РазноеЧервячная пара редуктора: Колесо червячное зубчатое: расчет, изготовление, материал – Редукторы лифта и червячные пары купить в Москве по самой низкой цене на сайте zaplift.ru тел. 7 495 648-88-67, Лифтовое оборудование и запчасти для лифтов с доставкой по России.

Червячная пара редуктора: Колесо червячное зубчатое: расчет, изготовление, материал – Редукторы лифта и червячные пары купить в Москве по самой низкой цене на сайте zaplift.ru тел. 7 495 648-88-67, Лифтовое оборудование и запчасти для лифтов с доставкой по России.

Содержание

Колесо червячное зубчатое: расчет, изготовление, материал

Зубчатые зацепления могут иметь оси валов в разных плоскостях Ведущая деталь – червяк, не имеет зубьев. Вместо них нарезается резьба с модулем, аналогичным шестерни. Червяк передает вращение на колесо червячное посредством давления поверхности резьбовой нити на эвольвенту зуба при скольжении плоскостей относительно друг друга. У червячного узла маленький КПД и невозможна понижающая передача. Большое сопротивление не позволяет колесу сдвинуть червяк. Это используется в подъемных механизмах и устройствах с точностью перемещения.

Колесо червячноеКолесо червячное

Конструкция

Червячная передача получила свое название по ведущей детали, передающей крутящий момент. Ведомая деталь имеет зуб с косой нарезкой. По ободу радиальное занижение поверхности. Это увеличивает линию контакта нити резьбы и зуба.

Оси вращение деталей располагаются под углом. Обычно это 90°, но может быть 45°. Применяется такое расположение деталей в сильно нагруженных тихоходных передачах, со скоростью движения точки на наружной поверхности менее 5 м/сек.

При взаимодействии передачи поверхность резьбы не толкает зубья в направлении вращения, а скользит по эвольвенте, как бы отодвигая ее. В результате возникает сильное трение и нагрев деталей в месте контакта.

Беззазорная червячная передачаБеззазорная червячная передача

Червячная пара должна хорошо смазываться, охлаждаться и обладать антифрикционными свойствами. Материал червяка изменять нельзя, он нарезается из хромистой стали и проходит закалку, шлифовку поверхности резьбы или шугаровку – обработку пластиной с малой глубиной реза. Инструмент скорее продавливает поверхность резьбы, чем режет ее. Создается на верхнем слое наклеп, упрочняющий рабочую поверхность, делающий ее гладкой.

Материал для венца

Венец зубчатого колеса выполняется из относительно мягкого материала с высоким сопротивлением стиранию. В основном применяются оловянные бронзы и латунь. Для низкоскоростных передач с ручным управлением можно делать венец из серого чугуна. В зависимости от скорости вращения зубчатый венец изготавливается из материала:

  • 5 – 25 м/сек – оловянистые бронзы ОФ10-1, ОНФ;
  • ≤ 5 м/сек – Бр.АЖ9-4, алюминиево-железистая бронза;
  • ≤ 2 м/сек – венец может быть из чугуна.

Червячное колесо из бронзыЧервячное колесо из бронзы

Бронза стоит значительно дороже стали и мягче. Полностью из нее делаются детали, размеры которых в пределах 160 мм. Большие детали вытачиваются из стали и бронзовый на них только венец. Он нагорячо сажается на вал и закрепляется штифтами по линии соединения, чтобы венец не прокручивался. После остывания производится чистовая обработка колеса и нарезается зуб.

Расчет диаметра

Диаметр колеса рассчитывается по средней линии зуба – ширины зуба и впадины равны. Наружный, используемый для изготовления и расчетов радиус, определяется теоретически. После завершения обработки, он находится за пределами фактического обода колеса.

Скольжение происходит по линии делительного диаметра – середина зуба по высоте. Он рассчитывается по формуле:

d2 = m · z2,

где d2 — делительный диаметр шестерни; m – модуль; z2 – количество зубьев колеса.

Наружный радиус зуба имеет один центр с осью червяка.

Ширина зубчатого венца

Ширину венца червячного колеса определяют по числу витков винта по формуле:

при Z1 = 1 или 2, b2 = 0.355aw; 

если Z1 = 4, то b2 = 0,315aц,

где b2 – ширина венца; 0,315 и 0,355 – расчетный коэффициент; Z1 – количество заходов винтовой резьбы; a – межцентровое расстояние; aw – расстояние с учетом смещения червяка относительно зубчатого колеса.

Расстояние смещения определяет размер зазора между рабочими элементами деталей.

Расчет передаточного числа червячной передачи

Ведущая деталь, передающая вращение – червяк, не имеет зубьев. На нем нарезается резьба с числом заходов: 1, 2, 4. Червяки с 3 витками ГОСТом не предусмотрены. Их можно рассматривать и рассчитывать только теоретически. При расчете передаточного числа вместо количества зубьев шестерни берется число заходов резьбы.

Рассчитать передаточное число червячной передачи, формула аналогична другим зубчатым зацеплениям:

U = Z2 ÷ Z1,

где U – передаточное число; Z1 – число заходов на червяке; Z2 – количество зубьев на колесе.

Пример расчетаПример расчета

Обратная передача крутящего момента от колеса на червячный вал невозможна. Из-за сильного трения зубьев и низкого КПД передачи колесо не может быть ведущим. Это позволяет не делать тормоза в подъемных механизмах. Достаточно регулировать вращение червячного вала.

Расчет передаточного отношения

Величина передаточного отношения червячной передачи рассчитывается по отношению скорости скольжения червяка и вала.

Формула расчета скоростей вращения червякаФормула расчета скоростей вращения червяка

Формула расчета скоростей вращения валаФормула расчета скоростей вращения вала

Где V1 – скорость скольжения червяка; V2 – скорость скольжения червячного колеса. Аналогично w1 и w2 угловые скорости; dδ1, dδ2 – диаметры.

Произведя подстановку формул значений скоростей скольжения, и математические сокращения получает формулу передаточного отношения червячной передачи:

Формула расчета передаточного отношения червячной передачиФормула расчета передаточного отношения червячной передачи

Где i – передаточное отношение. В червячном зацеплении оно равно передаточному числу.

Характеристики червячных передач нормируются по ГОСТ 2144-76. Для червяка с 1 и 2 заходами передаточное число может иметь значение 8-80. Для 4-заходных червяков разбег значений меньше, в пределах 30-80.

Скачать ГОСТ 2144-76

Классификация

По направлению витка передачи в большинстве своем бывают правыми. Иногда встречается левое направление нити.

Червячные зацепления классифицируются по форме наружной поверхности червяка:

  • цилиндрические;
  • глобоидные.

Вогнутая поверхность ведущей детали увеличивает количество зубьев, находящихся одновременно в зацеплении. В результате возрастает КПД и мощность передачи. Недостаток глобоидных червяков в сложности изготовления. Витки должны быть одинаковой высоты при вогнутой наружной поверхности.

По форме нити резьбы различают червяки:

  • архимедов;
  • конволютный;
  • нелинейный.

Установка резца при нарезании архимедовых, конволютных и эвольвентных червяков.Установка резца при нарезании архимедовых, конволютных и эвольвентных червяков.

Архимедов червяк отличается прямой в сечении эвольвентой. У конволютного конфигурация выпуклая, близкая к форме обычной шестерни. Нелинейные профили имеют выпуклую и вогнутую поверхность.

Зубчатое колесо имеет зуб наклонный обратной конфигурации, по форме совпадающий с впадиной между нитями.

Расположение червяка относительно колеса может быть:

  • верхнее;
  • боковое;
  • нижнее.

Верхнее оптимально подходит для скоростных передач. Боковое наиболее компактное. При картерном способе смазки – масло находится в поддоне и нижняя деталь, вращаясь, смазывает остальные, удобнее нижнее расположение червяка.

Червячные колеса относятся к косозубым. Оси деталей располагаются обычно под углом 90°. В сильно нагруженных механизмах угол может быть 45°.

Зубчатые колеса по профилю зуба делят:

  • роликовые;
  • вогнутые;
  • прямые.

По типу они могут быть:

  • с непрерывным вращением – полные;
  • зубчатый сектор.

Сектор может быть разной величины, от половины круга, до рабочей длины короче червяка.

Достоинства и недостатки

Особенностью червячной передачи является наличие тормозящего момента и большой интервал передаточных чисел и крутящего момента. К положительным характеристикам относятся:

  • передаточное число в пределах 8–100;
  • работает тихо;
  • начало вращения и остановка происходят плавно;
  • высокая точность перемещений;
  • возможность смещения на малую величину;
  • компактность узла;
  • самотормозящая передача.

Передача движения в паре червяк и червячное колесо возможна только в одном направлении. При попытке ведомой детали провернуться, возникает тормозящий момент. Это используют в приводе поворота и подъемных механизмах.

Основной недостаток в потерях мощности, связанных с большим трением. Это приводит к быстрому износу деталей, особенно колеса. К недостаткам относятся:

  • низкий КПД;
  • трение;
  • сильный нагрев;
  • изготовление венца из дорогих материалов;
  • частое заедание;
  • быстрое изнашивание;
  • постоянная регулировка зацепления подтягиванием червяка;
  • сложное изготовление.

Изготовление червячного колесаИзготовление червячного колеса

Червячное зацепление требует высокой точности изготовления винтового зацепления и чистоты обработки. Передача не переносит попадание в рабочую зону пыли и другого мусора. Требует интенсивной смазки и охлаждения.

Применение механизма

Червячный механизм способен при малых габаритах заменить многоступенчатый редуктор. Его передаточное число определяется значением 100, в отдельных узлах может быть значительно больше.

Применение червячной передачи целесообразно в механизмах, требующих высокой точности при небольшой скорости:

  • червячные редуктора;
  • в подъемниках;
  • лифтах;
  • лебедках;
  • рулевых механизмах;
  • точная доводка положения инструмента в станках;
  • корректировка в ЧПУ;
  • приборах.

Червячный редукторЧервячный редуктор

В основном используется самоторможение и точность перемещения.

Нарезание червячных колес

При проектировании создается модель червячного колеса. По ней легко определится со способом нарезки:

  • заход фрезы снизу;
  • торцевой.

Торцевой требует инструмента, в точности повторяющего червяк. Дает хорошую точность и чистоту обработки. Фрезу выставлять сложно, необходимо, чтобы в конце обработки она имела положение относительно колеса, в точности соответствующее червяку.

Нарезка зубьев на венце

По наружному диаметру червячное колесо имеет полукруглое углубление. Это позволяет лучше прилегать деталям по эвольвенте и смещать ось, увеличивая площадь контакта. Центр радиуса углубления должен совпадать с осью червяка.

Фрезы для нарезания червячного колеса должны быть с таким же наружным диаметром, как червяк. Внешне она повторяет форму ведущей детали, только вместо непрерывной линии резьбы ряды резцов. Режущая пластина по форме точно повторяет нитку резьбы, но шире нее на размер зазора. В результате конфигурация ответной детали – червячного колеса, точно повторяет формы резьбы, впадины совпадают с выступами нитей.

Фреза выставляется в плоскости оси червяка, касаясь его поверхности. Зубчатый венец вращается вокруг вертикальной оправки или собственного вала, обеспечивая тангенциальную подачу наружной поверхности относительно оси режущего инструмента. Нарезка червячных колес происходит при синхронном движении инструмента и детали, вращающихся вокруг своих осей. Отношение скорости вращения определяется передаточным числом. С каждым оборотом венец придвигается ближе к вращающейся фрезе.

Нарезание червячных колесНарезание червячных колес

Подача режущего инструмента возможна снизу и сверху. Но в большинстве случаев используют радиальную нарезку, как наиболее удобную и точную.

Ремонтная нарезка

Иногда надо сделать одну деталь, чтобы заменить ее в редукторе. В мастерской не всегда имеется полный набор фрез со всеми нормализованными диаметрами.

Если червячное колесо нарезать фрезой большим диаметром, чем радиус червяка, то прилегание будет хуже, пятно контакта меньше. Линия скольжения сместится к вершине зуба. При нарезке меньшим диаметром с таким же модулем, нагрузка будет на вершину нити резьбы. Погрешность можно компенсировать смещением инструмента и регулировкой расстояния между осями. Но трение и износ все равно будут больше, КПД упадет.

Нарезать червячное колесо фрезой с диаметром больше червяка можно для беззазорного сцепления. В этом случае используется специальная фреза с разными углами профиля для правой и левой стороны. Ось фрезы выворачивается в сторону увеличения наклона зуба. Обычные зубофрезерные станки надо переделывать для обработки беззазорного сцепления.

Из-за отсутствия зазора между рабочими элементами, поверхность быстро стирается и приходится постоянно производить регулировку. Беззазорные сцепления применяются при высокой точности и большой нагрузке с малой активностью пары, например, в прокатных станах для регулировки прижима валков – толщины прокатываемого металла.

Для изготовления одного или нескольких колес с нестандартными размерами может применяться оправка с одним резцом по форме впадины между зубьями. Инструмент вращается постоянно. Колесо вращается синхронно с инструментом. После каждого оборота реза проворачивается на размер модуля зуба и за полный оборот, подвигается к оправке с резцом на глубину реза.

Недостаток способа изготовления венца в длительности процесса. Один резец обрабатывает деталь в несколько раз дольше, чем фреза. Учитывая стирание резца, надо делать черновую и чистовую обработку.

Червячное колесо отличается от других своим внешним видом и способом обработки. Оно делается точно под определенный червяк.

Самоторможение червячного редуктора

Явление самоторможения червячного редуктора, его использование, типы


Червячные редукторы эксплуатируются в различных механизмах, машинах, агрегатах и узлах. Это компактные механизмы, используемые для изменения передаточного числа вращения вала.

Область их распространенности чрезвычайно широка. Это:

  • Конвейерные линии.
  • Транспортеры,
  • Станки для металлообработки.
  • Подъемники.
  • Насосы и т.д.
ri_crmi_cr.jpg

Их используют везде, где есть надобность в экономически выгодном решении по снижению частоты вращения привода и увеличению крутящего момента, когда нет необходимости в больших ударных нагрузках и многочисленности включений механизма.

Для редуктора червячного типа характерны надежность, износостойкость и продолжительная эксплуатация. Плюсами червячных передач являются:

  • Высокая ровность работы.
  • Бесшумность.
  • Большое передаточное число в сцепляющей паре.
  • Безопасность в эксплуатации.

Что такое самоторможение

Описанные выше параметры обусловлены уникальным свойством червячной передачи – самоторможением, то есть блокировкой передачи вращения по схеме – « выходной вал»- «входной вал». Это означает невозможность передачи хода от колеса к червяку, то есть устройство не может работать в обратном направлении.

Суть этого явления в том, что когда ведущий вал не проворачивается, ведомый вал затормаживается так, что его нельзя провернуть. Это явление проявляет себя при передаточном числе 35 и выше. То есть совсем отсутствует эффект обратного хода. Полное торможение наблюдается в передаче, в которой угол подъема винтовой линии червяка равен или меньше 3.5°.

Самоторможение сложно переоценить. Ведь если бы не было этого явления, то вал вращался бы в противоположную сторону и работающий агрегат не смог бы выполнять функции в оптимальном режиме. В производстве продукции происходили бы непрерывные сбои.

Принцип блокировки обратного вращения присущ только червячным редукторам одноступенчатого типа и характерен для всего модельного ряда. Блокировка зависит от:

  • Угла, под которым поднимается червяк.
  • Материала изготовления устройства.
  • Наличия вибрации.
  • Качества смазки.

Кроме того, самоторможение обусловлено размерами редуктора, его КПД, передаточным числом, частотой вращения ведущего вала.

Существуют определенные условия реализации самоторможения:

  • Наличие особой конструкции устройства. Когда ведомый и ведущий валы взаимозависимы.
  • Когда вращение ведущего вала прервано, и ведомый вал постепенно затормаживается.
  • Остановка вращения обоих валов приводит к полной остановке работы механизма.

Это явление нельзя назвать только преимуществом. Его наличие неприемлемо в червячном редукторе в приводе закаточного устройства (для закатывания листового материала). Его попросту было бы невозможно провернуть даже при передаточном числе меньше 25. А в приводе подъемника самоторможение делает возможным отказ от установки дополнительного тормоза.

Типы самоторможения

Самоторможение бывает двух типов – статическое и динамическое.

Статическое торможение

Явление статического самоторможения наблюдается при остановке червяка и связанного с ним червячного колеса. При этом применение ударных нагрузок нивелирует эффект самоторможения. Как видно из этого – самоторможение не заменяет механический тормоз или храповик.

Динамическое торможение

Червячная передача обладает динамическим самоторможением при определенных условиях:

  • Если его нет изначально, при вращении редуктора вовремя работы.
  • Если мощность прилагается к выходному валу редуктора. Время вращения после остановки привода, зависит от веса элементов на мотор-редукторе. Динамическое самоторможение обусловлено высокими передаточными отношениями и малой скоростью вращения привода.

Этот тип самоторможения приводит к полной остановке червячного колеса.

Оба типа блокировки вращения зависят от:

  • Передаточного числа механизма.
  • Чистоты деталей передачи.
  • Густоты и качества смазки.
  • Частоты вращения входного вала.

Вибрация и самоторможение

В ходе технологических процессов редукторы находятся под постоянными нагрузками. При этом часто возникает вибрация, под действием которой статическое самоторможение снижается и увеличивается динамическое. Какое из них преобладает можно определить по силе вибрации, конструкции механизма, качеству смазки. При запаздывании самоторможения, установить причину можно, разобрав корпус редуктора:

  • Сначала проверяется уровень смазки в редукторе.
  • Тестируется трущиеся поверхности входного и выходного вала.
  • Проверяется подгонка деталей.

Так как вибрация явление непостоянное, она может увеличиваться или уменьшаться. Но для того, чтобы качество работы устройства оставалось на удовлетворительном уровне, при усилении вибрации следует остановить рабочий процесс и провести осмотр корпуса, валов и деталей. Неисправности устраняют, что продлевает эксплуатационный срок редуктора.

Смазка червячной пары редуктора — Справочник химика 21

    Повышение срока службы редуктора за счет подбора смазки червячной пары без снижения сил трения в подшипниках кривошипных колес незначительно. При уменьшении трения в подшипниках проблема смазки червячной пары решится сама собой, так как при сниженных на 40% нагрузках червячная пара не потребует применения особых сортов смазок. [c.145]

    Смазка червячной пары редуктора [c.138]

    Для охлаждения металлообрабатывающего инструмента Для подшипников металлообрабатывающих станков и подшипников с кольцевой смазкой механизмов Для подшипников тяжелых станков, зубчатых передач, пневматических молотков, прессов, подшипников с кольцевой смазкой электродвигателей и механизмов. Для подшипников качения с жидкой смазкой Для смазки горячих деталей двигателей внутреннего сгорания, червячных передач, редукторов емкостной системы Зубчатая пара барабана мельницы, другие виды открытых зубчатых пар [c.88]


    Применение смазки на основе масла брайтсток или цилиндрового с присадками удлиняет срок службы червячной пары редукторов форматоров-вулканизаторов, однако не является исчерпывающим решением проблемы. 
[c.141]

    Червячные редукторы с расположением червяка под колесом — самая удобная конструкция для обеспечения смазкой трущихся поверхностей и подшипников. Менее удобна в этом отношении конструкция редуктора с расположением червяка над колесом. И самая неудобная в смысле обеспечения червячной пары смазкой конструкция редукторов приводов форматоров-вулканизаторов 40″, 55″, 75″ и 88″ с вертикальным расположением червяка. [c.141]

    В редукторах форматоров-вулканизаторов червячная пара имеет высокие удельные давления на линии контакта во время работы и такие же — при выключенном двигателе, когда происходит вулканизация покрышек, что создает самые неблагоприятные условия для удержания смазки на этой линии. За время, когда червяк не вращается, слой масла с линии контакта выдавливается и при пуске двигателя между червяком и колесом некоторое время получается нежелательный сухой контакт, вызывающий повышенный износ или даже наволакивание материала одной трущейся поверхности на другую. Без разделения трущихся поверхностей слоем смазки червячная пара будет быстро изнашиваться, несмотря на кратковременную работу. 

[c.140]

    НОЙ 10 поджимается фланец неподвижной фторопластовой втулки 9, обеспечивая вакуумно-плотное соединение. Вращающийся патрубок и неподвижная втулка в процессе эксплуатации работают попарно. Характер сопряжения деталей 8, 9, 11, 12 обеспечивает перпендикулярность кромки патрубка 3 и плоскости фланца втулки 9. На фланец вращающегося патрубка гайкой 2 закрепляется переходник 1, на который устанавливается испарительная колба. Для смазки червячной пары и подшипников качения через отверстие, закрываемое винтом 17, заливается 10 мл масла индустриального И-40А или 50 А ГОСТ 20799—75. Отработанное масло сливается также через данное отверстие. Элементы конструкции со стороны обоих выходных концов червячного вала выполнены одинаково 20, 21, что дает возможность как правой, так и левой установки редуктора относительно бани. Редуктор крепится к корпусу привода гайкой 22. Кинематическая связь редуктора с двигателем осуществляется кулачковой муфтой с эластичной звездочкой 13. При работе с отнесенным двигателем передача вращения от привода к редуктору может осуществляться при помощи гибкого вала. Гайка 22 свинчивается с переходника привода, привод 13 удаляется со штатива, резьбовая втулка 14 снимается и на ее место закрепляется накидная гайка и квадратный наконечник гибкого вала. 

[c.217]


    Трансмиссионное автотракторное летнее масло применяют для смазки редукторов и шестерен роторно-погрузочных машин РПМ-2, реверса и червячной пары лебедки.  
[c.265]

    Насосы типа Т-2 и агрегаты на их базе В литом корпусе (станине) 10 приводной части насоса размещены встроенный глобоидный редуктор, который состоит из червяка 1 и червячного колеса 12, жестко закрепленного на коленчатом валу 2 три шатуна 3, большие разъемные головки которых шарнирно посажены на шейках вала, а малые головки через пальцы шарнирно связаны с ползунами 4. К ползунам через штоки 5 прикреплены плунжеры 9 насоса. В боковых стенках и в приливах корпуса под червяк имеются расточки для размещения опор коренных шеек коленчатого вала и червяка. Нижняя часть корпуса заполнена маслом, для охлаждения которого предусмотрен охладитель 11. Смазка пар трения — принудительная, с помощью шестеренного насоса, устанавливаемого на боковой стенке корпуса и приводимого во вращение коленчатым валом, или с помощью агрегата [c.738]

    Смазка ЦИАТИМ-203 предназначена для зубчатых передач (в том числе червячных редукторов), опор скольжения и подшипников качения. Максимальные контактные напряжения, при которых рекомендуется использовать смазку ЦИАТИМ-203 в зубчатых передачах и подшипниках качения, достигают 2500 МПа (250 кгс/мм ). Смазку применяют для авиационных механизмов в различных силовых приводах, нагруженных редукторах, винтовых парах и др. Определенное распространение получила она и при эксплуатации ответственных механизмов на открытых площадках, для смазывания узлов трения автомобилей в арктических условиях и т. д. [c.99]

    За последние годы получены положительные результаты при использовании металлополимерных систем в червячных и глобоид-ных передачах. Для изготовления червячных колес применяются полиамиды, капролон и композиционные материалы на основе древесно-слоистого пластика и прессованной древесины. Червячные колеса из таких материалов характеризуются высокой износостойкостью и хорошей прирабатываемостью. При использовании червячных колес из полимерных материалов рекомендуется изготавливать сопряженный металлический червяк с твердостью до 45—50 ИКС и шероховатостью рабочей поверхности зуба Ка = = 0,63—0,16. Редукторы с пластмассовыми червячными колесами применяются для приводов мощностью от 2 до 4 кВт, работающих при температуре смазки не выше 363—373 К и скорости скольжения до 3—4 м/с. Результаты испытаний че,рвячных и глобоидных передач с колесами из капролона показали, что при скорости скольжения 6 м/с крутящий момент на валу колеса для глобоид-ной и червячной пар с колесами из капролона выше, чем для колес из бронзы Бр АЖл9-4, соответственно в 3 и 1,3 раза к. п. д. редуктора был выше соответственно на 4—6 и 18—20% [8, 9]. Ка-пролоновые колеса в опытном червячном редукторе питателя пыли после 4 лет эксплуатации (20 тыс. ч) находились в удовлетворительном состоянии. Их долговечность оказалась в три раза выше, чем бронзовых [10]. Применение пластмассовых червячных колес позволяет значительно снизить вес редуктора, а также достигается большая экономия дорогостоящей бронзы. [c.269]

Редуктор червячный. | PRO-TechInfo

Редуктор с верхним червяком.

Редуктор с верхним червяком одноступенчатый применяется, когда по условию компоновки оборудования целесообразно расположить вал червяка выше вала червячного колеса. Недостаток этой схемы -повышенный нагрев червяка из-за невозможности обеспечить его обильное смазывание. Кроме того, смазывание подшипников не может быть осуществлено маслом, залитым в корпус. При циркуляционной системе смазывания редукторы с нижним и верхним расположением червяка равноценны.Редуктор с верхним червяком чертеж

Вариант опор червячного вала.

Вариант опор червячного вала

Редуктор червячный с нижним расположением червяка.

Редуктор червячный с нижним расположением червяка имеет наиболее широкое применение ввиду обильного смазывания червячной пары и подшипников червяка жидким маслом, залитым в корпус. Редуктор снабжен вентилятором для охлаждения корпуса с продольными ребрами.Редуктор червячный с нижним расположением червяка чертеж

Редуктор червячный Ч-63.

Редуктор червячный Ч-63 общего назначения, изготовляется с передаточными числами от 8 до 63. Редуктор имеет две опорные поверхности, что позволяет использовать его в эксплуатации при любом положении в пространстве. Одна опорная поверхность может быть использована для установки электродвигателя, соединенного с валом червяка клиноременной передачей. Предпочтительным является нижнее расположение червяка. Ребристая поверхность крышек обеспечивает хороший теплоотвод, поэтому возможно использование редуктора без применения вентилятора. Редуктор червячный Ч-63 чертежРедуктор червячный Ч-63 вид сверху чертеж

Технические требования.

  1. Допустимый крутящий момент на тихоходном валу при длительной работе со спокойной постоянной нагрузкой и частотой вращения червяка 1500 мин-1  Т= 125 Н⋅м.
  2. Кратковременный момент Тmах = 315 Н⋅м.
  3. Номинальные передаточные числа: 8; 10;12,5; 16; 20; 25; 31,5; 40; 50;63. Допуск на передаточное число ± 4%.
  4. Осевой зазор подшипников на червяке 0,02…0,05 мм обеспечить подгонкой прокладки.
  5. Осевой зазор червячного колеса 0,02…0,05 мм.
  6. Смещение средней плоскости червячного колеса относительно оси червяка не более ± 0,034 мм.
  7. Технические требования, указанные в пунктах 5 и 6, обеспечить подгонкой прокладок.
  8. Наименьший свободный поворот червяка при неподвижном колесе 6°.
  9. При любом положении редуктора в пространстве пробка-отдушина должна располагаться в верхней части.
  10. . При окончательной сборке прокладки и крыши ластабпть на пасту рерметии Ту-D1-1211- 79.

Редуктор червячный РЧУ-80.

Особенностью червячного редуктора РЧУ-80 является конструкция корпуса. Корпус выполнен без разъема, с крышкой, что упрощает конструкцию корпуса. Для крепления корпуса к плите или к корпусу другой машины предусмотрены съемные уголки, которые могут быть установлены, как показано на чертеже, или же закреплены на корпусе редуктора в верхней его части, где также предусмотрены соответствующие отверстия. Редуктор червячный РЧУ-80 чертеж

Схемы сборок.

Схемы сборок Редуктора червячного РЧУ-80

Б — конец быстроходного вала.

Т — конец тихоходного вала.

Технические данные.

Технические данные редуктора червячного РЧУ-80

*Приведенные значения мощности Р соответствуют непрерывному режиму работы nБ=1000 мин-1.

  1. Материал венца червячного колеса — бронза брАЖ9-4.
  2. Материал червяка — сталь 40Х.
  3. Термообработка — закалка 45…50 HRCэ.

Вариант исполнения тихоходного вала.

Вариант исполнения тихоходного вала РЧУ-80

Редуктор червячный Ч-120.

Редуктор червячный Ч-120 выпускается пяти исполнении с максимальным передаточным отношением 39. Ребристая поверхность основания корпуса обеспечивает хороший теплоотвод и возможность не использовать вентилятор. Редуктор червячный Ч-120 чертеж

Схемы сборки.

Схемы сборки редуктора червячного Ч-120

Б — конец быстроходного вала.

Т — конец тихоходного вала.

Технические данные.

Технические данные редуктора червячного Ч-120

Технические требования.

  1. *Размеры для справок.
  2. Осевой зазор при регулировке подшипников подбором прокладок выдерживать в пределах: для червяка 0,15…0,2 мм; для червячного колеса 0,12…0,18 мм.

Редуктор с вертикальным валом червячного колеса.

Редуктор с вертикальным валом червячного колеса имеет ограниченное применение, используется в поворотных механизмах кранов и других аналогичных устройствах. Редуктор с вертикальным валом червячного колеса чертеж

Соседние страницы

Червячные редукторы

Что бы понять, зачем нужен редуктор, нужно знать, что это за механизм. Редуктор это такое устройство, которое понижает полученную мощность или скорость вращения от двигателя до устройства, потребляющей это вращение с величиной, которая будет более приемлемая для использования. Также может понижать давление воды до уровня, на который рассчитана техника в доме, потребляющая воду.

Редукторы различаются по виду передачи мощности в них, а также по месту применения. Применяются они в газовой среде, в водной, а также механические редукторы. Мы рассмотрим механические виды редукторов. Они могут быть таких видов:

Цилиндрические редукторы. Они считаются наиболее распространёнными, так как имеют достаточно простую конструкцию. Зубчатые передачи, из которых они состоят, могут иметь несколько ступеней, количество которых зависит от того, какое передаточное число должно быть у редуктора.

Схема трёхступенчатого цилиндрического редуктора

Это схема цилиндрического редуктора с тремя ступенями, при этом, как видно на схеме, входной вал имеет три шестерни.

Планетарный редуктор. Имеет название от центральной шестерни, называемой водилом или солнечной шестерней, вокруг которой крутятся шестерни поменьше, называемые сателлитами. Все это находится внутри кольцевой неподвижной шестерни. Передаточное число зависит от количества зубьев на шестерне. Может быть одно, двух и трехступенчатым.

Конический и цилиндрическоконический редуктор. Вращательный момент передается при помощи или скрещённых валов или пересекающихся. Применяются шестерни прямозубые или косозубые, но конической формы. Его основное место работы – это конвейерные линии. Предназначен для того, что бы регулировать движение между валами в передаче.

Волновой редуктор. Работает по принципу сцепления многих пар зубьев. Но из –за ограничений по количеству оборотов ведомого вала и применению шестерен большого диаметра применяется не очень часто.

Есть ещё смеси цилиндрическо – планетарный, коническо- планетарный, червячно – планетарный и цилиндрически – планетарный.

Червячный редуктор. Также один из самых распространённых за счет возможности получать передаточное число большой величины. Он простой в изготовлении, поэтому и стоимость его невысокая. Может быть как одноступенчатым так и многоступенчатым. Если у редуктора с одной ступенью передаточное число червячной передачи может быть в пределах от 5 до 100, то при двух ступенях уже может достигать и 1000.

Как работает червячный механизм

Кто знаком с червячными редукторами, может отметить их небольшие и компактные размеры, бесшумность и плавность в работе, возможность самоторможения, то есть, нет обратного хода, и возможность легко отремонтировать при поломке.

Недостаток такого механизма – это то, что он не может воспринимать большую нагрузку и у него небольшая отдача при больших затратах мощности. Кроме того, у него вращение возможно только в сторону, направленную от винта к колесу. Недостатком можно назвать и то, что при изготовлении пары – колесо – червяк нужно соблюдать высокую точность изготовления.

Схема червячной передачи

Кроме того, при работе червячного редуктора эта пара из-за своей конструкции испытывает повышенное трение, вследствие чего происходит перегрев деталей и быстрый их износ. Поэтому для тихоходных редукторов, у которых червяк находится снизу, обеспечивается, смазка маслом происходит при циркуляции масла естественным методом.

Если редуктор быстроходный, червяк находится сверху, смазка должна подаваться принудительно, впрыском. Масло не только уменьшает трение, но и отводит тепло. Корпус, в основном, изготавливается из чугуна.

Конструктивно он представляет собой винт с нанесенной на него резьбой специального профиля по форме зубьев колеса, которое «ходит» по этому червяку. Червячный привод очень часто устанавливают в автомобилях, в частности на троллейбусах, имеющих небольшую номинальную мощность, не более 100 кВт. Также применяются такие устройства в различных транспортерах, особенно в сельском хозяйстве, в конвейерах и подъемниках. Очень часто эту передачу можно встретить во фрезерных и других металлорежущих станках.

Как выбрать необходимый мотор — редуктор червячный

Чертеж червячного редуктора самому вычерчивать сложно, нужно иметь специальные знания и навыки чертежника. Лучше всего найти такой чертеж в интернете. Например, такой.

Чертеж червячного редуктора, пример из интернета

Если выбирают механизм, учитываются многие нюансы, но самым важным параметров считают передаточное отношение червячной передачи. Чертеж червяка также нужно искать в интернете.

Затем выбирают направление резьбы, её профиль, число заходов червяка. Наиболее распространённым считается одноступенчатый червячный редуктор, который при небольших размерах может передавать значительные усилия. Двухступенчатый редуктор кроме передачи усилий может и регулировать их. Если нужно передавать усилие более 200 кВт, лучше выбирать другой тип конструкции, при передаче усилий от 60 до 200 кВт нужно организовать принудительную смазку, которая уменьшает трение и обеспечивает охлаждение.

Расчеты можно делать самому или заказать специалисту. Но для этого нужно знать некоторые параметры, которые необходимы при расчете, и описание червячного редуктора.

Расчет червячного редуктора начинается от назначения и области применения привода и выбора электродвигателя, который будет передавать вращении на редуктор. Связка мотор – червячный редуктор очень важна при расчетах, как сам его кинематический расчет. Необходимо также рассчитывать и зубчато- ременную передачу и кпд червячного редуктора. Конечно, на высокий КПД рассчитывать не приходится. Далее определяем выходной вал редуктора или тихоходного и его диаметр, а также мощности и крутящие моменты, которые должны будут переданы. Предварительно определяем муфту, её размеры, которая соединяет двигатель и редуктор через входной вал редуктора, а также вид подшипников и прикидываем, какой будет компоновочная схема.

По полученным расчетам и чертежу червяка и червячного редуктора выбираем шпоночные соединения, вид смазки и систему её. Система смазки зависит от того, где находится червяк, сверху или снизу. Нужно обязательно сделать расчеты валов по всем параметрам моментов и расчеты подшипников и их посадочных диаметры.

По этим данным производим расчет размера корпуса. Также важно выбрать материал, из которого будет изготовлен механизм. Это может быть и бронза и чугун и термически обработанная сталь. Материал выбираем по таблице в зависимости от полученных расчетов. Имея расчет и чертеж червячного редуктора, эти данные позволяют выбрать наиболее оптимальный червячный редуктор с теми параметрами, которые вам необходимы.

Вид червячного редуктора

Facebook

Twitter

Вконтакте

Google+

 Внимание покупателей подшипников

Уважаемые покупатели, отправляйте ваши вопросы и заявки по приобретению  подшипников и комплектующих на почту или звоните сейчас:

     +7(499)403 39 91  

   

  Доставка подшипников  по РФ  и зарубежью.

  Каталог подшипников на сайте themechanic.ru

 

 

Внимание покупателей подшипников

Уважаемые покупатели, отправляйте ваши вопросы и заявки по приобретению подшипников и комплектующих на почту или звоните сейчас:
tel:+7 (495) 646 00 12
[email protected]
Доставка подшипников по РФ и зарубежью.
Каталог подшипников на сайте

Внимание покупателей подшипников

Уважаемые покупатели, отправляйте ваши вопросы и заявки по приобретению подшипников и комплектующих на почту или звоните сейчас:
tel:+7 (495) 646 00 12
[email protected]
Доставка подшипников по РФ и зарубежью.
Каталог подшипников на сайте

Сравнение цилиндрических и червячных редукторов

Выбирая редукторы от производителя, каждый потребитель должен представлять, для каких целей предназначено изделие и какие технические задачи требуется решать.

Наряду с цилиндрическими редукторами в машиностроении широко применяются и червячные аналоги. Червячные редукторы — один из распространенных видов этих изделий.

В конструкцию входит червяк (винт с нарезанной резьбой) и червячное колесо (со специальным профилем зубьев).4МЦ2С80-56

Оси червяка и червячного колеса расположены под прямым углом в пространстве.

Преимущества червячного перед цилиндрическим редуктором

  1. Привод на его основе при одинаковом передаточном числе и величине передаваемой мощности более компактный в сравнении с цилиндрическим аналогом.
  2. Передаточное число может достигать 1:110, такая пара в значительно большей степени снижает частоту вращения и увеличивает крутящий момент, чем другие виды передач. Такие значения передаточных отношений можно достичь, используя двухступенчатый цилиндрический редуктор. Бесшумность работы таких передач позволяет использовать их в машинах и механизмах с высокими требованиями к уровню шума.
  3. Большая плавность хода.
  4. Самоторможение. При отсутствии хода ведущего вала ведомый вал повернуть невозможно. Это свойство проявляется при передаточных числах выше 35.
  5. Есть исполнения с полым входным валом. Это позволяет насаживать редуктор с полым валом прямо на вал рабочего исполнительного механизма, сохраняя КПД редуктора.

Недостатки червячных редукторов и приводов на их основе

  1. Низкий КПД, в сравнении с цилиндрическим аналогом. Он обусловлен повышенным трением скольжения зубьев червячного колеса и червяка во время работы.
  2. Чем больше передаточное отношение, тем меньше КПД. Например, КПД редуктора с передаточным числом 80 составляет 58%. Остальная энергия необратимо рассеивается. Цилиндрические редукторы имеют КПД 98%.
  3. Повышенный нагрев. Потерянная энергия превращается в тепло. Корпус червячного редуктора всегда нагревается. Редукторы с большой передаваемой мощностью производятся с принудительной циркуляцией воздуха или масла.
  4. Самоторможение. Это и преимущество и недостаток. Выходной вал невозможно в случае необходимости повернуть без включения привода редуктора.
  5. Ограничения по передаваемой мощности. При мощности более 60 кВт червячную передачу не рекомендуется использовать. Зарубежные редукторы выпускают мощностью до 15 кВт.
  6. Наличие люфта выходного вала. Небольшой люфт имеют все редукторы, но у червячных он больше, и постоянно растет с увеличением степени износа. 
    Ресурс работы ниже, чем цилиндрических редукторов. Это обусловлено трением скольжения и износом трущихся частей. Срок службы редукторов российского производства не менее 10 тыс. час. Редукторы цилиндрические имеют ресурс не менее 15 тыс. час.
  7. Не рекомендуется использовать в условиях, где часты остановки и пуски, а нагрузки на выходной вал неравномерные.

Применение

Червячные редукторы применяются для конвейеров, транспортеров, подъемников, механических мешалок, насосов, приводов ворот, станков для обработки металла и дерева, где нет больших ударных нагрузок и невысока периодичность включения.

Большое значение имеет пространственное расположение осей редуктора. Базовая установка, когда ось червяка находится внизу, а ось колеса вверху. Могут быть модификации, которые следует устанавливать в строгом соответствии со схемой.

При выборе типа редуктора всегда нужно иметь в виду эффект самоторможения. Например, если установить червячный редуктор на тележке, ее трудно будет катить вручную.

Сегодня продажа редукторов ведется как поставщиками, так и производителями. Они предлагают широкий выбор видов, типоразмеров и по заданным параметрам всегда подберут тот, который оптимальным образом решит поставленную задачу.

Все о редукторах. Справочная информация

Классификация, основные параметры редукторов
Цилиндрические редукторы
Червячные редукторы
Планетарные редукторы
Конические редукторы
Классификация редукторов в зависимости от вида передач и числа ступеней
Конструкция и назначение редуктора
Особенности редукторов по виду механических передач
Количество ступеней редуктора
Входные и выходные валы редукторов
Срок службы редуктора
Устройство редуктора
Монтажное исполнение
Как подобрать редуктор? Простые правила и примеры расчета
Передаточное отношение и как его определить?

 

Редукторы (латинского слова reductor) получили широкое распространение во всех отраслях промышленного и аграрного хозяйства, поэтому их производство с каждым годом увеличивается, появляются новые модификации, совершенствуются уже существующие модели.

Редуктор служит для снижения частоты вращения тихоходного вала и увеличения усилия на выходном валу. Редуктор может иметь одну или несколько ступеней, цель которых увеличение передаточного отношения. По типу механической передачи редукторы могут быть червячными, коническими, планетарными или цилиндрическими. Конструктивно редуктор выполнен как отдельное изделие, работающее в паре с электродвигателем и установленное с ним на одной раме.

Промышленностью сегодня выпускаются редукторы общего и специального назначения.
Редукторы общего назначения могут применяться во многих случаях и отвечают общим требованиям. Специальные же редукторы имеют нестандартные характеристики подходящие под определенные требования.

 

Классификация, основные параметры редукторов

В зависимости от типа зубчатой передачи редукторы бывают цилиндрические, конические, волновые, планетарные, глобоидные и червячные. Широко применяются комбинированные редукторы, состоящие из нескольких совмещенных в одном корпусе типов передач (цилиндро-конические, цилиндро-червячные и т.д.).

Конструктивно редукторы могут передавать вращение между перекрещивающимися, пересекающимися и параллельными валами.
Так, например цилиндрические редукторы позволяют передать вращение между параллельными валами, конические — между пересекающимися, а червячные — между пересекающимися валами.

Общее передаточное число может достигать до нескольких десятков тысяч, и зависит от количества ступеней в редукторе. Широкое применение нашли редукторы, состоящие из одной, двух или трех ступеней, при чем они могут, как описывалось выше, совмещать разные типы зубчатых передач.

Ниже представлены наиболее популярные виды редукторов, серийно выпускаемые промышленностью.

 

Цилиндрические редукторы

Цилиндрические редукторы являются самыми популярными в машиностроении. Они позволяют передавать достаточно большие мощности, при этом КПД достигает 95%. Вращение передается между параллельными или соосными валами. Передаваемая мощность зависит от типоразмера редуктора. В цилиндрических редукторах применяются передачи, состоящие из прямозубых, косозубых или шевронных зубчатых колес. Количество цилиндрических передач напрямую влияет на передаточное отношение. Например, одноступенчатый редуктор может иметь передаточное число 1,5 до 10, две ступени — от 10 до 60, а три ступени — от 60 до 400.

Кинематические схемы наиболее распространенных видов цилиндрических редукторов представлены на рисунке ниже:


А) — Простой одноступенчатый цилиндрический редуктор
Б) – Двухступенчатый редуктор цилиндрический с несимметричным расположением зубчатых колес
В) – Трехступенчатый цилиндрический редуктор, входной вал быстроходной передачи изготовлен с двумя шестернями
Г) – Соосный цилиндрический редуктор
Д) — Соосный цилиндрический редуктор с симметричным расположением опор относительно тихоходной передачи
Е) — Соосный цилиндрический редуктор с шевронной быстроходной передачей
Ж) — Соосный цилиндрический редуктор с раздвоенной передачей
З) — Соосный цилиндрический редуктор с посаженными на быстроходный вал двумя косозубыми шестернями с противоположенным наклоном зубьев
И) – Трехступенчатый цилиндрический редуктор с раздвоенной быстроходной и тихоходной передачей

 

 

Червячные редукторы

Червячные редукторы получили большую популярность в виду своей простоты и достаточно низкой стоимости. Из всех видов червячных редукторов наиболее распространены редукторы с цилиндрическими или глобоидными червяками. Как и многие другие типы редукторов червячные могут состоять из одной или нескольких ступеней. На одноступенчатом редукторе передаточное отношение может быть в пределах 5-100, а на двух ступенях может достигать 10000. Основными достоинствами редукторов червячного типа являются компактные размеры, плавность хода и самоторможение. Из недостатков можно отметить не очень высокий КПД и ограниченная нагружаемая способность. Основными элементами являются зубчатое колесо и цилиндрический червяк. Цилиндрический червяк представляет собой винт с нанесенной на его поверхности резьбой определенного профиля. Число заходов зависит от передаточного отношения, и может составлять от 1 до 4. Вторым основным элементом редуктора является червячное колесо. Оно представляет собой зубчатое колесо из сплава бронзы, количество зубьев также зависит от передаточного отношения и может составлять 26-100.

В ниже приведенной таблице представлена зависимость передаточного отношения от количества зубов колеса и заходов винта.

Передаточное отношение

Число заходов червяка

Число зубов колеса

7-8

4

28-32

9-13

3-4

27-52

14-24

2-3

28-72

15-27

2-3

50-81

28-40

1-2

28-80

40

1

40

Кинематические схемы одноступенчатых червячных редукторов представлены ниже:

 

А) Редуктор с нижним расположением червяка
Б) Редуктор с верхним расположением червяка
В) Редуктор с боковым расположением червяка (ось червяка расположена горизонтально)
Г) Редуктор с боковым расположением червяка (ось червяка расположена вертикально)

Редукторы червячные двухступенчатые позволяют получить моменты в диапазоне 100 – 2800Нм. Конструкция представляет собой жесткую скрутку двух редукторов. Между собой редукторы соединены с помощью фланца. Цилиндрический вал первой ступени установлен в полый вал второй ступени.
Вариант расположения червячных пар представлен на рисунке ниже:

Расположение входного и выходного вала зависит от варианта сборки. Существуют следующие сборки: 11, 12, 13, 16, 21, 22, 23, 26.

 

 

Планетарные редукторы

Планетарные редукторы нашли широкое применение в тяжелом машиностроении, так как обладают рядом преимуществ перед редукторами другого типа. На редукторах планетарного типа можно получить достаточно большие передаточные числа, при этом габариты редуктора будут намного меньше чем у червячного или цилиндрического редуктора. Конструкция редуктора представляет собой планетарный механизм. Основными элементами редуктора являются сателлиты, солнечная шестерня, кольцевая шестерня и водило.

Внешний вид устройства планетарного редуктора представлен ниже:

А) сателлиты
Б) солнечная шестерня
В) водило
Г) кольцевая шестерня

Кольцевая шестерня планетарного редуктора находится в неподвижном состоянии, Вращение от входного вала передается на солнечную шестерню находящеюся в зацеплении со всеми сателлитами. Сателлиты вращаются внутри неподвижной кольцевой шестерни передавая энергию вращения на водило, а далее на выходной вал редуктора. Планетарный механизм может быть одно-, двух- и трехступенчатым, передаточное отношение зависит от количества зубьев на каждой шестерне.

Свое название планетарный редуктор получил благодаря тому, что зубчатые колеса вращаются подобно планетам солнечной системы. Планетарные редукторы могут быть одно-, двух- и трехступенчатыми. Передаточное отношение может быть в пределах 6 – 450. Редукторы планетарного типа обладают высоким КПД, и позволяют передавать большие мощности без потерь на нагрев. Для удобства монтажа планетарные редукторы выпускаются на лапах или на опорном фланце, а также возможен комбинированный вариант.

В настоящий момент на Российском рынке приводной техники пользуются популярностью редукторы серии 3МП и МПО.

 

Конические и цилиндро-конические редукторы

Конические и цилиндро-конические редукторы передают момент между пересекающимися или скрещивающимися валами. В редукторах применяются шестерни в виде конуса с прямыми или косыми зубами. Конические редукторы имеют большую плавность зацепления, что позволяет им выдерживать большие нагрузки. Редукторы могут быть одно-, двух- и трехступенчатыми. Большое распространение получили цилиндро-конические редукторы, где общее передаточное отношение может достигать 315. Быстроходный и тихоходный валы редуктора могут располагаться горизонтально и вертикально. По типу кинематической схемы конические и цилиндро-конические редукторы могут быть развернутые или соосные.

На рисунке ниже представлены кинематические схемы конических редукторов:

А) Реверсивный конический редуктор. Смена направления вращения достигается установкой зубчатого колеса с противоположенной стороны конической шестерни.

Б) Реверсивный конический редуктор. Конические шестерни вращаются в разных направлениях. Подключение тихоходного вала к одной из конических шестеренок происходит за счет кулачковой муфты.

В) Двухступенчатый коническо-цилиндрический редуктор. Быстроходный и тихоходный валы находятся под прямым углом в одной плоскости.

Г) Двухступенчатый коническо-цилиндрический редуктор. Входной и выходные валы перекрещиваются и лежат в разных плоскостях.

Д) Трехступенчатый коническо-цилиндрический редуктор. Быстроходный и тихоходный валы находятся под прямым углом в одной плоскости.

Е) Трехступенчатый коническо-цилиндрический редуктор. Промежуточная и тихоходная цилиндрическая передача собраны по соосной схеме.

 

Конические редукторы широко используются в изделиях, где требуются передать высокий момент под прямым углом. В отличие от червячных редукторов, конические редукторы не имеют быстро изнашиваемого бронзового колеса, что позволяет работать им в тяжелых условиях длительное время. Также важным отличием является обратимость, возможность передавать вращение от тихоходного вала к быстроходному валу. Обратимость позволяет разгрузить редукторный механизм в отличие от червячного редуктора, что позволяет использовать конический редуктор в установках с высокой инерцией.

 

Классификация редукторов в зависимости от вида передач и числа ступеней:

Тип редуктора

Количество ступеней

Тип механической передачи

Расположение тихоходного и быстроходного валов

Цилиндрический

Одна ступень

Одна или несколько цилиндрических передач

Параллельное

Две ступени; три ступени

Параллельное или соосное

Четыре ступени

Параллельное

Конический

Одна ступень

Одна коническая передача

Пересекающееся

Коническо-цилиндрический

Две ступени; три ступени; четыре ступени

Одна коническая передача и одна или несколько цилиндрических передач

Пересекающееся или скрещивающееся

Червячный

Одна ступень; две ступени

Одна или две червячные передачи

Скрещивающееся

Параллельное

Цилиндрическо-червячный или червячно-цилиндрический

Две ступени; три ступени

Одна или две цилиндрические передачи и одна червячная передача

Скрещивающееся

Планетарный

Одна ступень; две ступени; три ступени

Каждая ступень состоит из двух центральных зубчатых колес и сателлитов

Соосное

Цилиндрическо-планетарный

Две ступени; три ступени; четыре ступени

Сборка из одной или нескольких цилиндрических и планетарных передач

Параллельное или соосное

Коническо-планетарный

Две ступени; три ступени; четыре ступени

Сборка из одной конической и планетарных передач

Пересекающееся

Червячно-планетарный

Две ступени; три ступени; четыре ступени

Сборка из одной конической и планетарных передач

Скрещивающееся

Волновой

Одна ступень

Одна волновая передача

Соосное

 

 

Конструкция и назначение редуктора

Механизм, служащий для понижения угловой скорости и одновременно повышающий крутящий момент, принято называть редуктором. Энергия вращения подводится на входной вал редуктора, далее в зависимости от передаточного отношения на выходном валу получаем пониженную частоту и увеличенный момент.

В состав редуктора в зависимости от типа механической передачи обычно входят зубчатые или червячные пары, центрирующие подшипники, валы, различные уплотнения, сальники и т.д. Элементы редуктора помещаются в корпус, состоящий из двух частей – основания и крышки. Рабочие механизмы редуктора при работе непрерывно смазываются маслом путем разбрызгивания, а в отдельных случаях применяется принудительный насос, помещенный внутрь редуктора.

Существует огромное количество различных типов редукторов, но наибольшую популярность получили цилиндрические, планетарные, конические и червячные редукторы. Каждый тип редуктора имеет свои определенные преимущества и недостатки, которые следует учитывать при конструировании оборудования. Основными же критериями для подбора редуктора являются определение необходимой мощности или момента нагрузки, коэффициента редукции (передаточного отношения), а также монтажного расположения источника вращения и рабочего механизма.

 

Особенности редукторов по виду механических передач

Мировой промышленностью выпускается огромное количество редукторов и редукторных механизмов различающихся по типу передачи, вариантам сборки и т.д. Рассмотрим основные типы механических передач, их особенности и преимущества.

Цилиндрическая передача – является самой надежной и долговечной из всех видов зубчатых передач. Данная передача применяется в редукторах, где требуется высокая надежность и высокий КПД. Цилиндрические передачи обычно состоят из прямозубых, косозубых или шевронных зубчатых колёс.

а) Прямозубая цилиндрическая передача

б) Косозубая цилиндрическая передача

в) Шевронная цилиндрическая передача

г) Цилиндрическая передача с внутренним зацеплением

 

Конические передачи – обладают всеми преимуществами цилиндрических зубчатых передач и применяются в случае перекрещивания входного и выходного валов.

а) Коническая зубчатая передача с прямым зубом

б) Коническая зубчатая передача с косым зубом

в) Коническая зубчатая передача с криволинейным зубом

г) Коническая гипоидная передача

 

Червячная передача – позволяет передавать кинетическую энергию между пересекающимися в одной плоскости валами. Основными преимуществами данной передачи является высокий показатель передаточного отношения, самоторможение, компактные размеры. Недостатками являются низкий КПД, быстрый износ бронзового колеса, а также ограниченная способность передавать большие мощности.

Гипоидная передача – она же спироидная состоит из конического червяка и диска со спиральными зубьями. Ось червяка значительно смещена от оси конического колеса, благодаря чему число зубьев одновременно входящих в зацепление в несколько раз больше чем у червячных передач. В отличие от червячной пары в гипоидной передаче линия контакта перпендикулярна к направлению скорости скольжения, что обеспечивает масленый клин и уменьшает трение. Благодаря этому КПД гипоидной передачи выше, чем у червячной передачи на 25%.

а) Червячная передача с цилиндрическим червяком

б) Червячная передача с глобоидным червяком

в) Спироидная передача

г) Тороидно-дисковая передача

д) Тороидная передача внутреннего зацепления

 

Волновая передача – прототипом является планетарная передача с небольшой разницей количества зубов сателлита и неподвижного колеса. Волновая передача характеризуется высоким показателем передаточного отношения (до 350). Основными элементами волновой передачи являются гибкое колесо, жесткое колесо и волновой генератор. Под действием генератора гибкое колесо деформируется и происходит зацепление зубьев с жестким колесом. Волновые передачи широко применяются в точном машиностроении благодаря высокой плавности и отсутствия вибраций во время работы.

1) Зубчатое колесо с внутренними зубьями

2) Гибкое колесо с наружными зубьями соединенное с выходным валом редуктора

3) Генератор волн

 

Количество ступеней редуктора

Число ступеней редуктора напрямую влияет на передаточное отношение. В червячных редукторах наиболее распространены одноступенчатые пары. Цилиндрические же редукторы, состоящие из одной ступени, применяются реже, чем двух- или трехступенчатые редукторы. В производстве редукторов все чаще применяются комбинированные передачи, состоящие из разных типов передач, например коническо-цилиндрические редукторы.

 

Входные и выходные валы редукторов

В редукторах обычно применяются обычные прямые валы, имеющие форму тел вращения. На валы редукторов действуют внешние нагрузки, консольные нагрузки и усилия преодоления зацеплений. Крутящий момент на валу определяется рабочим крутящим моментом редуктора или реактивным крутящим моментом привода. Консольная нагрузка определяется способом соединения редуктора с двигателем, зависит от радиального или осевого усилия на вал. В ряде машин, к которым предъявляются особые требования в отношении габаритов или веса используются редукторы с полым валом. Полый вал редуктора позволяет располагать вал исполнительного механизма внутри редуктора, тем самым отпадает необходимость использовать переходные полумуфты и т.п.

 

Срок службы редуктора

Срок службы редуктора зависит от правильных расчетов параметров действующей нагрузки. Также на длительность работы влияет своевременное профилактическое обслуживание редуктора, замена масла и сальников. Регулярный профилактический осмотр позволит избежать незапланированного ремонта или замену редуктора. Уровень масла контролируется через смотровое окно в редукторе и при необходимости доливается до нужного уровня.

Ниже приведена таблица зависимости срока службы редуктора от типа передачи:

Тип передачи редуктора

Гарантированный ресурс в часах

Цилиндрическая, планетарная, коническая, цилиндро-коническая

более 25000

Волновая, червячная, глобоидная

более 10000

 

 

Устройство редуктора

Основными элементами редуктора являются:

1. Прошедшие обработку зубчатые колеса с зубьями высокой твердости. Материалом обычно служит сталь марки (40Х, 40ХН ГОСТ 4543-71). В планетарных редукторах шестерни и сателлиты изготовлены из стали марки 25ХГМ ГОСТ 4543-71. Зубчатые венцы из стали 40Х. Червячные валы изготавливаются из стали марки ГОСТ 4543-71 – 18ХГТ, 20Х с последующей цементацией рабочих поверхностей. Венцы червячных редукторов изготавливают из бронзы Бр010Ф1 ГОСТ 613-79. Гибкое колесо волнового редуктора изготовлено из кованой стали 30ХГСА ГОСТ 4543-71.
2. Валы (оси) быстроходные, промежуточные и тихоходные. Материалом является — сталь марки (40Х, 40ХН ГОСТ 4543-71). В зависимости от варианта сборки выходные валы могут быть одно- и двухконцевыми, а также полыми со шпоночным пазом. Выходные валы планетарных редукторов изготовлены заодно с водилом последней ступени. Материалом служит чугун или сталь.
3. Подшипниковые узлы. Используются подшипники качения воспринимающие большие осевые и консольные нагрузки. Применяются обычно конические роликоподшипники.
4. Шлицевые, шпоночные соединения. Шлицевые соединения чаще применяются в червячных редукторах (выходной полый вал). Шпонки применяются для соединения валов с зубчатыми колесами, муфтами и другими деталями.
5. Корпуса редукторов. Корпуса и крышки редукторов выполняются методом литья. В качестве материалов используется чугун марки СЧ 15 ГОСТ 1412-79 или сплав алюминия АЛ11. Для улучшения отвода тепла корпуса редукторов снабжаются ребрами.

 

Монтажное исполнение

Соосный редуктор — входной и выходной вал находятся на одной оси

Червячный редуктор — входной и выходной вал находятся под прямым углом

Цилиндрический редуктор — входной и выходной вал находятся на параллельных осях

Коническо-цилиндрический редуктор — входной и выходной вал перекрещиваются

 

Монтажное положение соосных цилиндрических или планетарных редукторов

 

Монтажное положение и вариант сборки червячных одноступенчатых редукторов

 

Монтажное положение и вариант сборки червячных двухступенчатых редукторов

 

Монтажное положение и вариант сборки цилиндрических редукторов

 

 

Методика выбора редуктора в зависимости от нагрузки

Методика выбора редуктора заключается в грамотном расчете основных параметров нагрузки и условий эксплуатации.

Технические характеристики описаны в каталогах, а выбор редуктора делается в несколько этапов:

  • выбор редуктора по типу механической передачи
  • определение габарита (типоразмера) редуктора
  • определение консольных и осевых нагрузок на входной и выходной валы
  • определение температурного режима редуктора

На первом этапе конструктор определяет тип редуктора исходя из заданных задач и конструктивных особенностей будущего изделия. На этом же этапе закладываются такие параметры как: передаточное отношение, количество ступеней, расположение входного и выходного валов в пространстве.

На втором этапе следует определить межосевое расстояние. Исходные данные на каждый тип редуктора можно найти в каталоге. Следует помнить, что межосевое расстояние влияет на способность передать момент от двигателя к нагрузке.

Консольные и осевые нагрузки определяются уравнениями, а потом сравниваются со значениями в каталоге. В случае превышения расчетных нагрузок, на какой либо вал, редуктор выбирается на типоразмер выше.

Температурный режим определяется во время работы редуктора. Температура не должна превышать + 80° гр. при длительной работе редуктора с действующей нагрузкой.

 

Как выбрать редуктор?

Выбор редуктора должен производить квалифицированный сотрудник т.к. неправильные расчеты могут привести к поломке редуктора или сопутствующего оборудования. Грамотный выбор редуктора поможет избежать дальнейшие затраты на ремонт и покупку нового привода. Основными параметрами для выбора редуктора как было сказано выше, являются: тип редуктора, габарит или типоразмер, передаточное отношение, а также кинематическая схема.

Определить габарит редуктора можно с помощью каталога, где указаны максимальные значения крутящего момента для каждого типоразмера. Момент действующей нагрузки на редуктор определяется следующим выражением:

где:
M2 — выходной момент на валу редуктора (Н/М)
P1 — подводимая мощность на быстроходном валу редуктора (кВт)
Rd — динамический КПД редуктора (%)
n2 — частота вращения тихоходного вала (об/мин)

Частоту вращения тихоходного вала n2 можно определить, зная значения передаточного отношения редуктора i, а также значения скорости быстроходного вала n1.

где:
n1 — частота вращения быстроходного вала (об/мин)
n2 — частота вращения тихоходного вала (об/мин)
i — передаточное отношение редуктора

Еще одним важным фактором, который следует учитывать при подборе редуктора, является величина – сервис фактор (s/f). Сервис фактор sf – это отношение максимально допустимого момента M2 max указанного в каталоге к номинальному моменту M2 зависящего от мощности двигателя.

где:
M2 max — максимально допустимый момент (паспортное значение)
M2 — номинальный момент на валу редуктора (зависит от мощности двигателя)

Значение сервис фактора (s/f) напрямую связан с ресурсом редуктора и зависит от условий работы привода.

При работе редуктора с нормальной нагрузкой, где число стартов не превышает 60 пусков в час — сервис фактор может выбираться: sf = 1.

При средней нагрузке, где число стартов не превышает 150 пусков в час — сервис фактор выбирается: sf = 1,5.

При тяжелой ударной нагрузке с возможностью заклинивания вала редуктора сервис фактор выбирается: sf = 2 и более.

 

Передаточное отношение и как его определить?

 

Основное назначение любого редуктора понижение угловой скорости подводимой на его входной вал. Значения выходной скорости определятся передаточным отношением редуктора. Передаточное отношение редуктора — это отношение скорости входного вала к скорости выходного вала.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *