РазноеЧто такое гидротрансформатор в акпп – Признаки неисправности гидротрансформатора АКПП. Основные симптомы и как проверить

Что такое гидротрансформатор в акпп – Признаки неисправности гидротрансформатора АКПП. Основные симптомы и как проверить

Содержание

Гидротрансформатор — Википедия

Модель гидротрансформатора в разрезе

Гидротрансформа́тор (турботрансформатор (уст.), преобразователь крутящего момента) — гидравлическое устройство, служащее для преобразования (изменения) крутящего момента от двигателя к трансмиссии. В отличие от гидромуфты гидротрансформатор способен увеличивать момент на ведомом валу в зависимости от действующего на него сопротивления.

Является одним из элементов гидромеханических трансмиссий, в составе которых применяется на транспортных средствах с двигателем внутреннего сгорания от легковых машин до тепловозов. Гидротрансформаторы получили широкое распространение в автомобильной технике, обеспечивая плавное трогание автомобиля с места и уменьшая передачу ударных нагрузок от трансмиссии на вал двигателя. Чаще всего используется с АКП или вариаторами.

Принципиальная схема гидротрансформатора

Любой гидротрансформатор состоит из:

  • Осевого лопастного насоса, жестко связанного с корпусом гидротрансформатора. Насос обеспечивает движение жидкости.
  • Турбины, жестко соединенной с ведомым валом. Турбина вращается под действием потока жидкости от насоса.
  • Так называемого статора (реактора, направляющего аппарата) — специальной крыльчатки, установленной на пути жидкости непосредственно на выходе из турбины. Статор закреплен на обгонной муфте (муфте свободного хода), позволяющей ему свободно вращаться только в одну сторону (в ту же, в какую вращается турбина).

При работе гидротрансформатора жидкость разгоняется насосным колесом и движется по сложной траектории, которую можно разделить на две простые составляющие: относительную (скорость направлена радиально от оси к периферии насосного колеса и от периферии к оси турбинного колеса), переносную (вращение вместе с насосным и турбинным колёсами). В зависимости от соотношения этих составляющих гидротрансформатор может работать на разных режимах.

Различают три режима работы гидротрансформатора:

  • Режим трансформации крутящего момента. Соотношение переносной и относительной скоростей потока выходящего с турбинного колеса такое, что абсолютная скорость направлена на вогнутую поверхность лопаток реактора. На реакторе создаётся крутящий момент, стремящийся провернуть его в сторону заклинивания муфты свободного хода. Реактор оказывается неподвижным. При этом лопатки реактора разворачивают относительную составляющую потока с турбинного колеса так, что его кинетическая энергия добавляется к кинетической энергии переносного движения, что создаёт увеличенный крутящий момент на турбинном колесе. Частный случай — стоп-режим, когда неподвижно и турбинное колесо. При этом в потоке, выходящем с турбинного колеса практически отсутствует переносная составляющая. При увеличении частоты вращения турбинного колеса возрастает центробежная сила, препятствующая перемещению потока с периферии к оси турбинного колеса. Кинетическая энергия относительной составляющей потока, выходящего с турбинного колеса, уменьшается. При этом уменьшается коэффициент трансформации. Когда он становится близок к единице, гидротрансформатор переходит в режим гидромуфты.
  • Режим гидромуфты. Соотношение относительной и переносной составляющих становится таким, что абсолютная скорость потока, выходящего с турбинного колеса, направлена на выпуклую поверхность лопаток реактора. При этом создаётся крутящий момент, проворачивающий реактор в направлении расклинивания муфты свободного хода. Реактор вращается вместе с турбинным колесом и не изменяет направление относительной составляющей потока. Крутящий момент с насосного колеса на турбинное передаётся без изменения.
  • Режим блокировки. Система управления подаёт сигнал на блокировку фрикционной муфты гидротрансформатора. Насосное и турбинное колеса жёстко соединяются и вращаются как одно целое. У потока жидкости при этом отсутствует относительная составляющая.

Описание принципа работы гидротрансформатора можно посмотреть в этом видео Гидротрансформатор АКПП. Вся правда о принципе работы.

Гидротрансформатор в разрезе. Слева виден «бублик» насоса и турбины, между ними виден светло-серый реактор и его подшипник с обгонной муфтой. Справа сцепление блокиратора.

Все детали собраны в общем корпусе, расположенном, как правило, на маховике двигателя машины. Хотя, бывают и исключения. Например, в трансмиссиях автобуса ЛиАЗ-677 и трактора ДТ-175С передача крутящего момента от двигателя к гидротрансформатору происходит через карданный вал. Гидротрансформатор наполнен маслом, которое активно перемешивается при его работе.

Насосное колесо жёстко связано с корпусом гидротрансформатора, при вращении вала двигателя оно создаёт внутри гидротрансформатора поток масла, который вращает колесо статора (реактора) и турбину.

Конструктивным отличием гидротрансформатора от гидромуфты является наличие статора (реактора). Статор установлен на обгонной муфте. При значительной разнице оборотов насоса и турбины статор (реактор) автоматически блокируется и передаёт на насосное колесо больший объём жидкости. Благодаря статору (реактору) происходит увеличение крутящего момента до трёх раз

[1] при старте с места.

Турбина жёстко связана с валом АКП.

Благодаря тому, что передача крутящего момента внутри гидротрансформатора происходит без жёсткой кинематической связи, исключаются ударные нагрузки на трансмиссию и автомобиль приобретает большую плавность хода. Негативным эффектом гидротрансформатора является «проскальзывание» турбинного колеса по отношению к насосному — это приводит к повышенному выделению тепла (в некоторых режимах гидротрансформатор может выделять больше тепла, чем сам двигатель) и увеличению расхода топлива.

Блокировка гидротрансформатора[править | править код]

Для повышения топливной экономичности в конструкцию современных гидротрансформаторов вводится механизм блокировки, позволяющий жёстко связать насос и турбину. При заблокированном гидротрансформаторе АКП работает в режиме жёсткой кинематической связи двигателя и трансмиссии аналогично МКП. В электронно-управляемых АКП момент включения блокировки определяет компьютер, поэтому она может быть включена практически в любой момент согласно управляющей программе.

АКП, произведённые в XX веке, включали блокировку гидротрансформатора только при достижении достаточно большой скорости (более 70 км/ч). Современные АКП включают блокировку гидротрансформатора с достаточно низких скоростей (от 20 км/ч), что позволяет экономить топливо не только при движении по шоссе, но и при городской эксплуатации автомобиля. Также блокировка гидротрансформатора применяется, подобно МКПП, для торможения двигателем. В этом случае подача топлива в двигатель прекращается на время блокировки, вал двигателя вращается за счёт движения автомобиля. На тракторах блокировка гидротрансформатора используется для запуска двигателя трактора «с толкача» либо когда трактор работает в стационарном режиме.

Необходимо отметить, что хотя блокировка гидротрансформатора приносит ощутимую экономию топлива, она имеет некоторые недостатки:

  • прямая кинематическая связь способствует передаче ударных нагрузок между двигателем и трансмиссией;
  • частое включение блокировки приводит к износу фрикционов АКП;
  • загрязнение масла АКП продуктами износа фрикционов блокировки;
  • ухудшение плавности хода при переключении передач АКП.

Гидротрансформаторы широко используются на транспорте: от легковых автомобилей и лёгких вилочных погрузчиков до сверхтяжёлых специальных грузовых шасси. Чаще всего работают с планетарными коробками передач, хотя встречаются и сочетания с обычными двух- и трёхвальными конструкциями. Популярность снабжённых гидротрансформатором машин в зависимости от региона может очень сильно различаться. Так, на конец XX века в Западной Европе около 20 % легковых автомобилей имели гидротрансформатор. Подавляющее большинство гидротрансмиссий средней и большой мощности в Европе разработано и строится фирмой Voith в Германии.

В то же время в США их доля составляла порядка 80 %. В последние годы из легкового автомобилестроения гидротрансформаторы вытесняются автоматизированными или «роботизированными» механическими коробками передач.

В СССР, а позднее в СНГ использовались в гидродинамических трансмиссиях автомобилей «Волга», «Чайка» и ЗИЛ, многоцелевых тягачах МЗКТ и КЗКТ, семействе БелАЗ, автобусах ЛАЗ-695Ж и ЛиАЗ-677, на тракторах ДТ-175С и Т-330 и на ряде маневровых тепловозов (ТГМ3, ТГМ6, ТГК2) и магистральных локомотивов — ТГ102, ТГ16, ТГ22. Кроме того, гидротрансформаторы используются в трансмиссиях некоторых типов подъёмных кранов и экскаваторов с канатным приводом рабочих органов, в приводах рудничных и карьерных ленточных конвейеров. Также гидротрансформаторы устанавливались в привод гребных винтов самого мощного в СССР речного буксира-толкача Маршал Блюхер, что позволяло двигателям теплохода-гиганта эффективно работать на малых скоростях без применения гребных винтов регулируемого шага (реализация которых на речных судах весьма затруднительна).

В системах объёмного гидропривода встречаются агрегаты, носящие название гидравлических трансформаторов, но не имеющие по конструкции ничего общего с гидродинамическими трансформаторами. Пример — агрегат НС53, стоящий на самолёте Ан-124 «Руслан» и некоторых других, состоит из двух одинаковых гидромашин (мотор-насосов) с общим валом, каждая из которых подключена к своей автономной гидросистеме. В какой из систем больше давление — машина той системы вращает вал и передаёт механическую энергию другой машине, которая создаёт давление в своей системе. Такая конструкция позволяет передавать энергию из системы в систему без обмена жидкостью, что при разгерметизации или загрязнении одной гидросистемы исключает отказ другой. На самолётах Airbus аналогичный агрегат называется

power transfer unit (PTU).

  • Гидравлика, гидромашины и гидроприводы: Учебник для машиностроительных вузов/ Т. М. Башта, С. С. Руднев, Б. Б. Некрасов и др. — 2-е изд., перераб. — М.: Машиностроение, 1982.
  • Гейер В. Г., Дулин В. С., Заря А. Н. Гидравлика и гидропривод: Учебник для вузов. — 3-е изд., перераб. и доп. — М.: Недра, 1991.
  • Лепешкин А. В., Михайлин А. А., Шейпак А. А. Гидравлика и гидропневмопривод: Учебник, ч.2. Гидравлические машины и гидропневмопривод. / под ред. А. А. Шейпака. — М.: МГИУ, 2003. — 352 с.
  • Самолёт Ан-124-100: Руководство по технической эксплуатации. Книга 5, раздел 029 — гидравлический комплекс.

Как устроена коробка-автомат с гидротрансформатором

Не падайте в обморок, ничего сложного здесь нет. Сейчас всё растолкуем. Но сначала давайте определимся с терминологией. Дело в том, что многие по ошибке автоматической коробкой передач называют два агрегата, соединённых воедино: собственно саму коробку и гидротрансформатор.


Достоинство гидротрансформаторной трансмиссии заключается, конечно же, в удобстве управления тягой автомобиля. В упрёк таким трансмиссиям можно поставить медлительность, невысокий КПД и относительно небольшой ресурс. Хотя надо отдать им должное — современные коробки отличаются завидной «скорострельностью».

Гидротрансформатор состоит из двух лопастных машин — центробежного насоса и центростремительной турбины. Между ними расположен направляющий аппарат — реактор. Насосное колесо жёстко связано с коленчатым валом двигателя, турбинное — с валом коробки передач. Реактор же, в зависимости от режима работы, может свободно вращаться, а может быть заблокирован при помощи обгонной муфты.


Полезная энергия в гидротрансформаторной трансмиссии расходуется на перелопачивание (и нагрев) масла гидротрансформатором. Также немало энергии «жрёт» насос, который создаёт рабочее давление в управляющих магистралях. Отсюда более низкий КПД. Именно по этой причине механические роботизированные коробки и вариаторы более предпочтительны.


Гидротрансформатор является идеальным демпфером крутильных колебаний и способен гасить сильные толчки, которые передаются от двигателя на трансмиссию и наоборот. Это, кстати, очень благоприятно сказывается на ресурсе двигателя, трансмиссии и ходовой части. Но хлопот гидротрансформатор тоже может принести массу. Например, он не позволяет завести автомобиль с «толкача».

Передача крутящего момента от двигателя к коробке передач осуществляется потоками рабочей жидкости (масла), которая отбрасывается лопатками насосного колеса на лопасти колеса турбинного. Между насосным колесом и турбиной обеспечены минимальные зазоры, а их лопастям придана специальная геометрия, которая формирует непрерывный круг циркуляции рабочей жидкости. Так что получается, что жёсткая связь между двигателем и трансмиссией отсутствует. Это обеспечивает работу двигателя и остановку автомобиля с включённой передачей, а также способствует плавности передачи тягового усилия.


Схема устройства гидротрансформатора


Масло в гидротрансформаторе двигается по такой вот замысловатой траектории. Чтобы увеличить скорость и повысить крутящий момент на турбинном колесе, реактор блокируется. Правда, при этом КПД передачи несколько снижается.

Надо сказать, что по описанной выше схеме работает гидромуфта, которая просто передаёт крутящий момент, не трансформируя его величину. Чтобы изменять момент, в конструкцию гидротрансформатора введён реактор. Это такое же колесо с лопатками, но оно, имея связь с картером (корпусом) коробки передач, не вращается (заметим, до определённого момента). Лопатки реактора расположены на пути, по которому масло возвращается из турбины в насос, и они имеют особый профиль. Когда реактор неподвижен (гидротрансформаторный режим), он увеличивает скорость потока рабочей жидкости, циркулирующей между колёсами. Чем выше скорость движения масла, тем выше его кинетическая энергия, тем она большее оказывает воздействие на турбинное колесо. Благодаря этому эффекту момент, развиваемый на валу турбинного колеса, удаётся значительно поднять.

Представьте себе стандартную ситуацию — передача в коробке уже включена, а мы стоим на месте и жмём себе на педаль тормоза! Что происходит в этом случае? Турбинное колесо находится в неподвижном состоянии, а момент на нём в полтора-два раза выше (в зависимости от конструкции) того, что развивает двигатель на этих оборотах. Кстати, момент на выходном валу гидротрансформатора будет тем больше, чем будут выше обороты двигателя. Стоит отпустить педаль тормоза, и автомобиль тронется. Разгон будет продолжаться до тех пор, пока момент на колёсах не сравняется с моментом сопротивления движению машины.


Алюминиевый селектор управления автоматической трансмиссией BMW X5.

Когда турбинное колесо приближается по оборотам к скорости вращения насосного колеса, реакторное колесо освобождается и начинает вращаться вместе с двумя «напарниками». В этом случае говорят, что гидротрансформатор перешёл в режим гидромуфты. Так снижаются потери, и увеличивается КПД гидротрансформатора.

А поскольку в некоторых случаях надобность в преобразовании крутящего момента и скорости отпадает, в определённые моменты гидротрансформатор и вовсе может быть заблокирован при помощи фрикционного сцепления. Этот режим помогает довести КПД передачи практически до единицы, проскальзывание между лопаточными колёсами в этом случае исключено по определению.

Но представьте себе такую ситуацию. Вы едете по прямой с постоянной скоростью и вдруг начинаете подниматься в горку. Скорость автомобиля начнёт падать, а нагрузка на ведущие колёса увеличится. На это изменение тут же отреагирует гидротрансформатор. Как только станет уменьшаться частота вращения турбины, реакторное колесо начнёт автоматически затормаживаться, в результате скорость циркуляции рабочей жидкости возрастёт, что автоматически приведёт к увеличению крутящего момента, который будет передаваться на вал от турбинного колеса (читай на колёса). В некоторых случаях увеличившегося момента хватит для того, чтобы преодолеть подъём без перехода на низшую передачу.

Поскольку гидротрансформатор не может преобразовывать скорость вращения и передаваемый крутящий момент в широких пределах, к нему присоединяют многоступенчатую коробку передач, которая, вдобавок ко всему, способна обеспечить и реверсивное вращение (иными словами — задний ход). Те коробки, которые работают в паре с гидротрансформаторами, обычно включают в себя ряд планетарных передач и имеют много общего с привычными нам «ручными» коробками.

В механической коробке шестерни находятся в постоянном зацеплении, при этом ведомые — свободно вращаются на вторичном валу. Включая какую-либо передачу, мы механически блокируем соответствующую шестерню на ведомом валу. Работа автоматической коробки передач построена на таком же принципе. Но планетарные передачи (или редукторы) имеют некоторые интересные особенности. Они включают в себя несколько элементов: водило, сателлиты, солнечную и кольцевую шестерни.

Приводя во вращение одни элементы и фиксируя другие, такие редукторы позволяют менять передаточные отношения, то есть скорость вращения и передаваемое через планетарную передачу усилие. Приводятся планетарные передачи от выходного вала гидротрансформатора, а их соответствующие элементы фиксируются при помощи фрикционных лент или фрикционных пакетов (в механической коробке эту роль играют синхронизаторы и блокирующие муфты).


Планетарные передачи. Водило (1), сателлиты (2), шлицы солнечной шестерни (3).

Включается передача следующим образом. На фрикцион давит гидравлический толкатель, который в свою очередь приводится в действие давлением рабочей жидкости, той самой, что используется в гидротрансформаторе. Давление это создаётся специальным насосом, а распределяется оно между соответствующими фрикционами передач под неусыпным контролем электроники при помощи специальной системы электромагнитных клапанов — соленоидов в соответствии с алгоритмом работы коробки.


Пакеты фрикционов состоят из нескольких колец — неподвижных и подвижных. Они свободно вращаются друг относительно друга до тех пор, пока не возникнет необходимость включить передачу. Гидравлический толкатель зажмёт фрикционы тогда, когда в соответствующей магистрали будет создано рабочее давление. Подвижные элементы фрикциона, жёстко связанные, например, с водилом планетарной передачи, будут застопорены, водило остановится, передача включится.

Существенное отличие АКПП от обычных механических коробок заключается в том, что передачи в них переключаются практически без разрыва потока мощности. Одна выключилась, другая почти в тот же момент включилась. Сильные рывки при переключениях практически исключены, поскольку их гасит уже упомянутый выше гидротрансформатор. Хотя, надо отметить, современные коробки со спортивной настройкой не могут похвастать плавной работой. Толчки при их работе обусловлены более быстрой сменой передач: такой расклад позволяет отыграть некоторое количество времени при разгоне, но приводит к ускоренному износу фрикционов. На трансмиссии и ходовой части в целом это тоже сказывается не лучшим образом.

В автоматических трансмиссиях первого поколения системы управления были целиком гидравлическими. В дальнейшем гидравлику оставили только в качестве исполнительной части системы управления, задавать же алгоритм работы стала электроника. Благодаря ей возможно реализовывать различные алгоритмы работы коробки — режим резкого ускорения, спортивный, экономичный, зимний…


Одна из последних разработок компании ZF — восьмиступенчатая гидромеханическая коробка передач. Как сообщают сами создатели, коробка позволяет экономить до 6% топлива по сравнению с аналогичными шестиступенчатым «автоматом» и 14% по сравнению с пятиступенчатым. Всё логично, большое количество передач позволяет увеличить время, при котором двигатель работает в наиболее «эффективном» режиме и удельный расход топлива минимален. Теряется время на лишние переключения? Совсем немного.

В спортивном режиме, например, тяга двигателя используется на все сто процентов. Включение каждой последующей передачи происходит при частотах коленчатого вала, близких к частотам, на которых развивается максимальный крутящий момент. При дальнейшем ускорении частота вращения коленчатого вала доводится до максимальных значений, при которых двигатель развивает максимальную мощность. И так далее. Автомобиль в этом случае развивает значительно большие ускорения по сравнению с теми, что осуществляются при работе «экономичной» или «нормальной» программ.


Управляющие клапаны гидравлического блока управления.

На большинстве современных автомобилей с автоматической трансмиссией те или иные алгоритмы управления активизируются в зависимости от манеры вождения. Электроника адаптирует работу тандема двигатель-трансмиссия самостоятельно. Компьютер, анализируя информацию от многочисленных датчиков, принимает решение о переключении передач в те или иные моменты, в зависимости от требуемого характера переключений. Если манера движения размеренная и плавная, контроллер делает соответствующие поправки, при которых двигатель не выводится на мощностные режимы работы, что положительно сказывается на расходе топлива. Как только водитель «занервничал» и начал чаще и резче нажимать на педаль газа, искусственный интеллект тут же понимает, что ускорения и разгоны нужно производить резвее, и силовой агрегат сразу же начнёт работать по «спортивной» программе. Если же водитель станет педалировать плавно, «умная» электроника переведёт коробку и двигатель в штатный режим работы.


Шестиступенчатая трансмиссия полноприводной Audi A8

Всё большее количество автомобилей оснащается коробками, в которых наряду с автоматическим предусмотрен и полуавтоматический режим управления. Здесь команды на переключение передач даёт водитель, а сами переключения обеспечивает система управления. Но это совсем не означает, что электроника позволит вам сильно разгуляться. Часто скорость перехода с одной передачи на другую в этом режиме увеличивают, но многие производители, заботясь о ресурсе силового агрегата, время переключений оставляют таким же, как в автоматическом режиме. Машиностроители называют эти системы по-разному — Autostick, Steptronic, Tiptronic.


Американцы любят устанавливать селектор автоматической трансмиссии на рулевую колонку. Европейцы и японцы ставят их на центральный тоннель.

Кстати, с недавних пор некоторые АКПП можно тюнинговать. А возможно это стало благодаря перепрограммированию блоков управления двигателем и коробки. В угоду скорости разгона в программе управления АКПП меняют моменты перехода с передачи на передачу и существенно сокращают время переключений.


На новом Mitsubishi Lancer управлять коробкой в ручном режиме можно и при помощи селектора, и посредством удобных магниевых подрулевых переключателей.

Электроника из года в год становится всё умнее. Компьютеры научили анализировать степень износа фрикционов и генерировать соответствующее давление, необходимое для включения каждой муфты. Регистрируя давление, можно прогнозировать степень износа фрикционных дисков, а следовательно, и коробки в целом. Блок управления постоянно контролирует исправность системы, записывая в свою память коды неисправностей тех элементов, в которых происходили сбои в процессе работы.


Четырёхступенчатая коробка и гидротрансформатор Hydra-Matic 2002 4T65-E (M76) концерна GM в составе силового агрегата устанавливаются на автомобиле поперечно.

В некоторых форс-мажорных случаях блок управления начинает работать по обходной программе. Обычно в аварийном режиме в коробке передач запрещаются все переключения, и включается какая-либо одна передача, как правило, — вторая или третья. Эксплуатировать, в этом случае автомобиль не рекомендуется (да и не получится), но доехать своим ходом до мастерской программа поможет. Все типы коробок способны доставлять радость владельцам автомобилей своей службой при пробеге в 200 тысяч километров с лишним. Но есть одно «но» — безотказная работа возможна при правильной эксплуатации и регулярном квалифицированном ТО.

Режимы автоматической трансмиссии

«P» — parking. В этом режиме все передачи выключены, выходной вал КПП и «ветка» трансмиссии, связанная с ведущими колёсами, заторможены блокирующим механизмом коробки. При работающем двигателе ограничитель частоты вращения коленчатого вала срабатывает гораздо раньше, чем при разгоне. Такая «защита от дурака» не позволяет «перекручивать» мотор и без толку перелопачивать трансмиссионную жидкость.

«R» — reverse, по-русски — задний ход.

«N» — нейтраль. В этом режиме двигатель и ведущие колёса не связаны. Автомобиль может двигаться накатом, его можно также буксировать без вывешивания ведущей оси.

Режим «D» или «Drive» разрешает движение. В этом режиме смена передач осуществляется автоматически.

«S», «Sport», «PWR», «Power» или «Shift» — спортивный режим. Самый динамичный и самый расточительный. При разгонах двигатель «загоняется» в режим максимальной мощности. Скорость перехода с одной передачи на другую (в зависимости от конструкции и программы) может быть увеличена. Двигатель в этом случае всегда находится в тонусе, как правило, работая на оборотах, которые не ниже тех, на которых развивается максимальный крутящий момент. Забудьте об экономичности.

«Kick-down» — режим, в котором осуществляется переход на пониженную передачу для осуществления интенсивного ускорения, например, при обгоне. Резкий подхват происходит за счёт того что двигатель выводится в режим максимальной отдачи, и за счёт большего передаточного отношения понижающей передачи. Чтобы трансмиссия перешла в этот режим, по педали газа нужно хорошенько топнуть. В трансмиссиях более старшего поколения для срабатывания «кикдауна» нужно было обязательно нажать педаль газа, что называется, «в пол» до характерного щелчка.

При работе в режиме «Overdrive» или «O/D» повышающая передача будет включаться чаще, переводя двигатель на пониженные обороты. «Овердрайв» обеспечивает экономичное передвижение, но его активация может привести к существенной потере в динамике.

«Norm» реализует наиболее сбалансированный режим движения. Переключения на повышающие передачи, как правило, происходят по достижении средних оборотов и на оборотах несколько выше средних.

Если поставить селектор напротив «1» (L, Low), «2» или «3», ваша коробка не будет переходить выше выбранной передачи. Режимы востребованы в тяжёлых дорожных условиях, например, при движении по горным дорогам, при буксировке прицепа или другого автомобиля. В этом случае двигатель может работать в области средних и высоких нагрузок без перехода на повышающую передачу.

«W», «Winter», «Snow» — так называемый «зимний» режим работы АКПП. В целях предотвращения пробуксовки ведущих колёс трогание с места осуществляется со второй передачи. Дабы не спровоцировать лишние проскальзывания, переход с одной передачи на другую в этом случае тоже может осуществляться более мягко и при более низких оборотах. Разгон при этом может быть не слишком динамичным.

Наличие значков «+» и «-» определяет совсем не полюсность, а возможность ручного переключения передач. Разные производители «перемешивать» передачи позволяют по-разному: селектором управления АКПП, кнопками на руле или подрулевыми переключателями… В этом режиме электроника не позволит перейти на те передачи, которые, по её мнению, неуместны в данный момент. При работе со знаками «сложения» и «вычитания» скорость смены ступеней не будет выше той, что определена программой в режиме «Sport». Достоинство ручного режима — возможность действовать на опережение.

Виталий Кабышев
www.drive.ru

 

Диагностика и признаки неисправности гидротрансформатора АКПП :: SYL.ru

С каждым годом численность автомобилей с АКПП возрастает. На то есть свои причины. Автоматическая трансмиссия намного удобней в эксплуатации, нежели механика. С ней водитель не устает в пробках, да и со сцеплением при должной эксплуатации не бывает проблем. Но устройство автоматической коробки немного сложнее механики. Одна из основных составляющих любой АКПП – это гидротрансформатор (в простонародье «бублик»). Со временем он может выходить из строя. Почему это происходит и каковы признаки неисправности гидротрансформатора АКПП? Рассмотрим в нашей сегодняшней статье.

О конструкции

Гидротрансформатор служит для изменения и передачи крутящего момента, что идет от мотора на коробку передач. В конструкцию элемента входит:

  • Насосное колесо.
  • Турбина.
  • Реакторное колесо.
  • Муфта свободного хода.
  • Блокировочная муфта.

ГДТ размещается в отдельном корпусе, который заполнен АТФ-жидкостью. Последняя выполняет функцию не только смазки, но и «мокрого» сцепления (поскольку корзины и диска как такового в автоматической коробке нет).

признаки неисправности гидротрансформатора акпп Работает «бублик» по замкнутому циклу. Сперва АТФ-жидкость попадает на турбинное, а затем на реакторное колесо. Скорость лопастей последнего начинает усиливаться. Поток жидкости направляется на насосное колесо. В итоге увеличивается величина крутящего момента. С ростом частоты вращения коленвала, угловая скорость турбинного и насосного колеса выравнивается. Поток АТФ-жидкости начинает менять свое направление. В это же время срабатывает муфта свободного хода. Начинает вращаться реакторное колесо.

При дальнейшем росте скорости вращения гидротрансформатор блокируется (в работу включает специальная муфта). Так, передача крутящего момента от мотора на коробку производится напрямую. Это происходит до следующего включения или выключения передачи.

Работу гидротрансформатора контролирует электронный блок управления. Он воспринимает информацию со всех датчиков, что находятся в «бублике» и формирует выходной сигнал. При возникновении каких-либо проблем электроника тут же сообщит об ошибке. На практике происходит блокировка гидротрансформатора АКПП. Признаки неисправности могут быть разными. Это как электроника, так и механическая часть. Но если коробка встала в аварийный режим, однозначно ее следует продиагностировать.

Сколько служит?

Обычно гидротрансформатор рассчитан на весь срок службы автоматической коробки. Это 250-300 тысяч километров. Старые «мерседесовские» гидротрансформаторы (4АКПП) могут выхаживать и по 500 тысяч. Неисправности гидротрансформатора АКПП «Тойоты Марк-2» 80-х годов тоже возникают редко. Но как и любой другой механизм, он может выйти из строя раньше. Чтобы предотвратить серьезный ремонт, нужно вовремя выявлять поломку и знать признаки неисправности гидротрансформатора АКПП. Самые характерные из них мы перечислим ниже.

Звуки, вибрация

Как самостоятельно определить признаки неисправности гидротрансформатора АКПП? В первую очередь, нужно прислушаться к работе самой коробки. Так, при переключении передач может возникать механический звук (шуршание). Поначалу он едва заметен. А при увеличении оборотов двигателя и вовсе пропадает. О чем это говорит? Такие признаки неисправности гидротрансформатора АКПП свидетельствуют о проблеме с упорными подшипниками игольчатого типа. Элемент располагается между крышкой гидротрансформатора и турбинным (либо реакторным) колесом.

неисправности гидротрансформатора акпп Если при переключении передач возникает громкий металлический стук, это говорит о деформации лопаток турбинного колеса. Ремонту такой элемент уже не подлежит.

Если при скоростях 60-90 километров в час возникает легкая вибрация, это говорит о забитом масляном фильтре. Также подобные симптомы происходят из-за некачественной или старой АТФ-жидкости. Решение проблемы – замена фильтра и масла. В большинстве случаев ремонт на этом заканчивается.

Многие применяют частичную замену масла – сливают часть старого и доливают новое, повторяя этапы 2-3 раза. Но специалисты рекомендуют не экономить на полной замене АТФ-жидкости. Она производится на стенде под давлением. гидротрансформатор акпп признаки неисправности тойота В чем плюс такой процедуры? Замена масла будет произведена на 100 процентов, а грязь из коробки полностью вымоется. Повторить это в условиях гаража невозможно – только при наличии стенда.

Аварийный режим

Подразумевает работу трансмиссии только на первых трех скоростях. Как определить неисправность гидротрансформатора АКПП? На современных авто дополнительно высвечивается предупреждение на панели приборов. Коробка может вставать в аварийный режим по разным причинам:

  • Повреждение корпуса КПП.
  • Наличие стружки в АТФ-жидкости.
  • Наличие металлических обломков турбины.
  • Неисправности фрикционной группы и муфты.

Что примечательно, в аварийный режим коробка может входить лишь периодически. Например, после нагрева АТФ-жидкости до определенных температур. Причину нужно искать в датчиках (расхода воздуха, распредвала и даже системы АБС). Если коробка встает в аварию неожиданно, стоит осмотреть целостность электрической проводки.

При переходе с первой на вторую передачу может ощущаться глухой удар в режиме «Д». Эти признаки неисправности гидротрансформатора АКПП вибрацией тоже могут сопровождаться. В данном случае проблема решается сканированием входных и выходных датчиков. Существуют и другие симптомы неисправности гидротрансформатора АКПП. О них мы расскажем далее.

Проблемы с динамикой

Автомобиль может плохо набирать скорость. Причин тому множество, но если рассматривать признаки неисправности гидротрансформатора АКПП («БМВ» в том числе), то это обгонная муфта. Если она вышла из строя, ГДТ следует разобрать и заменить поломанную деталь.

блокировка гидротрансформатора акпп признаки неисправности Иногда случается, что после остановки автомобиль и вовсе не может тронуться. Это говорит о повреждении шлица на турбинном колесе. Выход из ситуации – установка новых шлицов. В запущенных случаях приходится менять полностью турбинное колесо.

Запах горелой пластмассы

Такое может возникать на стоящем автомобиле. Запах горелого пластика ощущается в районе коробки передач. О чем это говорит? Подобные признаки неисправности гидротрансформатора АКПП («Тойоты» в том числе) возникают из-за перегрева и плавления полимерных деталей «бублика». Это является следствием забитого масляного радиатора. Он может находиться как в самой коробке, так и отдельно от нее. Исправная система охлаждения АКПП – залог надежной работы гидротрансформатора.

Двигатель глохнет

При попытке трансмиссии перейти на повышенную или пониженную передачу, мотор начинает глохнуть. Это происходит из-за сбоев в электронике, которая блокирует работу гидротрансформатора. Зачастую виновником проблемы является электронный блок управления. Но о нем мы еще поговорим ниже.

Причины неправильной работы ГДТ

Специалисты выделяют несколько факторов, которые могут влиять на работу гидравлического трансформатора:

  • Кулиса рычага АКПП.
  • Масло (АТФ-жидкость).
  • Электронный блок управления АКПП.

Рассмотрим эти проблемы более подробно.

Кулиса

С годами в АКПП старого типа может выходить из строя кулиса. Такие агрегаты имеют механическую связь селектора с коробкой. Это приводит к затруднению включения нужно режима КПП. Селектор заедает в одном положении. Выход из ситуации – замена селектора и кулисы. В некоторых автомобилях данную операцию можно сделать без демонтажа самой КПП.

Масло

От состояния АТФ-жидкости во многом зависит ресурс и исправность АКПП. Специалисты рекомендуют производить ее замену раз в 40-50 тысяч километров. Однако своевременная замена еще не является залогом продолжительной работы гидротрансформатора. В случае потеков и низкого уровня АТФ-жидкости «бублик» выйдет из строя очень быстро.

гидротрансформатор акпп признаки неисправности вибрация Как произвести быструю диагностику? Нужно запустить двигатель, открыть капот и достать масляный щуп АКПП. На нем есть надпись «Cold» или «НОТ». В первом случае прогревать коробку не обязательно. Если уровень ниже нормы, его срочно нужно возобновить. Заливается жидкость через то же отверстие для щупа.

Обратите внимание и на состояние самого масла. Так можно вовремя определить и предотвратить неисправности, связанные с гидротрансформатором. Наличие стружки на щупе исключено. Если это так, значит, либо вышло из строя турбинное или реакторное колесо, либо износилась торцевая шайба.

Обратите внимание! При эксплуатации АКПП с низким уровнем АТФ-жидкости, возможен перегрев ГДТ.

Периодически осматривайте днище автомобиля, а именно крышку (поддон) автоматической коробки. Иногда уплотнительные прокладки могут давать течь. Эксплуатировать автомобиль с такой неисправностью нежелательно, поскольку уровень масла может упасть в любой момент.

Электронный блок управления

Это основной узел, управляющий работой автоматической коробки. Блок при неисправностях может неправильно выбирать обороты для переключения скоростей либо же полностью блокировать работу трансмиссии. ЭБУ – довольно надежный механизм, но при воздействии определённых факторов он выходит из строя. Это могут быть:

  • Резкие перепады напряжения бортовой сети.
  • Механические удары, вибрации.
  • Повышенная температура.
  • Высокая влажность.
  • Повреждение изоляции и окисление контактов.

Поломки, связанные с электронным блоком, решаются его полной заменой либо установкой новых отдельных управляющих шлейфов.

Неполадки с гидроблоком

Неисправности гидротрансформатора АКПП могут возникать и из-за гидроблока. Внешне он являет собой некую плиту и выглядит следующим образом:

признаки неисправности гидротрансформатора акпп бмвГидроблок служит для передачи АТФ-жидкости под давлением по определенным каналам с целью включить либо выключить конкретную передачу. При неисправностях данная плита может провоцировать вибрации и толчки при смене режима работы трансмиссии. Это основные признаки неисправности гидротрансформатора АКПП. На современных автомобилях неисправность гидроблока отображается на бортовом компьютере. Также плита не терпит высоких и продолжительных нагрузок. Это может быть буксировка тяжелого транспортного средства или старт с двух педалей. неисправность гидротрансформатора акпп симптомы Нередко неисправности гидротрансформатора АКПП возникают зимой. Это является следствием эксплуатации коробки с холодной АТФ-жидкостью. При температуре ниже -5 градусов, автоматическую трансмиссию нужно прогреть. Делается это просто. Нужно поочередно включать все режимы (Паркинг, Нейтраль и Драйв), не начиная движение, с интервалом в 5-10 секунд. Это позволит разогреть масло и не допустить поломок гидротрансформатора АКПП. Рабочая температура для АТФ-жидкости – 75-80 градусов по Цельсию.

Заключение

Итак, мы выяснили основные признаки и причины неисправностей гидротрансформатора АКПП. В большинстве случаев поломка сопровождается ошибками на приборной доске и характерным звуком работы самой коробки. При появлении пинков и вибраций, следует применять детальную диагностику. В зависимости от масштаба проблемы, решается это заменой масла или деталей самого гидротрансформатора (турбинное колесо, подшипники). Своевременное выявление неисправностей позволит вам избежать серьезного ремонта.

что это такое, как работает, гидроплита АКПП

В современных конструкциях гидроблок АКПП совмещён с электронной платой управления (ТСМ). Вместе этот «мозг» регулирует гидравлическое давление в коробке автомат, направляя потоки жидкости в нужный компонент. Если возникнет необходимость заменить гидроплиту, то придётся перенастраивать модуль управления. Чтобы избежать серьёзного ремонта, нужно понимать, как устроен и как работает гидроблок АКПП.

Что такое гидроблок АКПП

Устройство и назначение гидроблока АКПП

Что такое гидроблок АКПП — это распределительная плита со множеством каналов, в которых установлены регулирующие клапаны, датчики, гидроаккумуляторы, соленоиды, фильтры. Сложное устройство обусловлено задачами, которые выполняет узел:

  • регулирует давление в общей магистрали коробки передач;
  • направляет жидкость для охлаждения соединений;
  • управляет включением и отключением блокировки гидротрансформатора;
  • направляет потоки масла к поршням тормозной системы для переключения передач;
  • гасит повышенное давление, обеспечивая мягкую последовательную работу АКПП.

Устройство гидроблока АКПП

Соленоиды АКПП работают по сигналу ТСМ и бывают разных типов:

  • «On-Off» работают в положении открыт-закрыт;
  • соленоиды PWM, VBS, VFS открываются постепенно, и могут регулировать давление жидкости.

Остальные клапаны золотниковые. Плунжер открывает путь потоку, смещаясь под давлением жидкости. После снижения давления клапан возвращается в исходное положение за счёт пружины.

Клапаны гидроблока Клапаны гидроблока АКПП

Принцип работы гидравлического блока АКПП

Принцип работы гидроблока заключается в распределении ATF, подаваемой маслонасосом, к исполняющим органам автомата. Например, переключение скоростей происходит следующим образом:

  1. ТСМ получает данные с внешних и внутренних датчиков. В зависимости от температуры, давления и других показателей модуль рассчитывает и подаёт ток, необходимый для управления соленоидом переключения. Каждый электромагнитный клапан получает определённый ток.
  2. Соленоид открывает проход для масла к золотниковым клапанам.
  3. По лабиринту каналов жидкость поступает к гидроаккумулятору, который управляет поршнем тормозной ленты. За счёт плавного давления фрикционы сжимаются безударно, а водитель не ощущает толчков при смене передачи.
  4. Одновременно стравливается давление с тормозной муфты предыдущей передачи.

На переключение скоростей в 6- и 8-ступенчатых АКПП у гидроблока уходит менее 0,3 с. Это достигается инженерными расчётами, конструктивными размерами и точным подбором деталей, способных поддерживать давление жидкости в контрольных точках. Показатель давления зависит от режима работы двигателя, включенной передачи, скорости автомобиля, т.е. неисправность гидроблока отражается на комфорте и динамике движения.

Наиболее распространенные поломки гидроблока

Настройки компьютера оптимизированы под экономию топлива и быстрые разгоны. В 6- и 8- скоростных автоматах, роботах, вариаторах водитель может выжать из двигателя максимум даже в агрессивных режимах. Но такая свобода выбора оплачивается быстрым износом блока клапанов и всей АКПП.

Поломки гидроблока АКПП

Происходит это из-за быстрого истирания фрикциона блокировки гидротрансформатора. Пыль, клеевые смолы распространяются по всей коробке вместе с маслом. Жидкость теряет свои свойства, не успевает охлаждаться.

Каналы гидроблока и клапаны забиваются грязью. Пружины не возвращают плунжеры в исходное положение Соленоиды не могут открыть залипший клапан. Отсюда появляются толчки и рывки при переключении передач. Металлический абразив истирает сепараторную платину и каналы плиты, меняя их геометрию. Появляются протечки масла.

Поломки гидроблока

От перегрева плавится проводка и элементы платы, поскольку температура растёт выше 120℃. Выходят из строя соленоиды. Перегреваются датчики. Тонко настроенная электроника блокирует работу неисправного узла, и АКПП уже не может включать определённую передачу.

Но даже при своевременной замене масла и хорошем охлаждении не стоит забывать о расходниках: бумажные прокладки, забитые фильтры, ослабленные пружины, задубевшая резина дают о себе знать к 100 000 км. Замена расходников часто решает проблемы с переключением передач «возрастных» АКПП.

Похожие симптомы и типичные неисправности распространены и в DSG. На проблемы в блоке мехатроника указывают:

  • переключение передач с толчками и ударами;
  • вибрации из-за резкого сцепления дисков;
  • протечки масла;
  • переход в аварийный режим.

Соленоиды включения сцеплений получают обратно из барабана масло с фрикционной пылью, металлической крошкой. Длительная работа в таком режиме снижает ресурс клапанов.

Признаки поломки гидроблока

Поскольку гидроблок управляет переключениями передач, то от его исправности зависит качество работы АКПП. Поломку блока можно распознать по следующим признакам:

  • снижение быстроты реакции на нажатие педали газа или тормоза;
  • толчки, пинки, рывки при переключении передач и режимов;
  • пробуксовка при трогании;
  • отсутствие переключений с 1 на 2, со 2 на 3 и т.д.;
  • утечки масла через изношенные прокладки;
  • ошибки на панели компьютера.

Почему так важна диагностика

Диагностика помогает выявить неисправности агрегата и определить место поломки. Без полной диагностики АКПП ни один мастер не сможет начать ремонт. Обследование начинается со сбора информации:

  • о возрасте и пробеге машины;
  • об истории замен масла;
  • о капремонтах автомата;
  • о симптомах неполадки «на холодную», «на горячую», в разных режимах.

На следующем этапе снимают и расшифровывают коды ошибок автоматической коробки, чтобы определить неисправен гидроблок или другой узел АКПП. Затем проверяют уровень и качество трансмиссионной жидкости, снимают для осмотра поддон.

При лёгких затупах замена масла, фильтра, чистка соленоидов решает проблемы переключения передач. Игнорирование симптомов приводит к общему падению давления в коробке, а затем к износу муфты блокировки гидротрансфоратора, истиранию фрикционов, разрушению втулок и подшипников. Чем дольше клапаны гидроблока работают в металлической крошке, тем сильнее истирается корпус. Превышение допусков износа влечёт замену всей плиты.

Стоит ли выполнять самостоятельный ремонт

Ремонт гидроблока своими руками представляет собой переборку, промывку всех деталей и замену расходников. Проверить давление в каналах и восстановить плиту без специального оборудования и опыта работы не получится. Поэтому лечить клапанную плиту нужно на раннем этапе, пока это можно сделать самостоятельно и недорого.

Для ремонта гидроблока своими руками нужно изучить мануалы и форумы по разборке своей АКПП. Запастись схемами расположения соленоидов и клапанов. Учесть, что ремонт может занять от нескольких часов до пары дней, если что-то пойдёт не так.

Как выполнить ремонт гидроблока своими руками

Перед началом ремонта гидроблока АКПП нужно собрать коды ошибок. Изучить устройство, типичные проблемы данной модели. Заказать расходники, например готовый ремкомплект Мастеркит, Оверолкит, Транстек и др.

В комплекте должны быть прокладка для гидроблока и поддона, уплотнительные кольца для сливной и заливной пробок. Без замены фильтра АКПП вся идея ремонта окажется бессмысленной. Но в необслуживаемых моделях автомата, например TF-80SC, придётся снимать всю коробку.

Из инструментов и материалов понадобятся:

  • ключи для откручивания заливной и сливной пробок;
  • трещотка и головки Torx для снятия поддона и гидроблока;
  • трансмиссионное масло;
  • ёмкость для слива;
  • воронка со шлангом для залива жидкости;
  • поднос с секциями или самодельная гармошка.
  • чистая тряпка без ворса.

Важные советы:

  • Каждый этап нужно фотографировать, чтобы не забыть обратную последовательность сборки.
  • Все снятые детали складывать в гармошку в порядке демонтажа.
  • Снимать поддон, фильтр, гидроблок нужно аккуратно — польётся горячая жижа. Всё масло нужно собрать в общую жидкость, чтобы учесть слитый объём.

Общая последовательность ремонта гидроблока АКПП:

  1. Слить старую жидкость.
  2. Открутить поддон. Некоторые умельцы ставят поддон на герметик, экономя на прокладке, а отдирать его шпателем или обстукивать пластиковым молотком то ещё удовольствие. Кроме того, фрагменты герметика могут попасть в поддон, а оттуда в масло АКПП.
  3. Протереть плоскость прилегания поддона.
  4. Промыть поддон и магниты. Поставить новую прокладку.
  5. Снять старый фильтр.
  6. Отсоединить разъёмы соленоидов. Отключить датчики.
  7. Открутить болты гидроблока.
  8. Отвинтить и вынуть соленоиды.
  9. Располовинить гидроплиту. Вытащить пружины, плунжеры, шарики в соответствии с мануалом.
  10. Промыть все детали, осмотреть их целостность.
  11. При необходимости проверить сопротивление соленоидов.
  12. Установить клапаны по схеме. Поставить новую прокладку. Собрать гидроблок.
  13. Закрутить соленоиды на место.
  14. Собрать коробку с новым фильтром.
  15. Залить новую жидкость в объёме слитой с добавлением 0,1 — 0,3 л в качестве компенсации пролитой. Разогреть АКПП. Проверить уровень ATF.

После сборки проверить работу коробки в разных режимах.

Порядок замены гидроблока

При сильном износе гидроплиты, принимают решение о замене на новую или восстановленную — «ребилд». Процедура несложная, но требует обновления всех расходников и промывки АКПП. Отложения и грязь внутри коробки быстро забьют новый гидроблок, поэтому от них нужно избавиться.

При пробегах свыше 100 000 км аппаратная чистка не рекомендуется. Высокое давление поднимет накопленную взвесь, которая ещё больше забьёт фильтра и каналы. Чтобы промыть АКПП используют метод вытеснения: поочередно сливают старую жижу из патрубка радиатора охлаждения и заливают новую.

Для замены гидроплиты понадобится ремкомплект уплотнений для данной модели АКПП, ключи, свежая жидкость, ёмкость для слива, воронка со шлангом, тряпка без ворса. Общие рекомендации к работе аналогичны процедуре ремонта:

  1. Слить старую жижу.
  2. Открутить болты и снять поддона. Посадочное место протереть тряпкой.
  3. Помыть крышку от налипших продуктов износа, очистить магниты от металлических ёжиков. Установить новую прокладку.
  4. Снять старый фильтр.
  5. Осмотреть доступные части АКПП, при возможности заменить резинки.
  6. Отсоединить разъёмы соленоидов. Отключить датчики.
  7. Открутить гидроблок.
  8. Поставить новый гидроблок.
  9. Подключить проводку, датчики.
  10. Поставить новый фильтр и чистый поддон.
  11. Влить новую жидкость в количестве слитой.
  12. Промыть АКПП методом вытеснения.
  13. Проверить уровень масла.
  14. Закрутить пробки с новыми уплотнительными кольцами.

Адаптивные АКПП при замене жидкости и узлов требуют переобучения.

Заключение

Блок клапанов управляет всей АКПП и сочетает в себе работу гидравлики и электроники. С появлением множества режимов, ростом количества передач, гидроблок становится капризней и требовательней. Длительная эксплуатация в грязном масле снижает ресурс гидроплиты, что отражается на комфорте движения и приводит к сложному ремонту.

Гидротрансформатор на вариаторе принцип работы — Гидротрансформатор АКПП

По мере развития технологии конструкция усложнялась и модернизировалась. В настоящее время трансформатор на автоматической коробкой передач выполняет функции сцепления. То есть во время приключений передач данный элемент размыкает связь коробки с двигателем. Сразу же после включения повышающей или понижающей передачи гидротрансформатор берет на себя часть крутящего момента, что позволяет обеспечить максимально плавное переключение ступеней.

Содержание:

  1. Устройство и принцип работы
  2. Неисправности гидротрансформатора
  3. Ремонт + Видео

Принцип работы | Общая информация | Устройство |

Конструкция гидротрансформатора для автоматической коробки передач состоит из трёх колец с лопастями. Все три кольца согласно вращаются и располагаются в одном корпусе. Внутри корпуса находится рабочая жидкость, которая позволяет смазывать и охлаждать подвижные элементы. Насаживается гидротрансформатор на коленчатый вал, и далее соединяется непосредственно с коробкой передач. Рабочая жидкость нагнетается внутрь корпуса устройства при помощи специальной помпы. Помпа позволяет обеспечить необходимое давление, а при проблемах с герметичностью конструкции появляются активные утечки рабочей жидкости, что в свою очередь приводит к повреждению механических вращающихся элементов.

Современные гидротрансформаторы, которые используются на автомобилях с АКПП, имеют полностью компьютерное управление, а многочисленные датчики следят за давлением и скоростью движения валов внутри ядра трансформатора. Необходимо сказать, что подобное усложнение конструкции привело к снижению надёжности устройства и на устройство гидротрансформатора в целом. В особенности на эксплуатационный срок и показатели надёжности сказывается эксплуатация в максимально жёстких режимах, что характерно для современных автомобилей.

Работа гидротрансформатора Видео

Контроль работы гидротрансформатора и его оптимизация с работой коробки передач выполняется при помощи специального блока управления. Это полностью автоматическая система управления получает данные с многочисленных датчиков, установленных в коробке и самом гидротрансформаторе. При появлении каких-либо проблем в работе устройства автоматика выводит сообщение об ошибке. В отдельных случаях может отмечаться полная блокировка работы гидротрансформатора, что приводит к отключению двигателя при изменении режимов работы коробки. Также необходимо отметить, что большинство поломок трансформаторов происходит на механическом уровне. Поэтому при выполнении диагностики автомобиля точно определить характер и место поломки затруднительно. Необходимо разбирать повреждённый элемент и визуально проводить его осмотр. Только так возможно определить имеющуюся поломку.

  • Справочник по неисправностям АКПП

Инженеры ведущих автопризводителей постоянно проводят изыскания, которые должны позволить повысить показатели надёжности техники и устранить проблемы в работе данного устройства. Появление новых конструкторских разработок позволяет существенно модернизировать гидротрансформатор, который сегодня может с легкостью использоваться на автомобилях, оснащенных дизельными моторами. Для таких дизельных моторов характерен высокий показатель крутящего момента. Если ранее трансмиссии с трудом справлялись с высокими показателями крутящего момента и достаточно быстро выходили из строя, то сегодня существенным образом повысилась надёжность автоматических коробок передач и гидротрансформаторов.

Гидротрансформатор АКПП устройство

Теоретически срок эксплуатации гидротрансформатора совпадает с эксплуатационным сроком автоматической коробки передач. Однако, как и любой другой механический элемент, он может выходить из строя и требовать ремонта. В отдельных случаях необходимо проводить полную замену гидротрансформатора, что приводит к существенным расходам автовладельца на ремонт гидротрансформатора.

Гидротрансформатор АКПП Признаки неисправности

Опишем основные симптомы поломок гидротрансформаторов, которые должны являться поводом для скорейшего обращения в специализированные ремонтные мастерские.

1 При переключении передач может быть слышен лёгкий механический звук. При увеличении оборотов и под нагрузкой механический звук исчезает. Подобное может свидетельствовать о проблемах с опорными подшипниками. Необходимо разбирать гидротрансформатор и оценивать состояние подшипников.

2 В скоростном диапазоне от 60 до 90 километров в час может отмечаться лёгкая вибрация. По мере ухудшения проблем с гидротрансформатором вибрация будет увеличиваться. Подобное может быть вызвано тем, что продукты износа рабочей жидкости могут забивать масляный фильтр. В данном случае ремонт гидротрансформатора заключается в замене масляного фильтра и рабочей жидкости гидротрансформатора. Как правило, требуется провести одновременно замену масла в самом моторе и коробке передач.

3 Наличием проблем с динамикой автомобиля свидетельствует о выходе из строя так называемой обгонной муфты. В данном случае необходимо разбирать гидротрансформатор и менять вышедшую из строя муфту.

4 Остановка автомобиля без возможности продолжения движения свидетельствует о повреждении шлица на турбинном колесе. Ремонт гидротрансформатора заключается в установке новых шлицов или же замене всего турбинного колеса.

5 Появление характерного шуршащего шума при заведённом автомобиле свидетельствует о проблемах с подшипником, которые располагаются между турбинным или же реакторным колесом и крышкой гидротрансформатора. При движении такой шуршащий звук может полностью исчезать. В данном случае вам необходимо как можно раньше обратиться в сервисный центр и провести ремонтные работы. В большинстве случаев необходимо будет провести замену повреждённых игольчатых упорных подшипников. Стоимость такого ремонта неисправности гидротрансформатора не слишком высока.

6 При переключении передач может быть слышен громкий металлический стук. Подобное свидетельствует о деформации и выпадении лопаток. Ремонт заключается в замене повреждённого колеса в гидротрансформаторе.

7 Необходимо регулярно проверять состояние масла в гидротрансформаторе и коробке передач. При появлении на масляном щупе коробки передач алюминиевой пудры необходимо выполнить проверку муфты свободного хода, которая изготовлена из алюминиевого сплава. В большинстве случаев появления такой пудры на щупе свидетельствует о неисправности гидротрансформатора и износе торцевой шайбы.

8 На работающем стоящем автомобиле в районе коробки передач может появляться характерный запах плавящейся пластмассы. Подобное происходит по причине перегрева гидротрансформатора и плавления полимерных элементов и деталей данного устройства. Перегрев гидротрансформатора может возникать по нескольким причинам. В первую очередь это проблемы со смазкой. Так, например, при падении уровня масла отмечаются характерные признаки голодания коробки и гидротрансформатора. Также могут отмечаться проблемы с системой охлаждения акпп, которая не может качественно охлаждать масло в забитом теплообменнике. Ремонт в данном случае заключается в замене масла и проверке работоспособности системы охлаждения смазки.

9 При переключении передач или же при смене режимов работы коробки двигатель может глохнуть. Подобное свидетельствует о выходе из строя управляющей автоматики, которая блокирует работу гидротрансформатора. Ремонт заключается в замене вышедшего из строя блока управления.

Необходимо отметить тот факт, что каких-либо конкретных признаков неисправности гидротрансформатора нет. Поэтому в отдельных случаях специалисты сервисного центра не могут сразу определить признаки и характер поломки. Все это приводит к увеличению расходов на ремонт и неизменному простою автомобиля в сервисе.

Ремонт гидротрансформатора

Несмотря на кажущуюся сложность, ремонт гидротрансформатора не представляет особой сложности и может быть выполнен автовладельцем самостоятельно. Единственный нюанс состоит лишь в демонтаже гидротрансформатора с коробки передач. В данном случае необходимо использовать специальный ремкомплект, который позволит провести демонтажные работы. При проведении ремонтных работ корпус устройства разрезается, после чего проводится проверка состояния гидротрансформатора. Именно поэтому при ремонтных работах необходимо заменять не только уплотняющие кольца, но и сам корпус устройства. При ремонтных работах проводится замена сальника и уплотнительных колец. Использовать старые, пускай даже хорошо сохранившиеся, кольца и сальники запрещается. В отдельных случаях возможна сварка корпуса гидротрансформатора, что позволяет добиться полной герметичности устройства. После завершения работы вам необходимо установить отремонтированное устройство на коробку передач и провести балансировочные работы.

  • Ремонт гидротрансформатора — цена в нашем сервисе

Необходимо отметить, что при определённых видах поломок гидротрансформатора его ремонт и замена вышедших из строя элементов нецелесообразна с экономической точки зрения. Куда проще приобрести новые устройства и установить его вместо повреждённого элемента.

Ремонт гидротрансформатора Видео

Как вы можете видеть, ремонт гидротрансформатора относительно несложен. Однако без соответствующей подготовки и опыта работы по ремонту автомобиля провести его самостоятельно не представляется возможным. Поэтому если вы сомневаетесь в своих силах, лучше всего обратиться к профессиональным специалистам. Стоимость нового гидротрансформатора может составить порядка тысячи долларов в зависимости от марки автомобиля.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *