РазноеДля чего нужен клапан соленоидный: Электромагнитный (соленоидный) клапан — Википедия – Соленоидный электромагнитный клапан автоматического действия, зачем нужен и как работает — СамСтрой

Для чего нужен клапан соленоидный: Электромагнитный (соленоидный) клапан — Википедия – Соленоидный электромагнитный клапан автоматического действия, зачем нужен и как работает — СамСтрой

Надежность в деталях: как выбрать соленоидные клапаны

Надежность

Общая надежность любой системы на производственном предприятии не может превышать надежность последнего звена в цепочке управления. Во многих случаях таким звеном является соленоидный клапан с дистанционным управлением, который запускает или останавливает производственный процесс.

По сути, соленоидный клапан — это устройство для электрического прерывания или отвода потока рабочей среды в трубе. Существует множество типов соленоидных клапанов, однако все они основаны на одном принципе: отверстие закрывается или открывается для того, чтобы регулировать поток. Области применения таких клапанов разнообразны. С одной стороны, их можно использовать для управления стандартными отсечными и регулирующими клапанами или же специальными клапанами — например, клапанами систем повышенной надежности для защиты от превышения давления (High Integrity Pressure Protection System, HIPPS) и клапанами аварийного отключения (Emergency Shutdown, ESD). С другой, они подходят и для непосредственного управления рабочими средами при контроле пожаротушения или управления системами обеспечения паром, водой и воздухом. Соленоидные клапаны также широко используются в пневматических системах и элементах управления. Во всех этих случаях надежность работы оборудования имеет первостепенное значение.

Для сокращения издержек некоторые предприятия приобретают соленоидные клапаны, основываясь только на их цене. Однако ошибочно полагать, что все клапаны одинаковы и мало что может пойти не так с этими, казалось бы, простыми устройствами, которые обычно состоят из катушки, плунжера и седла. Разработанный на высоком техническом уровне соленоидный клапан может стоить дороже, но расходы в течение срока его службы будут значительно ниже, чем у более дешевых эквивалентных клапанов.

Для подтверждения этого тезиса о ложной экономии рассмотрим традиционный соленоидный клапан. Чтобы уплотнить шток для предотвращения утечки, в них обычно используются специальные кольца. Такая конструкция имеет множество недостатков. Герметизирующая способность уплотнительного кольца со временем снижается из-за износа резины, что приводит к утечкам рабочей среды. Из-за этого рабочая среда или присутствующие в ней загрязнения могут накапливаться на штоке клапана, увеличивая трение. Кроме того, в некоторых конструкциях требуется вентиляционное отверстие, чтобы обеспечить плавное движение штока клапана. Однако из-за такого отверстия внутренние части клапана становятся уязвимыми к загрязнениям из атмосферы, которые также могут откладываться на штоке.

Все эти факторы могут привести к замедлению срабатывания и потенциальным сбоям клапана, а, например, в HIPPS и системах аварийного отключения важна каждая доля секунды. Чтобы справиться с повышенным трением, некоторые поставщики используют более упругую пружину, которая позволит клапану по-прежнему работать при увеличении трения. Для преодоления такой упругости пружины требуется большее значение FFR (Force Friction Ratio — соотношение силы и трения). Соответственно, необходим соленоид большей мощности, а при увеличении мощности выделяется больше тепла. Повышение температуры, в свою очередь, может отрицательно сказаться на сроке службы соленоида. Помимо этого, катушка с повышенным энергопотреблением может повысить расходы на установку клапана, поскольку могут потребоваться провода большего сечения или инженеры будут вынуждены использовать меньше клапанов в одном контуре управления.

Отказы соленоидных клапанов приводят к простоям оборудования со всеми сопутствующими проблемами и затратами. А если клапан заклинит в ситуации, когда требуется аварийное отключение, то результат может быть фатальным.

Надежность можно определять по-разному, однако в инженерной терминологии она характеризует степень доверия к оборудованию, т. е. способность системы или компонента работать в заявленных условиях в течение указанного периода без неполадок и отказов. Надежность, безусловно, тесно связана с безопасностью системы: для анализа обоих показателей применяются общие методы и они зависят друг от друга. Кроме того, данный параметр оказывает влияние на стоимость сбоев, которая состоит из стоимости простоя системы, запасных частей, оборудования для ремонта, труда персонала и затрат на претензии по гарантиям.

 

Предполагаемый срок службы катушки солиноидного клапана

Рис. 1. Предполагаемый срок службы катушки

Особенности катушки

Одной из важнейших частей соленоидного клапана является электромагнитная катушка, которая существенно влияет на его надежность. Задача катушки — создавать электромагнитное поле, которое будет поднимать сердечник/шток, чтобы открыть нормально закрытый клапан (НЗ) или закрыть нормально открытый (НО). Без нее внутренние компоненты клапана просто не смогут перемещаться при подаче напряжения.

Некоторые поставщики соленоидных клапанов приобретают катушки у сторонних производителей, зачастую не имеющих собственного интереса в их оптимизации. Им предоставляется чертеж и технические характеристики, и они поставляют продукт, отвечающий этим требованиям. В свою очередь, собственное производство катушек позволяет отслеживать каждый аспект производственного процесса, совершенствовать его и внедрять новые технологии, а не просто разрабатывать конструкцию, которая будет использоваться без изменений в течение длительного времени.

Для изготовления надежной электромагнитной катушки производитель должен соблюдать стандарты IEC 335 для электрических устройств. Также нужно установить класс изоляции: у стандартных катушек это E, F или H. Класс изоляции определяет максимальную рабочую температуру катушки в течение конкретного срока службы (рис. 1). Например, в соответствии с европейским стандартом IEC 335 катушки класса H должны выдерживать 20 000 ч при +180 °C, а катушки класса F — 20 000 ч при +155 °C. Однако по требованиям американского стандарта UL катушки должны выдерживать 30 000 ч как в классе H (при +180 °C), так и в классе F (при +155 °C). Оптимизированный соленоидный клапан будет содержать проводник из меди высокой чистоты, отвечающей более строгим международным стандартам, а также изолирующее покрытие класса H по UL, которое обеспечит длительный срок службы.

При производстве катушки одной из важных целей является «идеальная обмотка»: чтобы витки катушки были абсолютно однородны и каждый последующий слой идеально ложился на предыдущий (рис. 2). Такая обмотка приближается к 100%-ной эффективности, а также уменьшает риск возникновения горячих участков, которые являются потенциальными точками отказа.

Идеальная обмотка

Рис. 2. «Идеальная обмотка»

После намотки проводника катушку следует заключить в оболочку, чтобы обеспечить изоляцию и защиту от повреждения и влаги. Эпоксидная литая оболочка имеет лучшие характеристики, поскольку является прекрасным изолятором и негигроскопична. В конечном счете, каждая катушка, предназначенная для использования в соленоидном клапане, должна быть спроектирована и испытана для непрерывной службы, а также отвечать требованиям стандарта IEC 216 к термостойкости.

 

Оптимальная конструкция

Как уже отмечалось выше, традиционные конструкции клапана, в которых используются уплотнительные кольца и вентиляционные отверстия, не соответствуют требованиям безопасности и надежности.

Необходим иной подход к разработке соленоидного клапана — без уплотнения, с низким коэффициентом трения и без заедания. Для этого между штоком и корпусом клапана можно использовать специальное двухслойное динамическое уплотнение, не содержащее никаких резиновых компонентов, которые, как уже говорилось, со временем разрушаются. Внутренний слой уплотнения (U-образное кольцо), находящийся в соприкосновении со штоком клапана, может быть изготовлен из PTFE и поддерживаться уплотнительным кольцом из эластомера. Для таких колец используется эластомер, устойчивый к воздействию окружающей среды. Он создает преднагрузку для U-образного кольца из PTFE и обеспечивает статическое уплотнение. В сочетании со штоком клапана, поверхность которого отполирована с точностью до микрона, такая конструкция эффективно предотвращает любое заедание и сводит к минимуму трение штока.

Риск заедания также снижается за счет устранения необходимости в вентиляционных отверстиях. Клапан с «недышащей» конструкцией не допускает проникновения грязи из окружающей среды.

Представленная конструкция имеет низкое значение FFR, что позволяет избежать потребности в мощной пружине и использовать катушку с пониженным энергопотреблением (1,8 Вт, 0,5 Вт IS). У такого решения множество преимуществ. Например, при модернизации завода можно устанавливать новые соленоидные клапаны без замены кабелей или добавления источников питания. Катушка с пониженным энергопотреблением позволяет выполнять больше работы в той же инфраструктуре — например, питать большее количество устройств. Дополнительным преимуществом является то, что меньшая мощность означает меньшую температуру: это приводит к более длительному сроку службы катушки с сокращением эксплуатационных расходов.

Кроме того, качественные клапаны поставляются с соответствующими целевому назначению руководствами по установке и обслуживанию. Эти документы также содержат рекомендации по достижению «чистой» среды и обеспечению максимальной защиты с помощью фильтров и выхлопных устройств, которые позволят избежать попадания в клапан любых загрязнений, способных нарушить его нормальную работу и/или снизить долговечность.

 

Экстремальные рабочие условия

Надежность соленоидных клапанов становится еще важнее в экстремальных рабочих условиях. Например, рассмотрим управление приводом клапана при очень низкой температуре.

Существует множество документальных свидетельств того, что уровень надежности соленоидных клапанов уменьшается по мере понижения температуры. Решение такой проблемы — сертифицированные соленоидные клапаны, работающие при температурах –60…+90 °C.

При работе в коррозионных средах, например содержащих сернистый газ, где часто происходит сульфидное растрескивание под напряжением, все материалы внутренних и внешних компонентов клапана должны отвечать требованиям NACE.

В целом, для любых экстремальных рабочих условий рекомендуется подбирать соленоидные клапаны, защищенные от коррозии и имеющие долгий срок службы, а также сертифицированные признанными в отрасли органами, такими как Exida и TÜV.

Наконец, для потенциально взрыво­опасных сред инженерам следует остановить свой выбор на соленоидных клапанах с широким ассортиментом вариантов взрывозащиты и сертификацией, делающей их пригодными для использования в опасных средах, — ТР ТС 012/2011, ATEX, IECEx, NEMA/UL/CSA, NEPSI, PESO, INMETRO и KOSHA.

 

Решение Emerson

Клапаны ASCO серии 327 от компании Emerson (рис. 3, табл.) — это универсальные соленоидные клапаны 3/2 прямого действия (со сбалансированной тарелкой), доступные в различных исполнениях по материалам, мощности, пропускной способности и сертификации. Они подходят для различных задач, например для управления приводом, разгрузки компрессора и контроля над средствами обеспечения, и могут использоваться в составе широкого диапазона инженерных решений, среди которых системы управления приводом, системы управления с резервированием и байпасные панели.

 Соленоидные клапаны ASCO серии 327

Рис. 3. Соленоидные клапаны ASCO серии 327

Благодаря уникальной конструкции и заверенному сертификатами соответствию требованиям безопасности, клапаны серии 327 являются проверенным, безопасным, надежным и адаптируемым решением, подходящим для использования в жестких промышленных условиях. Такой клапан обладает взрывозащитой и превосходит строгие требования нефтегазовой отрасли.

Таблица. Технические характеристики клапанов ASCO серии 327

Материал корпуса клапана

Нержавеющая сталь 316L / латунь / алюминий

Размер

1/4″, 1/2″

Пропускная способность (Kv)

До 1,5 м3

Давление

ΔP 0–10 бар

Рабочая температура

–60…+120 °С

Класс SIL

До 3 (Exida и TÜV)

Энергопотребление

от 0,5 Вт

Материал корпуса / оболочки /  катушки

Алюминий / нержавеющая сталь 316L / заливка эпоксидной смолой

Дополнительные возможности

Ручное управление, ручной сброс, съемное ручное управляющее устройство

Международная сертификация Ex

CU TR (ТР ТС), ATEX, IECEx, NEMA/ UL/CSA, NEPSI, PESO, INMETRO, KOSHA и т. д.

Сертификаты безопасности

Exida, TÜV

Клапаны обладают прочной «недышащей» конструкцией, специальным устройством уплотнения и катушкой с увеличенным сроком службы. Все катушки проектируются и изготавливаются на собственных заводах Emerson.

Также клапаны серии 327 позволяют значительно сократить время технического обслуживания и расходы на ввод в эксплуатацию. Например, устройство для управления клапаном при недостаточном давлении можно извлечь вручную, без демонтажа клапана или выключения пневматической системы оборудования.

К другим преимуществам данных клапанов относятся:

  • модели с пониженным энергопотреблением, которые уменьшают размеры источников питания и кабелей;
  • отвечающие требованиям NACE материалы, снижающие риск коррозии;
  • катушки класса H с эпоксидной оболочкой для долгого срока службы;
  • внутренняя устойчивость к вибрациям;
  • наличие постоянного воздушного зазора (даже при подаче питания), который снижает любые риски заедания (рис. 4), вызванные остаточным магнетизмом.
    Конструкция солиноидного клапана для снижения риска заедания

    Рис. 4. Конструкция для снижения риска заедания

 

Пример применения

Чтобы подчеркнуть преимущества высококачественных соленоидных клапанов, рассмотрим управление клапаном ESD на нефтеперерабатывающем заводе. При нормальной работе на такие клапаны подается питание для поддержки технологического клапана в открытом состоянии. Соответственно, в случае аварийной ситуации соленоидный клапан должен быть обесточен и быстро закрыться, чтобы перекрыть технологический клапан. Поскольку соленоид такого типа обычно подолгу работает в режиме ожидания, разрушение уплотнительного кольца и повышенное трение значительно замедлят его отклик при закрытии.

Чтобы измерить время отклика соленоидного клапана после работы в режиме ожидания, было проведено испытание. Оно показало, что клапан ASCO 327 срабатывал значительно быстрее, чем изделие конкурента, которое, помимо прочего, имело большее усилие возврата пружины. Таким образом, клапаны ASCO демонстрируют более стабильное и надежное поведение по прошествии долгого времени, чем аналогичные устройства (рис. 5).

Быстро закрывающийся соленоидный клапан повышает безопасность применения

Рис. 5. Быстро закрывающийся соленоидный клапан повышает безопасность применения

 

Заключение

Покупка недорогого соленоидного клапана на первый взгляд может показаться выгодной. Для многих инженеров клапаны — это простые устройства для прерывания или отвода потока в трубе. Однако если необходимо быть уверенным в том, что соленоидный клапан мгновенно откроется или закроется, когда это потребуется, даже после длительного периода ожидания, единственным вариантом являются высококачественные инженерные решения.

Facebook

Twitter

Вконтакте

Google+

Клапаны для систем обратного осмосаФильтры и системы очистки воды

Клапан защиты от протечек LeakStop представляет собой пластиковый корпус с прозрачным отсеком для установки чувствительного к наличию влаги сенсора, представляющего собой волокнистую подушку из полимера. В случае протечки сенсор быстро впитывает воду, разбухает и перекрывает канал поступления воды из магистрали в фильтр. Таким образом, дальнейшее протекание воды прекращается. Владелец фильтра получает возможность обнаружить и устранить неисправность.

Сработавший сенсор является сменным элементом, и после срабатывания он легко заменяется новым.

Процесс монтаж клапана предельно прост. Прежде всего, нужно выбрать свободное место для установки в непосредственной близости от ранее установленного фильтра. Как правило, это дно кухонной тумбы или другое место, в котором может скапливаться вода в случае возникновения протечки. В выбранном месте клапан закрепляется с помощью двустороннего скотча и дополнительно фиксируется саморезами.
Для удобного подключения к питьевому фильтру корпус клапана оснащен стандартными быстроразъемными соединениями. Клапан устанавливается в разрез трубки 1/4″, соединяющей фильтр с водопроводом.
Установив клапан LeakStop, владельцы питьевых фильтров получают дополнительную защиту от непредвиденных ситуаций, способных привести к протечкам воды. К сожалению, даже высокое качество бытовых питьевых фильтров и систем обратного осмоса не гарантирует защиту от внешних причин, способных вызвать утечку воды. Как правило, такими причинами могут быть:

  • гидроудар — резкое изменение давления воды в водопроводе при отсутствии редукционного клапана на входе в квартиру или непосредственно перед фильтром;
  • неквалифицированный монтаж или сервисное обслуживание фильтра;
  • естественный износ и старение уплотнительных прокладок и быстроразъемных соединений;
  • использование некачественных, несертифицированных картриджей и запчастей;
  • самостоятельное внесение изменений в конструкцию фильтров.

Электромагнитные клапаны. Соленоидные клапаны

Электромагнитный клапан предназначен для включения или выключения подачи жидкости или газа в трубопроводе при подаче на него соответствующего электрического сигнала. Электромагнитные клапаны (электроклапаны) приобрели широкую популярность в водоподготовке для автоматизации различных технологических процессов и для управления этими процессами на расстоянии.

Устройство электромагнитного клапана и принцип работы

Устройство электромагнитного клапана и его производство несложно – он состоит из катушки с соленоидом (электромагнитная катушка) и самого клапана, внутри которого имеется проходной канал (седло) и шток с герметизирующими прокладками. Основным управляющим воздействием на электромагнитные клапаны служит электрический ток, который питает катушку (электромагнитный привод). Появившееся электромагнитное поле, втягивает или выталкивает рабочий элемент. Шток рабочего элемента при этом открывает или закрывает малый обводной канал либо непосредственно проходной канал. Таков принцип работы (принцип действия)электромагнитного клапана при первом приближении.

Электромагнитные катушки (катушки индуктивности) изготавливаются для всех известных диапазонов напряжений постоянного и переменного тока (220В АС, 110 AC, 24 AC, 24 DC, 12 DC, 5 DC). Соленоиды размещают в водозащищённые пластиковые корпусы (IP55, IP65, IP66 и т.д.). Низкое потребление энергии, в частности электромагнитными системами небольших размеров, означает, что возможно управление через полупроводниковые схемы. Напряжённость магнитного поля увеличивается по мере уменьшения размера воздушного зазора между стопором и сердечником электромагнита вне зависимости от вида подаваемого напряжения. Электромагнитные системы, работающие от напряжения переменного тока, имеют большую силу магнитного поля и значительную величину хода штока, чем сравнимые электромагнитные системы, работающие от постоянного тока. В момент подачи напряжения, т.е. когда размер воздушного зазора максимален, электромагнитные системы, работающие от напряжения переменного тока, потребляют большое количество энергии, шток поднимается и воздушный зазор закрывается. Это приводит к большой мощности выходного потока и увеличению перепада давления. После подачи напряжения постоянного тока увеличение скорости потока в системе происходит относительно медленно, пока не будет достигнуто фиксированное значение напряжения тока. Именно поэтому такие автоматические клапаны способны регулировать только низкие давления кроме тех, что снабжены небольшими проходными отверстиями.

Гидравлический клапан изготавливается из различных материалов, но, как правило, это латунь или нержавеющая сталь (SS 304 или SS 316). Внутри клапана расположен пластиковый шток и герметизирующие прокладки. Материал, из которого должен быть изготовлен шток или прокладка, зависит от типа жидкости или газа. Самый распространённый и недорогой материал прокладок – NBR или EPDM, более надёжные термически и химически стойкие – Viton или Teflon (цена на такие клапаны несколько выше).

При применении запорного клапана с электромагнитным приводом для воды следует помнить, что крупные механические частицы могут заблокировать седло запорного клапана, что приведёт к нестабильности его работы.


Клапан высокого давления для бытовых систем обратного осмоса, укомплектованных повышающим насосом. Подходит почти ко всем бытовым системам обратного осмоса различных производителей. Останавливает работу помпы при наполнении накопительного бака очищенной водой. Имеет винт для регулировки давления срабатывания.

 

 

Технические данные:

Диапазон регулировок срабатывания, бар от 1 до 4
Рекомендуемое давление срабатывания, бар 3
Быстрое соединение под трубку, дюйм 1/4

 

Для чего нужен электромагнитный клапан на карбюраторе

От того правильно или нет установлен электромагнитный клапан (ЭМК) в карбюратор Солекс или Озон напрямую зависит работа двигателя автомобиля на холостом ходу. Правильность установки проверяется так: на холостом ходу (двигатель прогрет до 80-90º), при полностью закрытых дроссельных заслонках и полностью открытой воздушной заслонке резко снимается провод с вывода электромагнитного клапана. Двигатель должен заглохнуть.

Происходит следующее. При снятии провода клапан обесточивается, его игла выдвигается вперед и перекрывает топливный канал системы холостого хода. Топливо в двигатель не поступает, и он глохнет. Это в случае если клапан установлен правильно.

В противном случае — если двигатель не заглох, значит, топливо поступает в него либо в обход системы холостого хода (приоткрыты дроссельные заслонки, ускорительный насос не исправен, «перелив» и т.п.), либо электромагнитный клапан завернут не до конца и топливо идет в канал ХХ не только через калиброванное отверстие в топливном жиклере клапана, но и вокруг жиклера (в зазор между топливным жиклером и его посадочным гнездом в крышке карбюратора).

Рассмотрим как правильно установить ЭМК в карбюратор.

— Заворачиваем электромагнитный клапан в карбюратор рукой до упора. Надеваем на него провод.

— Запускаем двигатель. Возможно, он будет подтраивать и пытаться заглохнуть, но держать хоть какие-то обороты ХХ должен.

— При помощи рожкового ключа (на 13) начинаем заворачивать клапан в карбюратор.

Порядок заворачивания клапана такой: перемещаем ключ на сантиметр-два по часовой стрелке, снимаем наконечник провода с клапана. Двигатель заглох? Нет? Надеваем провод. Опять перемещаем ключ на сантиметр-два и снимаем провод. Не глохнет? Еще раз надеваем и поворачиваем ключ. Повторяем процедуру до тех пор, пока двигатель не начнет глохнуть. Все клапан установлен в карбюратор правильно.

установка электромагнитного клапана в карбюратор Солекс

По ходу установки клапана обороты холостого хода должны автоматически выровняться и двигатель заработает устойчиво. При необходимости доводим их до нормы при помощи винтов «качества» и «количества».

Следует учитывать, что сильно затягивать ЭМК нельзя – можно повредить его посадочное гнездо в крышке или корпусе карбюратора, а так же топливный жиклер системы ХХ. Если после нескольких затяжек-снятий двигатель не глохнет необходимо прекратить работу и начинать искать, где топливо поступает в двигатель в обход системы холостого хода.

Примечания и дополнения

— Правильность установки клапана в карбюратор невозможна при его поломке или неисправности системы ЭПХХ (См. «Проверка и ремонт системы ЭПХХ Солекс».

— В ряде случаев, чтобы исключить влияние капризной системы ЭПХХ на электромагнитный клапан в нем обламывают наконечник запорной иглы. В таком случае возможно небольшое калильное зажигание и некоторый перерасход топлива.

Еще статьи по карбюраторам Солекс и Озон

Любой карбюраторный двигатель имеет несколько больший расход топлива, чем инжекторный. Для того чтобы его уменьшить применяются разного рода конструкторские решения, одно из которых – электромагнитный клапан карбюратора.

Некоторые водители считают это устройство необязательным и даже ненужным, но при его использовании в городском режиме можно уменьшить расход топлива у автомобиля ВАЗ 2107 на 3-5%. В условиях, когда бензин постоянно дорожает, такая экономия может оказаться весьма существенной, особенно если автомобиль ездит постоянно.

За счет чего происходит перерасход бензина?

Когда автомобиль работает на холостом ходу, карбюратор перестает подавать в двигатель топливо-воздушную смесь – так уж устроен механизм подачи. Но для того чтобы двигатель не заглох, ему все же необходимо потреблять некоторое количество бензина и нужен воздух для его сгорания.

Воздух попадает в карбюратор через клапан холостого хода (КХХ), после чего он смешивается с бензином и дальше поступает в двигатель. В такой системе подача топлива происходит непрерывно, так сказать, самотеком. Потребность в топливе не всегда бывает одинаковой, так как автомобиль может ехать в разных условиях.

К примеру, при торможении двигателем потребление топлива периодически падает и возрастает, но так как подача бензина не регулируется, происходит его перерасход. То же самое когда автомобиль идет накатом с горки и в других случаях. Чтобы сэкономить столь дорогое топливо и был разработан электромагнитный бензиновый клапан.

Что делает электромагнитный клапан карбюратора?

Если вы до сих пор не знали, то оказывается электромагнитный клапан, в итоге, значительно экономит средства автовладельца.

Какие полезности для вашего автомобиля и кошелька, соответственно, выполняет клапан:

  • электромагнитный клапан призван уменьшить расход топлива за счет регулировки его подачи. В зависимости от потребностей он попеременно перекрывает канал подачи воздуха и топливо-воздушной смеси, находящийся в карбюраторе и тем самым дозирует его. Преимущества такого устройства на этом не заканчиваются;
  • за счет того, что двигатель сжигает ровно столько топливно-воздушной смеси, сколько нужно, камера сгорания и поршни не испытывают дополнительных нагрузок. Соответственно – увеличивается ресурс поршневой группы;
  • кроме того, когда в камере сгорания давление воспламенившихся газов превышает норму, они начинают «вымывать» масляную пленку с поверхности цилиндров и поршней. За счет этого также уменьшается износ деталей двигателя;
  • и последний эффект, который для кого-то может показаться не таким важным, это уменьшение выброса СО в атмосферу.

Как устроен электромагнитный клапан ваз 2107?

Электромагнитный клапан «семерки» установлен непосредственно в карбюраторе. Его режим работы управляется с помощью экономайзера принудительного холостого хода (ЭПХХ). Верхняя рабочая часть клапана перекрывает воздушный канал. После открытия воздух попадает в камеру, в которой смешивается с бензином.

При этом нижняя рабочая часть клапана перекрывает канал, который ведет из камеры и не позволяет приготовленной смеси поступать в двигатель. Во втором такте клапан перекрывает воздушный канал и соответственно, открывает нижний, по которому топливо-воздушная смесь попадает в двигатель.

Казалось бы – система проста и необходимости в ней нет, но есть один нюанс. Процесс открытия-закрытия каналов происходит с одной и той же частотой, но насколько они открываются – регулирует ЭПХХ. Именно за счет этого просвета регулируется уровень подачи топлива в двигатель.

Ход клапана обеспечивается за счет электропитания напряжением 12 В. Когда на него подается питание, он открывает воздушный канал, перекрывая канал для топливо-воздушной смеси. Когда питание, подаваемое через экономайзер ПХХ, не поступает, клапан закрывается за счет установленной в нижней части пружины. Поэтому, когда зажигание выключено, подача топлива не производится.

Совет для автолюбителя – не убирать электромагнитный клапан

Многие владельцы автомобилей, имеющие довольно большой стаж, не знают, зачем установлен электромагнитный клапан в карбюраторе. При его выходе из строя они часто допускают следующую ошибку – вместо того чтобы купить новый и установить его вместо старого клапана, такие водители просто блокируют его работу, специально выламывают запорный механизм и оставляют в открытом положении.

Как результат – перерасход топлива обеспечен. Причина такого отношения – либо банальное невежество, либо необоснованная скупость. Достаточно подсчитать, сколько можно сэкономить на топливе и соотнести со стоимостью нового клапан и все встанет на свои места. Нередко переплата за бензин может быть больше в десятки раз.


Предпосылки для проверки электромагнитного клапана карбюратора следующие: Ваз 2108, Ваз 2109, Ваз 21099 периодически(либо вообще постоянно глохнет на холостом ходу). Электромагнитный клапан в карбюраторе солекс Ваз 2108, Ваз 2109, Ваз 21099 предназначен для подачи топлива в первую камеру карбюратора НА ХОЛОСТОМ ХОДУ. То есть этот клапан предназначен для того, чтобы карбюратор приготавливал рабочую смесь при закрытой дроссельной заслонке. Управляет клапаном экономайзер холостого хода — электронное устройство, включающее клапан при оборотах двигателя менее 1800 оборотов в минуту, и выключающее его при оборотах выше. Принцип работы электромагнитного клапана чрезвычайно прост: есть 12 вольт на фишке клапана — он открыт и через него течет бензин, нет напряжения — клапан закрывается и подача бензина прекращается.

Электромагнитный клапан карбюратора Ваз 2109

Обратим внимание на один важный момент: у очень многих автомобилей Ваз 2108, Ваз 2109, Ваз 21099 экономайзер холостого хода выведен из работы. То есть напряжение на клапан подается не с экономайзера, а напрямую,при включении зажигания. Поэтому Вам очень важно понять что управляет электромагнитным клапаном,так как сам клапан может быть исправен, а неисправна система управления клапаном.
Давайте проверим сам клапан: заведите двигатель и оставьте работать на холостых оборотах(если проблема с тем, что двигатель глохнет возникает периодически). Перед этим снимите воздушный фильтр с карбюратора, чтобы облегчить доступ к клапану. На работающем на холостом ходу двигателе снимите фишку с клапана. Двигатель должен заглохнуть. Если он не заглох, значит на вашем карбюраторе неправильно настроен холостой ход, но это уже другой вопрос. То что двигатель глохнет при снятии фишки, говорит о том, что в данный момент клапан работает. Глушим двигатель и ключом на 13 выкручиваем клапан из карбюратора.
Теперь проверим его работу с помощью аккумулятора.

Найдите кусок провода длиной сантиметров 30 и подсоедините его к массе аккумулятора. Сам клапан штырьком поставьте на клемму +12В и подключите массу к корпусу клапана.

Замыкаем массу на корпус

Должен раздаться щелчок: катушка втягивает шток клапана. Пощелкайте клапаном, если каждый раз он отрабатывает, то он исправен. Если же никаких щелчков вы не слышите, то такой клапан 100% неисправен.
Если получилась такая ситуация ,что клапан работает как исправный, но при этом автомобиль иногда глохнет,то купите новый. Стоит он недорого, порядка 5$.

Протекание топлива через клапан

Если же клапан работает нормально но автомобиль ВСЕГДА глохнет на холостом ходу, попробуйте следующее. Возьмите провод длиной около 1 метра,один конец его посадите на + 12 В аккумулятора, а другой на штырь клапана.Теперь клапан у Вашего Ваз 2108, Ваз 2109, Ваз 21099 всегда открыт. Заведите машину, отпустите педаль газа,чтобы был холостой ход. Теперь машина глохнуть не должна, так как через постоянно открытый клапан холостого хода ВСЕГДА открыт проток бензину. Если же машина все равно глохнет — продуйте клапан сжатым воздухом. Причина того,что от аккумулятора клапан работает, а от фишки нет в неисправности электронного экономайзера,но это ничего страшного, большинство владельцев Ваз 2108, Ваз 2109, Ваз 21099 ездят без него. Необходимо просто протянуть провод от Б катушки зажигания на фишку клапана. Включили зажигание электромагнитный клапан открылся и открыт все время до выключения зажигания. Существенного перерасхода топлива от этого не будет.

клапаны-в-системе-полива

Система полива на 10 соток площади может потреблять единовременно 10 – 15 м.куб/ч. Воды. Для сравнения , водопроводный кран в квартире выдает 0,2 м.куб/ч . Как вы видите, расход воды автоматической системой полива несоизмеримо огромен по сравнению с водопроводом, который обычно имеется на участке. Кстати, стандартный водопровод на участке (выделенная труба от поселка) может обеспечить около 3 м.куб/ч.
Как мы видим потребности автополива минимум в 5 раз больше , чем может выдать водопровод.
Что делаем мы в этом случае?
Делим всю систему полива на несколько зон, потребление которых будет соответствовать тому расходу воды, который можно обеспечить на участке. Допустим, что мы знаем, что можем обеспечить проток воды для полива с параметром  2000 л/ч. Вот и разделим весь полив на такие зоны, где потребление не будет превышать этого значения.
А каждая из таких зон будет отсекаться Электромагнитным Клапаном. Итак в один момент времени будет работать только одна зона (открыт только один клапан), что и обеспечит нам стабильное использование имеющегося водопровода.
Программатор (контроллер) полива запрограммирован на поочередное включение всех имеющихся клапанов. Так имея большую территорию, мы сможем полить ее напором, не превышающим того, что имеется изначально благодаря разделению на зоны и наличию клапанов.

Каждая система полива имеет уже устоявшую и проверенную временем схему подключения, но при этом каждая отдельная система имеет свою уникальность и особенность в зависимости от существующих условий, поставленной задачи и т.д. Однако, при этом, если упустить различность всевозможных деталей и нюансов существует общий стандарт для работы для всех систем орошения.

Стандартная схема имеет определенный перечень оборудования, от действия которого зависит работа системы полива в целом. Среди основных составляющих следует обозначить: Насосное оборудование; Коммуникации; Электромагнитные клапаны; Дождеватели; Датчики; Контроллер. Не последнюю и немаловажную роль в этом списке имеют электромагнитные или соленоидные клапаны.

 

 

Электромагнитный клапан в системе автоматического полива — это электромеханическое устройство, предназначенное для пуска/остановки потока воды. 

Электромагнитный клапан — это то же самое, что и кран, только закрывается и открывается он не только вручную, а и при подачи на него питания 24 В переменного тока или 9В постоянного (об этом позже). Основными составляющими электромагнитного клапана являются: корпус, диафрагма и соленоид.


Принцип работы клапана.

Клапан устанавливается между магистральным и зональным трубопроводом и пускает/прекращает подачу воды на зону полива, другими словами клапан включает и отключает воду в той зоне, где он установлен. Как это происходит? 

Когда наступает запрограммированное на контроллере время старта полива, пульт управления по проводам подает электрическое напряжения в 24В переменного тока на соленоид клапана.

Дальше, внутри клапана, происходит механическое действие: при подачи напряжения, поршень соленоида втягивается и воздействует на диафрагму клапана, нарушая вакуум и его стабильное состояние, в результате чего мембрана начинает непрерывно пропускать через себя поток воды в направлении установки клапана.

При завершении времени полива, контроллер прекращает подачу напряжения на соленоид, и в клапане происходит тот же механический процесс, только в обратном порядке.

 

 

 

Вернуться ко всем статьям ►

Kipvalve – описание конструкции соленоидных клапанов

Назначение и применение

Соленоидные клапаны предназначены для управления потоками жидкости или пара, как в сложных технологических процессах, так и в быту. С их помощью можно дистанционно включить и отключить подачу жидкости или пара в нужный момент времени.
Клапаны KIPVALVE широко используются для подачи воды в поливочных системах, системах водоснабжения и пожаротушения, управления отопительными процессами, подачи охлаждающей жидкости в экструдерах, обеспечения работы котельных объектов и парогенераторов, смешивания различных сред, а также для заполнения и опустошения емкостей в системах автоматического контроля уровня. Использование соленоидных клапанов делает технологический процесс более удобным и надежным.

Принцип работы

Серия WTR220 NC (нормально закрытые, 2/2 ходовые):

Клапаны серии WTR220 по принципу работы относятся к клапанам прямого действия. Они не имеют пилотных и перепускных отверстий, а запорная втулка вмонтирована в сердечник соленоида, что обеспечивает гарантированную работоспособность клапана при нулевом перепаде давления между входом и выходом и обеспечивает быстродействие работы клапана.

При отсутствии напряжения питания на катушке соленоида, пружина сжатия, воздействуя на сердечник соленоида сверху, прижимает запорную втулку к седлу, закрывая тем самым клапан.

При подаче напряжения питания на катушку соленоида, сердечник соленоида втягивается, преодолевая сопротивление пружины сжатия, поднимает запорную втулку вверх, и клапан открывается.


а

б

Рисунок 1 — Принцип работы соленоидного клапана серии WTR220 NC (нормально закрытый, 2/2 ходовой)
а) клапан закрыт; б) клапан открыт

Серия WTR223 NC (нормально закрытые, 2/2 ходовые) :

Клапаны серии WTR223 по принципу работы относятся к клапанам с плавающей мембраной принудительного подъема. Они снабжены пилотным отверстием и меньшим по диаметру перепускным отверстием, а сердечник соленоида соединен с мембраной при помощи пружины растяжения, что обеспечивает гарантированную работоспособность клапана при нулевом перепаде давления между входом и выходом.

При отсутствии напряжения питания на катушке соленоида, рабочая среда через перепускное отверстие попадает в полость над мембраной, уравновешивая давление с двух сторон мембраны. Однако из-за разности площадей мембраны, на которые действует давление рабочей среды, усилие, приложенное к мембране давлением среды сверху, чуть больше усилия, приложенного к мембране давлением среды снизу. Благодаря давлению пружины сжатия и дополнительному усилию, создаваемому давлением среды, мембрана плотно прижимается к седлу клапана, закрывая его.

При подаче напряжения питания на катушку соленоида, сердечник соленоида втягивается, открывая пилотное отверстие в центре мембраны. Давление рабочей среды стравливается через это отверстие из полости над мембраной на выход клапана, уменьшая тем самым давление сверху мембраны. Под давлением среды, действующим на мембрану снизу, и усилием пружины растяжения мембрана поднимается вверх, открывая клапан.


а

б

Рисунок 2 — Принцип работы соленоидного клапана серии WTR223 NC (нормально закрытый, 2/2 ходовой)
а) клапан закрыт; б) клапан открыт

Серия WTR224B NC (нормально закрытые, 2/2 ходовые):

Клапаны WTR224B по принципу работы относятся к клапанам непрямого действия с плавающей мембраной. Они снабжены пилотным отверстием и меньшим по диаметру перепускным отверстием, а сердечник соленоида не имеет непосредственной связи с мембраной (мембрана прижата к седлу пружиной сжатия).

При отсутствии напряжения питания на катушке соленоида, рабочая среда через перепускное отверстие попадает в полость над мембраной, уравновешивая давление с двух сторон мембраны. Однако из-за разности площадей мембраны, на которые действует давление рабочей среды, усилие, приложенное к мембране давлением среды сверху, чуть больше усилия, приложенного к мембране давлением среды снизу. Благодаря давлению пружины сжатия и дополнительному усилию, создаваемому давлением среды, мембрана плотно прижимается к седлу клапана, закрывая его.

При подаче напряжения питания на катушку соленоида, сердечник соленоида втягивается, открывая пилотное отверстие в корпусе клапана. Давление рабочей среды стравливается через это отверстие из полости над мембраной на выход клапана, уменьшая тем самым давление сверху мембраны. Давление среды, действующее на мембрану снизу, поднимает ее вверх, открывая клапан. В виду отсутствия непосредственной механической связи мембраны с сердечником соленоида, открытие клапана происходит только за счет давления рабочей среды, т.е. при наличии минимального давления между входным и выходным портами клапана.


а

б

Рисунок 3 – Принцип работы соленоидного клапана серии WTR224B NC (нормально закрытый, 2/2 ходовой)
а) клапан закрыт; б) клапан открыт

 

Серия WTR224B NO (нормально открытые, 2/2 ходовые):

Клапаны WTR224B по принципу работы относятся к клапанам непрямого действия с плавающей мембраной. Они снабжены пилотным отверстием и меньшим по диаметру перепускным отверстием, а сердечник соленоида не имеет непосредственной связи с мембраной (мембрана прижата к седлу пружиной сжатия).

При отсутствии напряжения питания на катушке, сердечник соленоида поднят вверх, а пилотное отверстие в корпусе клапана открыто. Давление рабочей среды постоянно стравливается через это отверстие из полости над мембраной на выход клапана, уменьшая тем самым давление сверху мембраны. Давление среды, действующее на мембрану снизу, поднимает ее вверх, оставляя клапан открытым. В виду отсутствия непосредственной механической связи мембраны с сердечником соленоида, клапан находится в открытом состоянии только за счет давления рабочей среды, т.е. при наличии минимального давления между входным и выходным портами клапана.

При подаче напряжения питания на катушку, соленоид закрывает пилотное отверстие, рабочая среда через перепускное отверстие попадает в полость над мембраной, уравновешивая давление с двух сторон мембраны. Далее из-за разности площадей мембраны, на которые действует давление рабочей среды, усилие, приложенное к мембране давлением среды сверху, чуть больше усилия, приложенного к мембране давлением среды снизу. Благодаря давлению пружины сжатия и дополнительному усилию, создаваемому давлением среды, мембрана плотно прижимается к седлу клапана, закрывая его.

a

б

Рисунок 4 – Принцип работы соленоидного клапана серии WTR224B NO (нормально открытый, 2/2 ходовой)
а) клапан открыт; б) клапан закрыт

Серия STM423 NC (нормально закрытые, 2/2 ходовые):

Клапаны серии STM423 по принципу работы аналогичны клапанам серии WTR224B. Но в отличии от серии WTR224B клапаны серииSTM423 имеют латунный поршень вместо гибкой мембраны, что позволяет применять их при более высоких температурах рабочей среды. Клапаны серии STM423 снабжены пилотным отверстием и меньшим по диаметру перепускным отверстием, а сердечник соленоида не имеет непосредственной связи с поршнем (поршень прижат к седлу пружиной сжатия).

При отсутствии напряжения питания на катушке соленоида, рабочая среда через перепускное отверстие попадает в полость над поршнем, уравновешивая давление с двух сторон поршня. Однако из-за разности площадей поршня, на которые действует давление рабочей среды, усилие, приложенное к поршню давлением среды сверху, чуть больше усилия, приложенного к поршню давлением среды снизу. Благодаря давлению пружины сжатия и дополнительному усилию, создаваемому давлением среды, поршень плотно прижимается к седлу клапана, закрывая его.

При подаче напряжения питания на катушку соленоида, сердечник соленоида втягивается, открывая пилотное отверстие в корпусе клапана. Давление рабочей среды стравливается через это отверстие из полости над поршнем на выход клапана, уменьшая тем самым давление сверху поршня. Давление среды, действующее на поршень снизу, поднимает его вверх, открывая клапан. В виду отсутствия непосредственной механической связи поршня с сердечником соленоида, открытие клапана происходит только за счет давления рабочей среды, т.е. при наличии минимального давления между входным и выходным портами клапана.


а

б

Рисунок 5 – Принцип работы соленоидного клапана серии STM423 NC (нормально закрытый, 2/2 ходовой)
а) клапан закрыт; б) клапан открыт

Модельный ряд:

  • WTR220
    Быстродействующие клапаны прямого действия
  • WTR223
    Универсальные клапаны для широкого применения с мембраной принудительного подъема
  • WTR224B
    Клапаны с плавающей мембраной для систем под давлением
  • STM423
    Клапаны для горячей воды и пара

Комплектующие для клапанов KIPVALVE

Электромагнитный соленоидный клапан KIPVALVE сертифицирован и имеет разрешительную документацию. Вы можете узнать больше об электромагнитных клапанах KIPVALVE, связавшись с представителями KIPVALVE в вашем регионе.

Особенности конструкции клапанов KIPVALVE

Прочный материал корпуса

КОВАНАЯ ЛАТУНЬ. Основные свойства этого материала — высокая прочность и пластичность, которые позволяют выдерживать клапану (в отличие от распространенных на рынке дешевых корпусов из прессованной латуни) повышенные механические нагрузки, удары, а также сохраняют резьбу при усиленном затягивании и обеспечивают надежное соединение клапана с трубопроводом. Корпуса из кованой латуни имеют большую толщину стенок, что придает им дополнительную прочность.
НЕРЖАВЕЮЩАЯ СТАЛЬ. Корпуса из этого материала используются для работы в агрессивных средах, а также при взаимодействии с пищевыми продуктами и т.п.

Особый конструктив мембран для надежного запирания клапанов

В сериях WTR223 и WTR224B устанавливаются мембраны с металлической опорной шайбой. Такой конструктив мембраны повышает ее жесткость и обеспечивает надежное прилегание к седлу, а также предотвращает деформацию мембраны клапана при высоких давлениях и температурах. В серии STM423 устанавливается латунный поршень с фторопластовым уплотнением седла и графитовыми кольцами скольжения.

Надежный конструктив и материал трубки сердечника катушки

Трубка сердечника надежно приварена к стальному основанию, что обеспечивает ее механическую прочность (в сравнении с распространенными на рынке более простыми конструкциями, где трубка сердечника завальцована в мягкое латунное основание, что может привести к поломке трубки).

Высокопрочный материал катушки

Изготавливается из термостойкой эпоксидной смолы, способной длительно выдерживать температуру +200 °С (в отличие от пластика, температура которого не должна превышать 80 °С).

Гарантия — 24 месяца

Отправить ответ

avatar
  Подписаться  
Уведомление о