аккумуляторе, плюсовая или минусовая. При запуске двигателя и при работе

Эта проблема может проявляться как в зимний (холодный), так и летний (теплый) период времени, и она практически никак не зависит от зимних пусков. Что происходит при запуске или уже при запущенном двигателе, одна из клемм аккумулятора, начинает дико разогреваться, если капнуть на нее водой, то она начнет парить. Почему такое происходит и как с этим бороться, давайте разбираться …

СОДЕРЖАНИЕ СТАТЬИ

В самом начале хочу сказать, что это неисправность может проявляться на различных автомобилях (марка и модель не имеет значения), и зачастую это может быть причиной выхода АКБ из строя, причем за очень короткий период времени.

Почему АКБ выходит из строя

Буквально пару строк, почему может выходить аккумулятор из строя:

  • Разогрев клеммы, а далее разогрев токовывода и после всего АКБ (в том числе и пакетов пластин), провоцирует испарение дистиллированной воды из электролита. Падает емкость пластины могут осыпаться и в общем то в таком режиме батарея прослужит не долго.
  • Если токовывод разогревается, он может оплавлять пластик корпуса, который находится рядом с ним. Появляются микротрещины, через которые начинает испаряться вода из электролита, да и серная кислота зачастую попадает на клемму. НА ней образовываются сильные «окислы» которые еще сильнее препятствуют работе АКБ, возможен недозаряд, плохой пуск
  • ДА и самая банальная причина – корпус может расплавиться от высоких температур. Это редко но бывает, использовать такой источник питания уже нельзя.

НО не только в этом опасность, здесь и до пожара не далеко.

Почему разогревается клемма?

От аккумулятора до стартера, и затем от генератора опять до батареи ходят достаточно большие токи. Подумать только – токи запуска, зимой, могут доходить до 600А. Если вы поставите тонкий провод, то он банально не справится с такой нагрузкой и расплавится у вас на глазах. Вот почему провода такие толстые и основательные, все потому что они рассчитаны на высокие нагрузки.

Смотрим небольшое видео.

Причина не так много и они все банальные:

  • Дело в самой клемме. Между проводом и креплением плохой контакт, бывает сразу с завода, заводской брак (например — отверстие в клемме 10 мм, а провод 8 мм).
  • Бывает со временем, в это место может попадать вода или образовываться окислы. Суть какая, провода и крепления зачастую делаются из разных металлов, разница потенциалов приводит рано или поздно к окислению места контакта и токопроводимость падает в разы.
  • Окислы между клеммой и токовыводом.Такое тоже бывает, но редко, если контакт плохой, тогда ток должен проходить по очень узкому месту соприкосновения. Отсюда может идти разогрев.
  • Провод. Иногда страдает сам провод, скажем от нечаянного разрыва посередине, который не виден глазу. То есть порвали несколько нитей, и нагрузка которую он сможет держать уменьшилась.
  • Плохой контакт с кузовом. Зачастую греется именно минусовой кабель и после клемма. Все потому что он прикручен к кузову автомобиля, а далее от кузова «запитывается» и стартер и генератор. На современных иномарках, минусовой кабель достаточно короткий (на некоторых авто его крепят к блоку двигателя). Так вот — будет разогреваться кабель, но вы будете ошибочно думать что клемма (хотя при такой неисправности, скорее всего начнет оправляться оплетка самого провода).

Плюсовая клемма – может греться только от плохого контакта или опять же от окислов, которые образовались между креплением и токовыводом.

Даю нагрузку — идет перегрев

Зачастую может быть и такая ситуация. Запускаете машину вроде все хорошо, но после того как включаете нагрузку, скажем подогревы сидений, зеркал, лобового стекла и прочее, клемма начинает греться! Почему?

И тут все просто и работают причины, которые я описал выше. Все дело в том, что генератор один может не справляться с такой нагрузкой (особенно когда работают и фары, и магнитола, и подсветка приборов), мощность его ограничена. Поэтому часть энергии берется от АКБ, а если у вас контакт плохой, либо есть окислы – это место будет греться.

Что делать?

Все банально и просто, есть все несколько пунктов:

  • Нужно очистить все окислы. Если они повторно проявляются на поверхности батареи, скажем с одной или с другой стороны, нужно смотреть ее на герметичность.
  • Посмотреть провод на пробои, разрывы – если они есть, то провод лучше заменить.
  • Нужно смотреть место соприкосновения кабеля и клеммы. Зачастую дело именно здесь. Если это минусовой – его легко можно снять и проверить дома. Иногда легче отрезать кабель от клеммы, купить новую (сейчас продаются усовершенствованные медные или латунные для аудио техники, у них кстати и крепление хорошее, на болтах) и далее установить на свой автомобиль

Как правило, все проблемы сразу уходят. Если не предпринимать ничего, то как минимум ваш аккумулятор выйдет из строя (вы не запустите свой автомобиль), как максимум и до пожара не далеко, оплетка провода может оплавится и замкнуть. ТАК ЧТО УСТРАНЯТЬ ОБЯЗАТЕЛЬНО!

НА этом заканчиваю, думаю было полезно, читайте наш АВТОБЛОГ, подписывайтесь на канал в YOUTUBE.

(20 голосов, средний: 4,65 из 5)

Похожие новости

Пусковой ток аккумулятора. Какой должен быть и что если он больш.

Гибридный или кальциевый аккумулятор. Какой лучше выбрать? Плюс .

Аккумуляторы WET, что это за тип. Чем отличается от AGM и GEL. Н.

Почему греются клеммы на аккумуляторе?

Работа автомобиля и электрооборудования невозможна без надежных контактов. Это относится к цепям, работающим с большими токовыми нагрузками. Владельцы автомобилей замечали, что при высокой влажности воздуха или резких температурных перепадах часто греется плюсовая клемма аккумулятора.

Кротко о клеммах

Задача клемм – обеспечить прочное соединение проводов, входящих в бортовую сеть, с контактами аккумулятора. Промышленность выпускает следующие стандарты контактов, применяемых в аккумуляторах:

Тип А представляет собой стандарт европейского образца. Контакты, установленные на АКБ, имеют вид штырей в форме конуса. Верхняя часть с размером отрицательного вывода 17,9 мм, положительного – 19,5 мм. Такие батареи встречаются на всех автомобилях европейского производства.

Тип В относится к стандарту японскому (или азиатскому). Он отличается более тонкими клеммами: положительная имеет диаметр 12,7 мм, отрицательная – 11,1 мм.

Типы F и G относятся к американскому стандарту. Разновидность типа F предназначена для винтового крепления, G – болтового.

Встречаются батареи с контактами типа Т. Они сделаны под болт, но российского стандарта. Тип Е относится к европейским стандартам.

В нашей стране наиболее употребляемые изделия – типы А и В. Их выпускает большинство производителей аккумуляторов.

На клемму накидывается контакт в виде тяжелого хомута и затягивается болтом и гайкой. Это придает плотность соединению проводов, которое может осуществляться с помощью:

  • съемной пластины;
  • пайки или сварки;
  • запрессовки в патрон из металла.

Последняя встречается в автомобилестроении часто.

Качественное соединение обладает минимальным электрическим сопротивлением. Для достижения этого параметра при изготовлении деталей используются материалы с высокой электрической проводимостью:

  • свинец;
  • медь и ее сплавы;
  • бронза;
  • сталь;
  • латунь;
  • сплавы алюминия.

Наиболее часто встречаются контакты из свинца. Они при перегреве плавятся и размыкают соединение. Аккумуляторные клеммы должны иметь:

  • большую массу;
  • механическую прочность;
  • износоустойчивость;
  • обеспечивать простоту установки и снятия проводов.

Тяжелые контакты хорошо держатся на клеммах и не позволяют потеряться контакту при движении автомобиля. Прочность дает возможность многократно выполнять операции ослабления и затягивания хомутов.

Почему греется плюсовой или минусовой контакт

В штатной работе двигателя постоянно задействован генератор, который обеспечивает зарядку аккумулятора током 10 А и больше. Низкое сопротивление материала не дает возможности контактам нагреться. Если встроенный источник электроэнергии перестает работать, все токи на себя принимает АКБ. Высокая нагрузка вызывает перегрев клемм.

Но чаще он происходит при запуске двигателя. В это время стартер должен провернуть вал двигателя. Пусковой ток растет и может достичь величины 350 А летом, 600 А – зимой. Токовыводы на аккумуляторе нагреваются до высоких температур.

Есть и другие причины нагрева:

  • неправильный выбор диаметра проводников;
  • увеличение температуры в другом месте;
  • превышение допустимых токов.

При выборе токопроводящего материала меньшего сечения возможен перегрев. Нагревание появляется при окислении контактов. При износе подшипников стартер будет подклинивать, что тоже приводит к нагреву клемм АКБ. Подобное случается и при нарушениях в работе генератора.

Опасность разогрева клемм АКБ

Перегрев контактов опасен для АКБ. Повышение температуры в банках ведет к интенсивному испарению электролита и осыпанию пластин. Результат – потеря емкости батареи, выход аккумулятора из строя. Частые нагрев и остывание приводят к появлению трещин на стенках корпуса. Дефекты постепенно увеличиваются, через полученное отверстие происходит подтекание электролита. При сильном нагреве (до 300°С) начнут плавиться свинцовые клеммы.

Как бороться с нагревом клемм

Для устранения рассмотренных случаев владельцу автомобиля требуется следить за исправностью транспортного средства и электрооборудования. При замене деталей в бортовой электросистеме проверяются токовые нагрузки. Соединения делаются плотными. Провода туго приворачивают и проверяют плотность в наконечниках. При необходимости дополнительно обжимают и пропаивают жгуты кабелей.

Если с кузовом контакт плохой, это также вызывает перегрев клемм. Нужно проверить соединения и жгуты. Изношенные детали меняются. К износу приводят частые отключения от аккумулятора. При каждом соединении нужно зачищать поверхности токовыводов, удалять окислы шкуркой, затем обрабатывать клеммы защитной смазкой.

Для безопасности пользования автомобилем необходимо:

  • чаще проверять и чистить контакты;
  • удалять окислы.

Если через некоторое время проблема возникает вновь, проверяется на герметичность АКБ. Батарею с трещинами необходимо заменить.

0 0 голоса

Рейтинг статьи

Зажигание> Электрооборудование> Резистивное нагревание

Зажигание> Электрооборудование> Резистивное нагревание

Резистивный нагрев
Свинцово-кислотные батареи

Свинцово-кислотные батареи служили основой двигателя. транспортных средств в течение многих десятилетий, снабжая электроэнергией для запуска двигателя и аксессуары для бега. Электрохимическая система внутри батареи состоит из свинца, диоксида свинца. и серная кислота.Со временем многие дизайны введены доработки для повышения надежности, сервиса жизнь и долговечность.

При расследовании пожара имеется несколько обстоятельств. в котором аккумуляторные батареи могут выступать в качестве источника воспламенения.

1) Смещение или физическое повреждение аккумулятора может привести к короткому замыканию. Свободный аккумулятор может сместиться из-за вибрации или неровностей дороги, что приведет к контакту клемм проводящие поверхности.Если поддерживать контакт, это может привести к перегреву и возгоранию. Уровень заряда батареи высокий; обычно ожидается, что любая короткометражка, включающая клемма аккумулятора или заземляющий кабель оставят хорошо заметный след. Столкновение Повреждение может вызвать смещение аккумулятора, короткое замыкание кабелей или повреждение корпуса аккумулятора, что может привести к возгоранию.

Пример пожара, вызванного повреждение аккумулятора в результате столкновения можно найти в отчете о краш-тесте General Motors [1].Этот тест проводился со стандартными жидкостями и заряженным аккумулятором. Во время испытания из-за деформации острый винт пробил корпус аккумулятор, закорачивая внутренние пластины, и что привело к пожару.

2) Батарейки выпуска газообразный водород во время зарядки. Были случаи газообразного водорода воспламенение при воздействии искр от статического электричества или других источников. Эта тема будет обсуждаться в разделе «Топлива». Раздел.

3) Корпуса аккумуляторов также могут нагреваться до точки возгорания. Это не кажется быть частым явлением, но задокументировано как минимум 2 режима отказа:

а) Проводящий Загрязнение поверхности аккумулятора может вызвать короткое замыкание с высоким сопротивлением. между клеммами аккумулятора. Например, утечка электролита на поверхность батарея создаст цепь между клеммами [4]. В большинстве случаев можно было бы ожидайте, что сам нагрев изменит местные условия и тем самым прервет контур без нагрева до точки возгорания.Однако в редких случаях при сохранении короткого замыкания аккумулятор может перегреться и воспламениться [4]. Работа автомобиля с ослабленными или отсутствующими прижимами может вызвать вибрацию аккумулятора. и утечка электролита через форточки.

б) Злоупотребление батареей также может привести к перегреву [2-6]. При перезарядке аккумуляторов выделяется тепло, водород выделяется газ, и уровень электролита снижается. В старом, оскорбленном или перезаряженные батареи, внутреннее повреждение батареи может усугубиться использованием.Ожидается, что этот режим отказа будет сопровождаться запахом. серы (тухлые яйца). История жалоб на систему зарядки или аккумулятор проблемы указывает на повышенную вероятность того, что пожар был вызван перегрев АКБ.

c) Последние тесты на неправильное использование аккумуляторной батареи (в соответствии с SAE J2464, «Электромобиль Тестирование на неправильное использование батарей ») 12 и 36-вольтовые батареи подверглись короткому замыканию. через положительные и отрицательные клеммы. Короткое замыкание внутри батареи остановило ток перед значительным нагревом [7] Перегрев все еще возможен, если короткое замыкание на клеммах имело достаточное сопротивление нагреву, но недостаточное для вызвать преждевременный выход из строя аккумуляторной батареи.

Как и другие факторы электрической причинности, ожоговое повреждение батареи, обнаруженные после пожара, могут быть результатом пожара, а не потому, что аккумулятор был источником возгорания. При расследовании пожара батареи в автопарк, состояние аккумуляторной батареи в негорючих транспортных средствах аналогичной конструкции, использование или обслуживание может дать информация о вероятности возгорания аккумуляторной батареи в исследуемом автомобиле. Этот методика обследования негорючих транспортных средств в парке может быть применена к пожарным расследование в целом.

Просмотреть ссылок для этого раздела прежде чем продолжить, нажмите здесь.

Батарея

и отрицательный полюс — Как отсоединить аккумулятор

В. Мой друг сказал мне, что я всегда должен сначала отключать положительный полюс батареи, чтобы электричество не вылилось из батареи.Я не понимаю, какое это имеет значение. Я просто отключаю ближайший терминал первым. Я никогда не замечала разлитого электричества, и мне кажется, он просто дергает меня за ногу.

A: Позвольте мне рассказать кое-что, что случилось с моим другом, дантистом по профессии, который любит время от времени работать над своим спортивным автомобилем. Готовясь к какой-то другой работе, он решил вынуть аккумулятор из автомобиля, используя гаечный ключ, чтобы ослабить зажимы аккумулятора. Гаечный ключ соприкоснулся с его обручальным кольцом (он левша), а кольцо, в свою очередь, соприкоснулось с держателем батареи.Массивное короткое замыкание приварило его кольцо к прижиму и к гаечному ключу, который, в свою очередь, был приварен к плюсовой клемме.

Автомобильные аккумуляторы хранят огромное количество энергии, и они оптимизированы для передачи ее за очень короткий период времени. Закороченный автомобильный аккумулятор может легко выдать несколько сотен ампер — больше, чем аппарат для дуговой сварки. В течение секунды обручальное кольцо моего друга почти раскалилось, и только быстрая реакция его другой руки, чтобы разорвать соединение, ударив гаечным ключом, помешала ему оставаться соединенным достаточно долго, чтобы расплавиться.Кольцо пришлось отпилить с пальца в отделении неотложной помощи, и прошло больше месяца, прежде чем ожоговый специалист был уверен, что он вообще не потеряет палец.

Здесь два урока. Во-первых, снимите все украшения при работе с инструментами, даже с такими простыми вещами, как гаечный ключ. Это довольно очевидно, а?

Во-вторых, всегда снимите зажим заземления аккумулятора перед тем, как ослабить положительный полюс. Если вы удалите отрицательный зажим и случайно замкните цепь на землю, ток не будет протекать, потому что зажим заземления уже заземлен.Последующее замыкание положительной клеммы на землю не приведет к протеканию тока, поскольку ток не имеет обратного пути к отрицательной клемме. И, конечно же, всегда заново подключайте землю к последней .

Этот контент создается и поддерживается третьей стороной и импортируется на эту страницу, чтобы помочь пользователям указать свои адреса электронной почты. Вы можете найти больше информации об этом и подобном контенте на сайте piano.io.

электрических цепей

электрических цепей
Далее: Закон Ома Up: Электрический ток Предыдущий: Электрический ток Батарея — это устройство, имеющее положительный и отрицательный Терминал.Какой-то процесс, обычно химическая реакция, происходит внутри аккумулятор, из-за которого положительный заряд перемещается к положительному выводу, и наоборот . Этот процесс продолжается до тех пор, пока электрическое поле между двумя выводами не станет достаточно сильный, чтобы препятствовать дальнейшей миграции заряда.

Электрическая цепь — проводящий путь, внешний к аккумулятору, что позволяет заряжать поток с одного терминала к другому. Простая схема может состоять из одножильный металлический провод, соединяющий положительную и отрицательную клеммы.Более реалистичная схема имеет несколько точек разветвления, поэтому заряд может много разных путей между двумя терминалами.

Предположим, что (положительный) заряд движется вокруг внешнего цепь, от плюса к отрицательный вывод электрическим полем, установленным между терминалы. Работа, проделанная этим полем над зарядом за время его путешествие, в чем разница по электрическому потенциалу между положительной и отрицательной клеммами. Обычно мы называем напряжение батареи: e.грамм. , когда мы говорим о 6-вольтовой батарее, на самом деле мы имеем в виду что разность потенциалов между двумя его выводами составляет 6 В. Примечание. Разд. 5, что электротехнические работы на зарядке полностью не зависит от маршрута между терминалы. Другими словами, хотя в целом есть много различные пути через внешнюю цепь, по которым заряд может проходить по порядку чтобы добраться от положительного к отрицательному выводу аккумулятор, электрическая энергия которого заряд, приобретаемый в этом путешествии, всегда один и тот же.Поскольку при анализе электрические цепи, нас в первую очередь интересует энергия ( т.е. , в преобразовании химической энергии батареи в тепловая энергия в каком-либо электронагревательном элементе или механическом энергия в некоторых электродвигателях, и т. д. ), Отсюда следует, что свойство батареи, которое нас в первую очередь беспокоит, — это ее напряжение . Следовательно, нам не нужно отображать электрическое поле. генерируется батареей, чтобы вычислить, сколько энергии это поле дает заряд, который идет по какой-то подключенной к нему внешней цепи.Все, что нам нужно знать, это разность потенциалов между двумя клеммами. батареи. Очевидно, это огромное упрощение.

Этот раздел относится только к установившимся электрическим цепям питается от аккумуляторов постоянного напряжения. Таким образом, скорость, с которой электрические заряд перетекает с положительной клеммы аккумуляторной батареи на внешнюю контур должен соответствовать скорости, с которой заряд перетекает из контура в отрицательный полюс аккумуляторной батареи, иначе заряд будет накапливаться в либо аккумулятор, либо цепь, которые не соответствуют установившемуся режиму ситуация.Скорость, с которой заряд вытекает из положительного вывода называется электрическим током , вытекающим из батареи. Так же, скорость, с которой заряд течет в отрицательный вывод, называется током течет в аккумулятор. Конечно, эти два тока должны быть одинаковыми в установившееся состояние. Электрический ток измеряется в амперах (А), которые эквивалент кулонов в секунду:

(124)

Мы можем определить электрический ток, протекающий в любой конкретной точке внешняя схема следующим образом.Если заряд проходит мимо этой точки в бесконечно малом интервале времени, тогда
(125)

По соглашению направление тока принимается равным положительные заряды должны переместиться, чтобы учесть поток заряда. В установившемся режиме ток во всех точках внешней цепи должен остаются неизменными во времени. Мы называем этот тип цепи постоянного тока (DC) цепь, потому что ток всегда течет в одном и том же направлении.Там есть второй тип цепи, называемый цепью переменного тока (AC), в который периодически меняет направление тока.

Рассмотрим простую схему, в которой протекает постоянный ток. вокруг одного проводящего провода, соединяющего положительный и отрицательный клеммы батареи напряжения. Предположим, что ток равен переносится положительными зарядами, протекающими по внешней цепи от положительного к отрицательный терминал. На самом деле ток переносятся отрицательными зарядами ( т.е. , электронами), протекающими в обратном направлении. направление, но для большинства целей мы можем спокойно игнорировать этот довольно неудобный факт. Каждый заряд, протекающий по внешней цепи, испытывает потенциальное падение. Чтобы снова обтекать цепь, заряд должен быть поднятым до потенциала положительной клеммы батареи. Этот процесс происходит внутри батареи, поскольку заряд мигрирует из отрицательный к положительной клемме. Энергия требуется для перемещения заряда между двумя терминалами, полученный из энергия, выделяемая химическими реакциями, происходящими внутри аккумулятор.

Описанная выше простая трасса в некоторой степени аналогична небольшому горнолыжному курорту. Заряды, протекающие по внешнему контуру, похожи на людей, катающихся на лыжах. вниз по горнолыжному склону. Заряды стекают по градиенту электрического потенциал так же, как люди спускаются по градиенту гравитационного потенциала. Обратите внимание, что хорошие лыжники, которые спускаются прямо по склону, приобретают именно та же гравитационная энергия, что и у бедных лыжников, которые катаются из стороны в сторону. В обоих случаях полная приобретенная энергия зависит только от разница в высоте между верхом и низом склона.Аналогичным образом, сборы при обтекании внешнего контура приобретают одинаковую электрическую энергию независимо от маршрута они берут, потому что приобретаемая энергия зависит только от разности потенциалов между двумя выводами аккумуляторной батареи. Когда-то люди на нашем горнолыжном курорте достичь дна склон, их необходимо поднять на подъемник прежде, чем они снова смогут спуститься по нему на лыжах. Таким образом, подъемник на нашем курорте играет аналогичную роль. роль батареи в нашей цепи. Конечно, подъемник должен расходовать негравитационную энергию, чтобы поднять лыжников на вершину склона, всего за так же, как батарея должна расходовать неэлектрическую энергию для перемещения зарядов вверх до потенциальной градиент.Если у подъемника заканчивается энергия, то движение лыжников на курорте стремительно останавливается. Аналогичным образом, если в аккумуляторе заканчивается энергия (, т.е. , если батарея « разряжается »), то ток во внешней цепи перестает течь.



Далее: Закон Ома Up: Электрический ток Предыдущий: Электрический ток
Ричард Фицпатрик 2007-07-14

Электрические цепи

Эта основная идея исследована через:

Противопоставление студенческих и научных взглядов

Ежедневный опыт студентов

Студенты имеют большой опыт использования бытовой техники, в работе которой используются электрические цепи (фонарики, мобильные телефоны, плееры iPod).Скорее всего, у них появилось ощущение, что вам нужно включить аккумулятор или выключатель питания, чтобы все «работало», и что батареи могут «разрядиться». Они склонны думать об электрических цепях как о том, что они называют «током», «энергией», «электричеством» или «напряжением», причем все эти названия они часто используют как синонимы. Это неудивительно, учитывая, что все эти ярлыки часто используются в повседневном языке с неясным значением. Какой бы ярлык ни использовали учащиеся, они, вероятно, увидят в электрических цепях «поток» и что-то «хранимое», «израсходованное» или и то, и другое.Некоторые повседневные выражения, например о «зарядке батарей», также могут быть источником концептуальной путаницы для учащихся.

В частности, ученики часто считают, что ток равен напряжению, и думают, что ток может храниться в батарее, и этот ток может быть использован или преобразован в форму энергии, такую ​​как свет или тепло.

Есть четыре модели, которые обычно используются учениками для объяснения поведения простой схемы, содержащей батарею и лампочку. Они были описаны исследователями как:

В частности, студенты часто видят, что ток совпадает с напряжением, и думают, что ток может храниться в батарее, и этот ток может быть использован или преобразован в форму энергии, например свет. или тепло.

Есть четыре модели, которые обычно используются учениками для объяснения поведения простой схемы, содержащей батарею и лампочку. Исследователи описали их как:

Четыре модели простых схем
  • «униполярная модель» — точка зрения, согласно которой на самом деле нужен только один провод между батареей и лампочкой, чтобы в цепи был ток.
  • «модель сталкивающихся токов» — вид, согласно которому ток «течет» от обоих выводов батареи и «сталкивается» в лампочке.
  • «модель потребляемого тока» — представление о том, что ток «расходуется» по мере «обхода» цепи, поэтому ток, «текущий к» лампочке, больше, чем ток, «уходящий» от нее обратно к лампочке. аккумулятор.
  • «научная модель» — точка зрения, что ток одинаков в обоих проводах.

Ежедневный опыт учеников с электрическими цепями часто приводит к путанице в мышлении. Учащиеся, которые знают, что вы можете получить удар электрическим током, если дотронетесь до клемм пустой розетки домашнего освещения, если выключатель включен, поэтому иногда считают, что в розетке есть ток, независимо от того, касаются ли они ее или нет. (Точно так же они могут полагать, что есть ток в любых проводах, подключенных к батарее или розетке, независимо от того, замкнут ли переключатель.)

Некоторые студенты думают, что пластиковая изоляция проводов, используемых в электрических цепях, содержит и направляет электрический ток так же, как водопроводные трубы удерживают и регулируют поток воды.

Исследования: Osborne (1980), Osborne & Freyberg (1985), Shipstone (1985), Shipstone & Gunstone (1985), White & Gunstone (1980)

Научная точка зрения

Термин «электричество» (например, «химия») ) относится к области науки.

Модели играют важную роль в понимании того, чего мы не видим, и поэтому они особенно полезны при попытке разобраться в электрических цепях.Модели ценятся как за их объяснительную способность, так и за их способность к прогнозированию. Однако модели также имеют ограничения.

Модель, используемая сегодня учеными для электрических цепей, использует идею о том, что все вещества содержат электрически заряженные частицы (см. Макроскопические свойства в сравнении с микроскопическими). Согласно этой модели, электрические проводники, такие как металлы, содержат заряженные частицы, которые могут относительно легко перемещаться от атома к атому, тогда как в плохих проводниках, изоляторах, таких как керамика, заряженные частицы перемещать гораздо труднее.

В научной модели электрический ток — это общее движение заряженных частиц в одном направлении. Причина этого движения — источник энергии, такой как батарея, который выталкивает заряженные частицы. Заряженные частицы могут перемещаться только при наличии полного проводящего пути (называемого «контуром» или «петлей») от одного вывода батареи к другому.

Простая электрическая цепь может состоять из батареи (или другого источника энергии), лампочки (или другого устройства, использующего энергию) и проводящих проводов, соединяющих две клеммы батареи с двумя концами лампочки.В научной модели такой простой схемы движущиеся заряженные частицы, которые уже присутствуют в проводах и в нити накала лампочки, являются электронами.

Электроны заряжены отрицательно. Батарея отталкивает электроны в цепи от отрицательной клеммы и притягивает их к положительной клемме (см. Электростатика — бесконтактная сила). Любой отдельный электрон перемещается только на небольшое расстояние. (Эти идеи получили дальнейшее развитие в основной идее «Разбираемся с напряжением»).Хотя фактическое направление движения электронов — от отрицательного к положительному полюсу батареи, по историческим причинам обычно описывают направление тока как от положительного к отрицательному полюсу (так называемый « обычный ток »). ‘).

Энергия батареи хранится в виде химической энергии (см. Главную идею преобразования энергии). Когда он подключен к полной цепи, электроны перемещаются, и энергия передается от батареи к компонентам цепи.Большая часть энергии передается световому шару (или другому пользователю энергии), где она преобразуется в тепло и свет или в какую-либо другую форму энергии (например, звук в iPod). В соединительных проводах очень небольшое количество преобразуется в тепло.

Напряжение батареи говорит нам, сколько энергии она передает компонентам схемы. Это также говорит нам кое-что о том, насколько сильно батарея подталкивает электроны в цепи: чем больше напряжение, тем больше толчок (см. Идею фокусировки Использование энергии).

Критические идеи обучения

  • Электрический ток — это общее движение заряженных частиц в одном направлении.
  • Для получения электрического тока необходима непрерывная цепь от одного вывода батареи к другому.
  • Электрический ток в цепи передает энергию от батареи к компонентам цепи. В этом процессе ток не «расходуется».
  • В большинстве схем движущиеся заряженные частицы представляют собой отрицательно заряженные электроны, которые всегда присутствуют в проводах и других компонентах схемы.
  • Батарея выталкивает электроны по цепи.

Исследование: Loughran, Berry & Mulhall (2006)

Количественные подходы к обучению (например, с использованием закона Ома) могут препятствовать развитию концептуального понимания, и их лучше избегать на этом уровне.

Язык, на котором говорят учителя, очень важен. Использование слова «электричество» следует ограничить, поскольку его значение неоднозначно. Говоря о «текущем» токе вместо движения заряженных частиц, можно усилить неверное представление о том, что ток — это то же самое, что и электрический заряд; поскольку «заряд» — это свойство веществ, например масса, лучше называть «заряженные частицы», чем «заряды».

Идея фокуса Введение в научный язык предоставляет дополнительную информацию о развитии научного языка со студентами.

Использование моделей, метафор и аналогий имеет жизненно важное значение для развития понимания учащимися электрических цепей, потому что для объяснения того, что мы наблюдаем в цепи (например, зажигание лампочки), необходимо использовать научные идеи о вещах, которые мы не можем видеть, например об энергии. и электроны. Поскольку все модели / метафоры / аналогии имеют свои ограничения, важно использовать их множество.Не менее важно четко понимать сходства и различия между любой используемой моделью / метафорой / аналогией и рассматриваемым явлением. Общее ограничение физических моделей (в том числе приведенных ниже) состоит в том, что они подразумевают, что любой заданный электрон перемещается по всей цепи.

Изучите взаимосвязь между идеями об электричестве и преимуществами и ограничениями моделей в Карты развития концепции — Электричество и магнетизм и модели

Некоторые полезные модели и аналогии для использования:

  • аналог велосипедной цепи — это полезно для развития идеи потока энергии, для отличия этого потока энергии от тока и для демонстрации постоянства тока в данной цепи.Движение велосипедной цепи аналогично движению тока в замкнутой цепи. Движущаяся цепь передает энергию от педали (т. Е. «Аккумулятор») к заднему колесу (т. Е. «Компоненты схемы»), где энергия преобразуется. Эта модель имеет лишь ограниченную полезность и требует от учащегося осознать, что заднее колесо — это компонент, выполняющий преобразование энергии.
  • модель мармелада — это помогает развить идею о том, что движение электронов в цепи сопровождается передачей энергии.Студенты играют роль «электронов» в цепи. Каждый из них собирает фиксированное количество мармеладов, представляющих энергию, когда они проходят через «батарею», и отдают эту «энергию», когда достигают / проходят через «лампочку». Эти студенческие «электроны» затем возвращаются в «батарею» для получения дополнительной «энергии», которая включает в себя получение большего количества мармеладов.

Еще одно описание этого вида деятельности представлено в виньетке PEEL. Ролевая игра с мармеладом. Эта модель может быть очень мощной, но важным ограничением является представление энергии как субстанции, а не как изобретенной человеческой конструкции.

  • модель веревки — эта модель помогает объяснить, почему в электрической цепи происходит нагрев. Учащиеся образуют круг и свободно держат непрерывную петлю из тонкой веревки горизонтально. Один ученик действует как «батарея» и тянет веревку так, чтобы она скользила через руки других учеников, «компоненты схемы». Студенты чувствуют, как их пальцы становятся горячее, поскольку энергия преобразуется, когда веревка тянется студенческой батареей

Для получения дополнительной информации о развитии идей об энергии см. Фокусную идею Использование энергии.

  • модель водяного контура — это часто используется в учебниках, и на первый взгляд кажется моделью, которая легко понятна учащимся; однако важно, чтобы учителя знали о его ограничениях.

В этой модели насос представляет батарею, турбину — лампочку, а водопроводные трубы — соединительные провода. Важно указать учащимся, что этот водяной контур на самом деле отличается от бытового водоснабжения, потому что в противном случае они могут, опираясь на свой повседневный опыт, сделать неправильный вывод, например, что электрический ток может вытекать из проводов контура таким же образом, как и вода может вытечь из труб.

Исследование: Лафран, Берри и Малхолл (2006)

Преподавательская деятельность

Открытое обсуждение через обмен опытом

Упражнение POE (прогнозировать-наблюдать-объяснять) — полезный способ начать обсуждение. Дайте ученикам батарейку, лампочку фонарика (или другую лампочку с нитью накала) и соединительный провод. Попросите их угадать, как следует подключить цепь, чтобы лампочка загорелась. Примечание: НЕ предоставляйте патрон лампы. Это должно спровоцировать обсуждение необходимости создания полного контура для тока и пути тока в лампочке.Это задание можно расширить, поощряя студентов использовать другие материалы вместо проводов.

Бросьте вызов существующим идеям

Ряд POE (Прогноз-Наблюдение-Объяснение) можно построить, изменив элементы существующей схемы и попросив учащихся дать прогноз и их обоснование этого прогноза. Например, попросите учащихся предсказать изменения, которые могут произойти в яркости лампочки, когда она подключена к батареям с разным напряжением.

Разъяснение и объединение идей для / путем общения с другими

Попросите учащихся изучить модели и аналогии для электрических цепей, представленных выше.Студенты должны оценить каждую модель на предмет ее полезности для разъяснения представлений об электрических цепях. Студентов также следует поощрять к выявлению ограничений моделей.

Сосредоточьте внимание студентов на недооцененной детали

Попросите студентов изучить работу фонаря и нарисовать картинку, чтобы показать путь тока, когда выключатель замкнут. Студенты должны обсудить или написать о том, что, по их мнению, происходит.

Поощряйте студентов определять явления, которые не объясняются (представленной в настоящее время) научной моделью или идеей.

Попросите учащихся перечислить особенности электрической цепи, которые объясняются конкретной моделью / метафорой / аналогией, и особенности, которые не объясняются.

Содействовать размышлению и разъяснению существующих идей

Попросите учащихся нарисовать концептуальную карту, используя такие термины, как «батарея», «электроны», «энергия», «соединительные провода», «лампочка», «электрический ток».

Электрические схемы | HowStuffWorks

Когда вы вставляете аккумулятор в электронное устройство, вы не просто высвобождаете электричество и отправляете его для выполнения задачи. Отрицательно заряженные электроны хотят перейти к положительной части батареи — и если им придется увеличить скорость вашей личной электробритвы, чтобы добраться туда, они это сделают.На очень простом уровне это очень похоже на воду, текущую по ручью, и ее заставляют вращать водяное колесо, чтобы добраться из точки А в точку Б.

Используете ли вы аккумулятор, топливный элемент или солнечный элемент для производства электроэнергии, три все всегда одно и то же:

  1. Источник электричества должен иметь два вывода: положительный вывод и отрицательный вывод.
  2. Источник электричества (будь то генератор, батарея или что-то еще) захочет вытолкнуть электроны из своего отрицательного вывода при определенном напряжении.Например, одна батарейка AA обычно выталкивает электроны при напряжении 1,5 вольт.
  3. Электроны должны пройти от отрицательной клеммы к положительной через медный провод или другой провод. Когда есть путь, который идет от отрицательной клеммы к положительной, у вас есть цепь , и электроны могут течь через провод.

К середине цепи можно подключить любой тип нагрузки, например лампочку или двигатель. Источник электричества питает нагрузку, и нагрузка будет выполнять любую задачу, для которой она предназначена, от вращения вала до генерации света.

Электрические цепи могут быть довольно сложными, но в основном у вас всегда есть источник электричества (например, батарея), нагрузка и два провода для передачи электричества между ними. Электроны движутся от источника через нагрузку и обратно к источнику.

Движущиеся электроны обладают энергией. Когда электроны перемещаются из одной точки в другую, они могут выполнять свою работу. Например, в лампе накаливания энергия электронов используется для создания тепла, а оно, в свою очередь, создает свет.В электродвигателе энергия электронов создает магнитное поле, и это поле может взаимодействовать с другими магнитами (посредством магнитного притяжения и отталкивания), создавая движение. Поскольку двигатели так важны для повседневной деятельности и поскольку они, по сути, являются генератором, работающим в обратном направлении, мы рассмотрим их более подробно в следующем разделе.

10.2: Электродвижущая сила — Physics LibreTexts

Цели обучения

К концу раздела вы сможете:

  • Опишите электродвижущую силу (ЭДС) и внутреннее сопротивление батареи
  • Объясните основную работу аккумулятора

Если вы забыли выключить автомобильные фары, они постепенно тускнеют по мере разрядки аккумулятора.Почему они не мигают внезапно, когда разрядился аккумулятор? Их постепенное затемнение означает, что выходное напряжение батареи уменьшается по мере разряда батареи. Причина снижения выходного напряжения для разряженных батарей заключается в том, что все источники напряжения состоят из двух основных частей — источника электрической энергии и внутреннего сопротивления. В этом разделе мы исследуем источник энергии и внутреннее сопротивление.

Введение в электродвижущую силу

Voltage имеет множество источников, некоторые из которых показаны на рисунке \ (\ PageIndex {2} \).Все такие устройства создают разность потенциалов и могут подавать ток, если подключены к цепи. Особый тип разности потенциалов известен как электродвижущая сила (ЭДС) . ЭДС — это вовсе не сила, но термин «электродвижущая сила» используется по историческим причинам. Он был изобретен Алессандро Вольта в 1800-х годах, когда он изобрел первую батарею, также известную как гальваническая батарея . Поскольку электродвижущая сила не является силой, принято называть эти источники просто источниками ЭДС (произносимыми буквами «ee-em-eff»), а не источниками электродвижущей силы.

Рисунок \ (\ PageIndex {1} \): различные источники напряжения. а) ветряная электростанция Бразос в Флуванна, штат Техас; (б) Красноярская плотина в России; (c) солнечная ферма; (d) группа никель-металлогидридных батарей. Выходное напряжение каждого устройства зависит от его конструкции и нагрузки. Выходное напряжение равно ЭДС только при отсутствии нагрузки. (кредит a: модификация работы «Leaflet» / Wikimedia Commons; кредит b: модификация работы Алекса Полежаева; кредит c: модификация работы Министерства энергетики США; кредит d: модификация работы Тиаа Монто)

Если Электродвижущая сила — это вообще не сила, тогда что такое ЭДС и что является источником ЭДС? Чтобы ответить на эти вопросы, рассмотрим простую схему лампы 12 В, подключенной к батарее 12 В, как показано на рисунке \ (\ PageIndex {2} \).Батарея , может быть смоделирована как устройство с двумя выводами, которое поддерживает один вывод с более высоким электрическим потенциалом, чем второй вывод. Более высокий электрический потенциал иногда называют положительной клеммой и обозначают знаком плюс. Клемму с более низким потенциалом иногда называют отрицательной клеммой и обозначают знаком минус. Это источник ЭДС.

Рисунок \ (\ PageIndex {2} \): Источник ЭДС поддерживает на одном выводе более высокий электрический потенциал, чем на другом выводе, действуя как источник тока в цепи.

Когда источник ЭДС не подключен к лампе, нет чистого потока заряда внутри источника ЭДС. Как только батарея подключена к лампе, заряды перетекают от одной клеммы батареи через лампу (в результате чего лампа загорается) и обратно к другой клемме батареи. Если мы рассмотрим протекание положительного (обычного) тока, положительные заряды покидают положительный вывод, проходят через лампу и попадают в отрицательный вывод.

Положительный поток тока полезен для большей части анализа схем в этой главе, но в металлических проводах и резисторах наибольший вклад в ток вносят электроны, протекающие в направлении, противоположном положительному потоку тока.Поэтому более реалистично рассматривать движение электронов для анализа схемы на рисунке \ (\ PageIndex {2} \). Электроны покидают отрицательную клемму, проходят через лампу и возвращаются к положительной клемме. Чтобы источник ЭДС поддерживал разность потенциалов между двумя выводами, отрицательные заряды (электроны) должны перемещаться с положительного вывода на отрицательный. Источник ЭДС действует как накачка заряда, перемещая отрицательные заряды от положительного вывода к отрицательному для поддержания разности потенциалов.Это увеличивает потенциальную энергию зарядов и, следовательно, электрический потенциал зарядов.

Сила, действующая на отрицательный заряд электрического поля, действует в направлении, противоположном электрическому полю, как показано на рисунке \ (\ PageIndex {2} \). Чтобы отрицательные заряды переместились на отрицательный вывод, необходимо провести работу с отрицательными зарядами. Для этого требуется энергия, которая возникает в результате химических реакций в батарее. Потенциал поддерживается высоким на положительной клемме и низким на отрицательной клемме, чтобы поддерживать разность потенциалов между двумя клеммами.ЭДС равна работе, выполняемой над зарядом на единицу заряда \ (\ left (\ epsilon = \ frac {dW} {dq} \ right) \) при отсутствии тока. Поскольку единицей работы является джоуль, а единицей заряда — кулон, единицей измерения ЭДС является вольт \ ((1 \, V = 1 \, J / C) \).

Напряжение на клеммах \ (V_ {клемма} \) батареи — это напряжение, измеренное на клеммах батареи, когда к клемме не подключена нагрузка. Идеальная батарея — это источник ЭДС, который поддерживает постоянное напряжение на клеммах, независимо от тока между двумя клеммами.Идеальная батарея не имеет внутреннего сопротивления, а напряжение на клеммах равно ЭДС батареи. В следующем разделе мы покажем, что у реальной батареи есть внутреннее сопротивление, а напряжение на клеммах всегда меньше, чем ЭДС батареи.

Происхождение потенциала батареи

ЭДС батареи определяется комбинацией химических веществ и составом выводов батареи. Свинцово-кислотный аккумулятор , используемый в автомобилях и других транспортных средствах, является одним из наиболее распространенных сочетаний химических веществ.На рисунке \ (\ PageIndex {3} \) показана одна ячейка (одна из шести) этой батареи. Катодная (положительная) клемма ячейки соединена с пластиной из оксида свинца, а анодная (отрицательная) клемма подключена к свинцовой пластине. Обе пластины погружены в серную кислоту, электролит для системы.

Рисунок \ (\ PageIndex {3} \): Химические реакции в свинцово-кислотном элементе разделяют заряд, отправляя отрицательный заряд на анод, который соединен со свинцовыми пластинами. Пластины из оксида свинца подключаются к положительному или катодному выводу ячейки.Серная кислота проводит заряд, а также участвует в химической реакции.

Немногое о том, как взаимодействуют химические вещества в свинцово-кислотной батарее, помогает понять потенциал, создаваемый батареей. На рисунке \ (\ PageIndex {4} \) показан результат одной химической реакции. Два электрона помещаются на анод , что делает его отрицательным, при условии, что катод подает два электрона. Это оставляет катод положительно заряженным, потому что он потерял два электрона.Короче говоря, разделение заряда было вызвано химической реакцией.

Обратите внимание, что реакция не происходит, если нет замкнутой цепи, позволяющей подавать два электрона на катод. Во многих случаях эти электроны выходят из анода, проходят через сопротивление и возвращаются на катод. Также обратите внимание, что, поскольку в химических реакциях участвуют вещества, обладающие сопротивлением, невозможно создать ЭДС без внутреннего сопротивления.

Рисунок \ (\ PageIndex {4} \): В свинцово-кислотной батарее два электрона прижимаются к аноду элемента, а два электрона удаляются с катода элемента.В результате химической реакции в свинцово-кислотной батарее два электрона помещаются на анод и два электрона удаляются с катода. Для продолжения требуется замкнутая цепь, так как два электрона должны быть доставлены на катод.

Внутреннее сопротивление и напряжение на клеммах

Величина сопротивления прохождению тока внутри источника напряжения называется внутренним сопротивлением . Внутреннее сопротивление r батареи может вести себя сложным образом. Обычно она увеличивается по мере разряда батареи из-за окисления пластин или снижения кислотности электролита.Однако внутреннее сопротивление также может зависеть от величины и направления тока через источник напряжения, его температуры и даже его предыстории. Например, внутреннее сопротивление перезаряжаемых никель-кадмиевых элементов зависит от того, сколько раз и насколько глубоко они были разряжены. Простая модель батареи состоит из идеализированного источника ЭДС \ (\ epsilon \) и внутреннего сопротивления r (рисунок \ (\ PageIndex {5} \)).

Рисунок \ (\ PageIndex {5} \): Батарею можно смоделировать как идеализированную ЭДС \ ((\ epsilon) \) с внутренним сопротивлением ( r ).Напряжение на клеммах аккумулятора равно \ (V_ {terminal} = \ epsilon — Ir \).

Предположим, что внешний резистор, известный как сопротивление нагрузки R , подключен к источнику напряжения, например, к батарее, как показано на рисунке \ (\ PageIndex {6} \). На рисунке показана модель аккумулятора с ЭДС ε, внутренним сопротивлением r и нагрузочным резистором R , подключенным к его клеммам. При обычном протекании тока положительные заряды покидают положительную клемму батареи, проходят через резистор и возвращаются к отрицательной клемме батареи.Напряжение на клеммах аккумулятора зависит от ЭДС, внутреннего сопротивления и тока и равно

.

Примечание

\ [V_ {терминал} = \ epsilon — Ir \]

При заданной ЭДС и внутреннем сопротивлении напряжение на клеммах уменьшается по мере увеличения тока из-за падения потенциала Ir внутреннего сопротивления.

Рисунок \ (\ PageIndex {6} \): Схема источника напряжения и его нагрузочного резистора R . Поскольку внутреннее сопротивление r последовательно с нагрузкой, оно может существенно повлиять на напряжение на клеммах и ток, подаваемый на нагрузку.

График разности потенциалов на каждом элементе цепи показан на рисунке \ (\ PageIndex {7} \). По цепи проходит ток I , а падение потенциала на внутреннем резисторе равно Ir . Напряжение на клеммах равно \ (\ epsilon — Ir \), что равно падению потенциала на нагрузочном резисторе \ (IR = \ epsilon — Ir \). Как и в случае с потенциальной энергией, важно изменение напряжения. Когда используется термин «напряжение», мы предполагаем, что это на самом деле изменение потенциала, или \ (\ Delta V \).Однако \ (\ Delta \) часто для удобства опускается.

Рисунок \ (\ PageIndex {7} \): график напряжения в цепи батареи и сопротивления нагрузки. Электрический потенциал увеличивает ЭДС батареи из-за химических реакций, выполняющих работу с зарядами. В аккумуляторе происходит снижение электрического потенциала из-за внутреннего сопротивления. Потенциал уменьшается из-за внутреннего сопротивления \ (- Ir \), в результате чего напряжение на клеммах батареи равно \ ((\ epsilon — Ir) \).Затем напряжение уменьшается на ( IR ). Ток равен \ (I = \ frac {\ epsilon} {r + R} \).

Ток через нагрузочный резистор равен \ (I = \ frac {\ epsilon} {r + R} \). Из этого выражения видно, что чем меньше внутреннее сопротивление r , тем больший ток подает источник напряжения на свою нагрузку R . По мере разряда батарей r увеличивается. Если r становится значительной частью сопротивления нагрузки, то ток значительно снижается, как показано в следующем примере.

Пример \ (\ PageIndex {1} \): анализ цепи с аккумулятором и нагрузкой

Данная батарея имеет ЭДС 12,00 В и внутреннее сопротивление \ (0,100 \, \ Омега \). (a) Рассчитайте напряжение на его клеммах при подключении к нагрузке с \ (10.00 \, \ Omega \). (b) Какое напряжение на клеммах при подключении к нагрузке \ (0.500 \, \ Omega \)? (c) Какая мощность рассеивается при нагрузке \ (0.500 \, \ Omega \)? (d) Если внутреннее сопротивление увеличивается до \ (0.500 \, \ Omega \), найдите ток, напряжение на клеммах и мощность, рассеиваемую элементом \ (0.500 \, \ Omega \) загрузка.

Стратегия

Приведенный выше анализ дает выражение для тока с учетом внутреннего сопротивления. Как только ток будет найден, напряжение на клеммах можно рассчитать с помощью уравнения \ (V_ {terminal} = \ epsilon — Ir \). Как только ток будет найден, мы также сможем найти мощность, рассеиваемую резистором.

Решение

  1. Ввод заданных значений ЭДС, сопротивления нагрузки и внутреннего сопротивления в выражение выше дает \ [I = \ frac {\ epsilon} {R + r} = \ frac {12.00 \, V} {10.10 \, \ Omega} = 1.188 \, A. \] Введите известные значения в уравнение \ (V_ {terminal} = \ epsilon — Ir \), чтобы получить напряжение на клеммах: \ [V_ { клемма} = \ epsilon — Ir = 12.00 \, V — (1.188 \, A) (0.100 \, \ Omega) = 11.90 \, V. \] Напряжение на клеммах здесь лишь немного ниже, чем ЭДС, что означает, что ток втягивается этой легкой нагрузкой незначительно.
  2. Аналогично, с \ (R_ {load} = 0.500 \, \ Omega \), ток равен \ [I = \ frac {\ epsilon} {R + r} = \ frac {12.00 \, V} {0.2} {R} \) или \ (IV \), где В, — напряжение на клеммах (в данном случае 10,0 В).
  3. Здесь внутреннее сопротивление увеличилось, возможно, из-за разряда батареи, до точки, в которой оно равно сопротивлению нагрузки. Как и раньше, мы сначала находим ток, вводя известные значения в выражение, получая \ [I = \ frac {\ epsilon} {R + r} = \ frac {12.00 \, V} {1.00 \, \ Omega} = 12.00 \, A. \] Теперь напряжение на клеммах равно \ [V_ {terminal} = \ epsilon — Ir = 12.00 \, V — (12.2 (0.500 \, \ Omega) = 72.00 \, W. \] Мы видим, что увеличенное внутреннее сопротивление значительно снизило напряжение на клеммах, ток и мощность, подаваемую на нагрузку.

Значение

Внутреннее сопротивление батареи может увеличиваться по многим причинам. Например, внутреннее сопротивление перезаряжаемой батареи увеличивается с увеличением количества раз, когда батарея перезаряжается. Повышенное внутреннее сопротивление может иметь двоякое влияние на аккумулятор.Сначала снизится напряжение на клеммах. Во-вторых, аккумулятор может перегреться из-за повышенной мощности, рассеиваемой внутренним сопротивлением.

Упражнение \ (\ PageIndex {1} \)

Если вы поместите провод прямо через две клеммы батареи, эффективно закоротив клеммы, батарея начнет нагреваться. Как вы думаете, почему это происходит?

Решение

Если к клеммам подключен провод, сопротивление нагрузки близко к нулю или, по крайней мере, значительно меньше внутреннего сопротивления батареи.2р) \). Мощность рассеивается в виде тепла.

Тестеры батарей

Тестеры батарей

, такие как те, что показаны на рисунке \ (\ PageIndex {8} \), используют малые нагрузочные резисторы, чтобы намеренно потреблять ток, чтобы определить, падает ли потенциал клемм ниже допустимого уровня. Хотя трудно измерить внутреннее сопротивление батареи, тестеры батареи могут обеспечить измерение внутреннего сопротивления батареи. Если внутреннее сопротивление велико, батарея разряжена, о чем свидетельствует низкое напряжение на клеммах.

Рисунок \ (\ PageIndex {8} \): Тестеры батарей измеряют напряжение на клеммах под нагрузкой, чтобы определить состояние батареи. (a) Техник-электронщик ВМС США использует тестер аккумуляторов для проверки больших аккумуляторов на борту авианосца USS Nimitz . Тестер батарей, который она использует, имеет небольшое сопротивление, которое может рассеивать большое количество энергии. (b) Показанное небольшое устройство используется на небольших батареях и имеет цифровой дисплей для индикации допустимого напряжения на клеммах. (кредит А: модификация работы Джейсона А.Джонстон; кредит b: модификация работы Кейта Уильямсона)

Некоторые батареи можно заряжать, пропуская через них ток в направлении, противоположном току, который они подают в прибор. Это обычно делается в автомобилях и батареях для небольших электроприборов и электронных устройств (Рисунок \ (\ PageIndex {9} \)). Выходное напряжение зарядного устройства должно быть больше, чем ЭДС аккумулятора, чтобы ток через него реверсировал. Это приводит к тому, что напряжение на клеммах аккумулятора превышает ЭДС, поскольку \ (V = \ epsilon — Ir \) и I теперь отрицательны.

Рисунок \ (\ PageIndex {9} \): автомобильное зарядное устройство меняет нормальное направление тока через аккумулятор, обращая вспять его химическую реакцию и пополняя ее химический потенциал.

Важно понимать последствия внутреннего сопротивления источников ЭДС, таких как батареи и солнечные элементы, но часто анализ цепей выполняется с помощью напряжения на клеммах батареи, как мы делали в предыдущих разделах. Напряжение на клеммах обозначается просто как В , без индекса «клемма».Это связано с тем, что внутреннее сопротивление батареи трудно измерить напрямую, и оно может со временем измениться.

Авторы и авторство

Сэмюэл Дж. Линг (Государственный университет Трумэна), Джефф Санни (Университет Лойола Мэримаунт) и Билл Мобс со многими авторами. Эта работа лицензирована OpenStax University Physics в соответствии с лицензией Creative Commons Attribution License (4.0).

Учебное пособие по физике: разность электрических потенциалов

В предыдущем разделе Урока 1 было введено понятие электрического потенциала.Электрический потенциал — это зависящая от местоположения величина, которая выражает количество потенциальной энергии на единицу заряда в определенном месте. Когда кулон заряда (или любое заданное количество заряда) обладает относительно большим количеством потенциальной энергии в данном месте, то это место называется местом с высоким электрическим потенциалом. Точно так же, если кулон заряда (или любое заданное количество заряда) обладает относительно небольшим количеством потенциальной энергии в данном месте, то это место называется местом с низким электрическим потенциалом.Когда мы начнем применять наши концепции потенциальной энергии и электрического потенциала к цепям, мы начнем ссылаться на разницу в электрическом потенциале между двумя точками. Эта часть Урока 1 будет посвящена пониманию разности электрических потенциалов и ее применению к движению заряда в электрических цепях.

Рассмотрим задачу перемещения положительного испытательного заряда в однородном электрическом поле из точки A в точку B, как показано на схеме справа.При перемещении заряда против электрического поля из точки A в точку B над зарядом должна работать внешняя сила. Работа, проделанная с зарядом, изменяет его потенциальную энергию на более высокое значение; а объем проделанной работы равен изменению потенциальной энергии. В результате этого изменения потенциальной энергии также существует разница в электрическом потенциале между точками A и B. Эта разница в электрическом потенциале представлена ​​символом ΔV и формально называется разностью электрических потенциалов .По определению, разность электрических потенциалов — это разность электрических потенциалов (V) между конечным и начальным местоположениями, когда над зарядом выполняется работа по изменению его потенциальной энергии. В форме уравнения разность электрических потенциалов равна

.

Стандартной метрической единицей измерения разности электрических потенциалов является вольт, сокращенно В, и названный в честь Алессандро Вольта. Один вольт эквивалентен одному джоулю на кулон. Если разность электрических потенциалов между двумя местоположениями составляет 1 вольт, то один кулоновский заряд получит 1 джоуль потенциальной энергии при перемещении между этими двумя местоположениями.Если разность электрических потенциалов между двумя местоположениями составляет 3 вольта, то один кулон заряда получит 3 джоуля потенциальной энергии при перемещении между этими двумя местоположениями. И, наконец, если разность электрических потенциалов между двумя местоположениями составляет 12 вольт, то один кулон заряда получит 12 джоулей потенциальной энергии при перемещении между этими двумя местоположениями. Поскольку разность электрических потенциалов выражается в вольтах, ее иногда называют напряжением .


Разность электрических потенциалов и простые схемы

Электрические цепи, как мы увидим, все связаны с движением заряда между различными местами и соответствующими потерями и увеличением энергии, которые сопровождают это движение.В предыдущей части Урока 1 концепция электрического потенциала была применена к простой электрической цепи с батарейным питанием. В этом обсуждении было объяснено, что необходимо проделать работу с положительным тестовым зарядом, чтобы переместить его через ячейки от отрицательного вывода к положительному выводу. Эта работа увеличит потенциальную энергию заряда и, таким образом, увеличит его электрический потенциал. Когда положительный тестовый заряд перемещается через внешнюю цепь от положительного вывода к отрицательному выводу, он уменьшает свою электрическую потенциальную энергию и, таким образом, имеет низкий потенциал к тому времени, когда он возвращается к отрицательному выводу.Если в цепи используется 12-вольтовая батарея, то каждый кулон заряда получает 12 джоулей потенциальной энергии при прохождении через батарею. Точно так же каждый кулон заряда теряет 12 джоулей электрической потенциальной энергии при прохождении через внешнюю цепь. Потеря этой электрической потенциальной энергии во внешней цепи приводит к увеличению световой энергии, тепловой энергии и других форм неэлектрической энергии.

С четким пониманием разности электрических потенциалов, роли электрохимической ячейки или совокупности ячеек (т.е., аккумулятор) в простой схеме можно правильно понять. Ячейки просто поставляют энергию для работы с зарядом, чтобы переместить его от отрицательного вывода к положительному. Предоставляя энергию для заряда, элемент может поддерживать разность электрических потенциалов на двух концах внешней цепи. Как только заряд достигнет клеммы с высоким потенциалом, он естественным образом потечет по проводам к клемме с низким потенциалом. Движение заряда по электрической цепи аналогично движению воды в аквапарке или движению американских горок в парке развлечений.В каждой аналогии необходимо проделать работу на воде или на американских горках, чтобы переместить ее из места с низким гравитационным потенциалом в место с высоким гравитационным потенциалом. Когда вода или американские горки достигают высокого гравитационного потенциала, они естественным образом движутся вниз обратно в место с низким потенциалом. Для водных прогулок или американских горок задача по подъему автомобилей с водой или горками до высокого потенциала требует энергии. Энергия подается водяным насосом с приводом от двигателя или цепью с приводом от двигателя.В электрической цепи с батарейным питанием элементы служат в качестве зарядного насоса для подачи энергии на заряд, чтобы поднять его из положения с низким потенциалом через элемент в положение с высоким потенциалом.

Часто удобно говорить об электрической цепи, такой как простая схема, обсуждаемая здесь, как о состоящей из двух частей — внутренней цепи и внешней цепи. Внутренняя схема — это часть схемы, в которой энергия подается на заряд.Для простой схемы с батарейным питанием, о которой мы говорили, часть схемы, содержащая электрохимические элементы, является внутренней схемой. Внешняя схема является частью схемы, в которой заряд движется за пределы ячеек по проводам на своем пути от клеммы с высоким потенциалом к ​​клемме с низким потенциалом. Движение заряда по внутренней цепи требует энергии, поскольку это движение на вверх по в направлении, которое составляет против электрического поля .Движение заряда по внешней цепи является естественным, поскольку это движение в направлении электрического поля. Когда на положительном выводе электрохимического элемента, положительный тестовый заряд находится под высоким электрическим давлением таким же образом, как вода в аквапарке находится под высоким давлением воды после того, как ее перекачивают на вершину водной горки. Находясь под высоким электрическим давлением, положительный испытательный заряд самопроизвольно и естественным образом перемещается по внешней цепи в место с низким давлением и низким потенциалом.

Когда положительный тестовый заряд проходит через внешнюю цепь, он встречает различные типы элементов схемы. Каждый элемент схемы служит устройством преобразования энергии. Лампочки, двигатели и нагревательные элементы (например, в тостерах и фенах) являются примерами устройств преобразования энергии. В каждом из этих устройств электрическая потенциальная энергия заряда преобразуется в другие полезные (и бесполезные) формы. Например, в лампочке электрическая потенциальная энергия заряда преобразуется в световую энергию (полезная форма) и тепловая энергия (бесполезная форма).Движущийся заряд воздействует на лампочку, производя две разные формы энергии. При этом движущийся заряд теряет свою электрическую потенциальную энергию. При выходе из элемента схемы заряд находится под меньшим напряжением. Место непосредственно перед входом в лампочку (или любой элемент схемы) является местом с высоким электрическим потенциалом; и место сразу после выхода из лампочки (или любого элемента схемы) — это место с низким электрическим потенциалом. Ссылаясь на диаграмму выше, местоположения A и B являются местоположениями с высоким потенциалом, а местоположения C и D — местоположениями с низким потенциалом.Потеря электрического потенциала при прохождении через элемент схемы часто упоминается как падение напряжения . К тому времени, когда положительный тестовый заряд возвращается к отрицательному выводу, он находится под 0 вольт и готов к повторному включению и откачке обратно к положительному выводу высокого напряжения.

Диаграммы электрических потенциалов

Диаграмма электрических потенциалов — удобный инструмент для представления разностей электрических потенциалов между различными точками электрической цепи.Ниже показаны две простые схемы и соответствующие им диаграммы электрических потенциалов.

В цепи A есть D-элемент на 1,5 В и одиночная лампочка. В цепи B есть 6-вольтовая батарея (четыре 1,5-вольтовых D-элемента) и две лампочки. В каждом случае отрицательный полюс батареи является положением 0 В. Положительный полюс батареи имеет электрический потенциал, равный номинальному напряжению батареи. Аккумулятор заряжает , перекачивает его от клеммы низкого напряжения к клемме высокого напряжения.Таким образом батарея создает разность электрических потенциалов на двух концах внешней цепи. Находясь на под электрическим давлением , заряд теперь будет перемещаться по внешней цепи. Поскольку его электрическая потенциальная энергия преобразуется в энергию света и тепловую энергию в местах расположения лампочек, заряд снижает свой электрический потенциал. Общее падение напряжения на внешней цепи равно напряжению батареи, когда заряд перемещается от положительного вывода обратно к 0 вольт на отрицательном выводе.В случае контура B во внешней цепи есть два падения напряжения, по одному на каждую лампочку. В то время как величина падения напряжения в отдельной лампочке зависит от различных факторов (которые будут обсуждаться позже), совокупная величина падения должна равняться 6 вольтам, полученным при прохождении через батарею.

Разность электрических потенциалов на двух вставках бытовой электросети зависит от страны.Используйте виджет Household Voltages ниже, чтобы узнать значения напряжения в домашних условиях для различных стран (например, США, Канады, Японии, Китая, Южной Африки и т. Д.).


Проверьте свое понимание

1. Перемещение электрона в электрическом поле изменило бы ____ электрона.

а. масса офб. сумма заряда нац.потенциальная энергия

2. Если бы электрическая цепь была аналогична водяному контуру в аквапарке, то напряжение батареи было бы сопоставимо с _____.

а. скорость, с которой вода протекает через контур

г. скорость, с которой вода протекает через контур

г. расстояние, на котором вода протекает через контур

г. давление воды между верхом и низом контура

e.помеха, вызванная препятствиями на пути движущейся воды

3. Если бы электрическая цепь в вашем Walkman была аналогична водной цепи в аквапарке, тогда батарея была бы сопоставима с _____.

а. люди, которые сползают с возвышенности на землю

г. препятствия, стоящие на пути движущейся воды

г. насос, перекачивающий воду с земли на возвышение

г.трубы, по которым течет вода

e. расстояние, на котором вода протекает через контур

4. Что из нижеперечисленного относится к электрической схеме вашего фонарика?

а. Заряд движется по контуру очень быстро — почти со скоростью света.

г. Аккумулятор поставляет заряд (электроны), который движется по проводам.

г.Батарея обеспечивает заряд (протоны), который движется по проводам.

г. Заряд расходуется по мере прохождения через лампочку.

e. Батарея подает энергию, повышающую уровень заряда от низкого до высокого напряжения.

ф. … ерунда! Все это неправда.


5. Если батарея выдает высокое напряжение, она может ____.

а. делать много работы в течение своего срока службы

г. много работать над каждым обнаруженным зарядом

г. протолкнуть много заряда через цепь

г. долго


На схеме внизу справа показана лампочка, подключенная проводами к + и — клеммам автомобильного аккумулятора. Используйте диаграмму, чтобы ответить на следующие четыре вопроса.

6. По сравнению с точкой D, точка A имеет _____ электрический потенциал.

а. 12 В выше в

г. 12 В ниже в

г. точно такой же

г. … невозможно сказать

7. Электрическая потенциальная энергия заряда равна нулю в точке _____.

8. Требуется энергия, чтобы заставить сдвинуть положительный тестовый заряд ___.

а. через провод из точки А в точку Б

г. через лампочку из точки B в точку C

г. через провод от точки C до точки D

г. через батарею из точки D в точку A

9. Энергия, необходимая для перемещения +2 C заряда между точками D и A, составляет ____ Дж.

а. 0,167b. 2.0c. 6.0d. 12e. 24

10.Следующая схема состоит из D-ячейки и лампочки. Используйте символы>, <и =, чтобы сравнить электрический потенциал в точках A и B и от C до D. Укажите, добавляют ли устройства энергию к заряду или удаляют ее.

11. Используйте свое понимание математической взаимосвязи между работой, потенциальной энергией, зарядом и разностью электрических потенциалов, чтобы завершить следующие утверждения:

а.9-вольтовая батарея увеличит потенциальную энергию заряда в 1 кулон на ____ джоулей.

г. 9-вольтовая батарея увеличит потенциальную энергию 2 кулонов заряда на ____ джоулей.

г. 9-вольтовая батарея увеличит потенциальную энергию заряда 0,5 кулонов на ____ джоулей.

г. Аккумулятор ___-вольт увеличит потенциальную энергию 3 кулонов заряда на 18 джоулей.

e. Аккумулятор ___-вольт увеличит потенциальную энергию 2 кулонов заряда на 3 джоуля.

ф. Батарея на 1,5 В увеличит потенциальную энергию заряда ____ кулонов на 0,75 джоулей.

г. 12-вольтовая батарея увеличит потенциальную энергию ____ кулонов заряда на 6 джоулей.

.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *