РазноеСоленоиды это: Соленоиды АКПП. Что это? Описание Классификация, Проблемы, Болезни.

Соленоиды это: Соленоиды АКПП. Что это? Описание Классификация, Проблемы, Болезни.

Содержание

приведение в действие и полярность напряжения

Добавлено 16 мая 2020 в 16:56

Сохранить или поделиться

В данном техническом обзоре будут рассмотрены некоторые основные подробности, связанные с работой и реализацией соленоидов.

Соленоиды не особенно экзотичны по своим возможностям, но они не так распространены, как два других члена семейства электромеханических устройств, а именно реле и двигатели. Поэтому, возможно, они не настолько понятны, как следовало бы, и разработчики могут быть склонны игнорировать их или избегать.

Большинство людей, которые работают с электроникой, вероятно, знают, что соленоид – это электромеханическое устройство, которое использует индуктивную обмотку для преобразования электрической энергии в линейное движение. Вы прикладываете напряжение, поршень движется. Но, как обычно, детали не так просты, как могли бы быть.

Примечание. Соленоиды также могут быть и вращательного типа, но в данной статье мы остановимся на линейных соленоидах.

Кроме того, имейте в виду, что некоторые соленоиды могут приводиться в действие источником переменного напряжения, но в последующем обсуждении предполагается, что привод постоянного тока является более предпочтительным в низковольтных системах.

Принцип действия

Основополагающий принцип работы с соленоидом заключается в следующем: управляющий ток через обмотку заставляет плунжер (поршень) двигаться в направлении магнитного поля, то есть в область, покрытую обмоткой. Смена полярности приложенного напряжения не меняет направление движения, потому что типовой плунжер – это просто кусок металла (а не магнит), и поэтому он всегда притягивается (не отталкивается) от магнитного поля.

Если сила тяжести или что-то в вашей механической нагрузке не возвращает поршень в исходное положение, вам нужен соленоид с возвратной пружиной.

Втягивающий или толкающий?

Поскольку плунжер всегда движется к обмотке, разница между соленоидами втягивающего и толкающего типов должна основываться на оборудовании, прикрепленном к плунжеру, а не на направлении движения относительно основного корпуса соленоида:

Рисунок 1 – Соленоиды втягивающего и толкающего типов

Отпускание или возврат

Что же нам делать со следующей схемой, найденной в техническом описании Delta Electronics?

Рисунок 2 – Схема из технического описания соленоида

Вы можете быстро нее взглянуть и подумать, что соленоид можно вернуть в обесточенное положение, изменив полярность приложенного напряжения, но это нарушает принцип действия.

Обратите внимание, что выбранным термином является «отпускание», а не «возврат». Магнитное поле не исчезает сразу после снятия управляющего напряжения; ток в обмотке (по сути, в катушке индуктивности) должен затухать. Таким образом, вместо того, чтобы немедленно отпустить плунжер, соленоид удерживает его с постепенно уменьшающейся силой.

Delta Electronics говорит нам здесь о том, что мы можем добиться более быстрого отпускания путем изменения полярности напряжения – вы можете думать об этом обратном напряжении как о более сильном вытеснении затухающего в обмотке тока. (Помните, что вам нужно снять обратное напряжение после завершения затухания; в противном случае ток начнет течь в противоположном направлении, и вы снова включите соленоид.)

Суть этого заключается в следующем: если вы не используете смену полярности, у вас будет обычное «медленное» затухание. Медленное затухание может ограничить частоту приведения в действие, поскольку соленоид всё еще может удерживать плунжер, когда вы снова подаете на обмотку питание. Чтобы максимизировать скорость, с которой поршень может перемещаться назад и вперед, вы должны использовать изменение полярности напряжения, в результате чего происходит более «быстрое» затухание тока.

Об изменении полярности хорошо помнить при разработке схемы драйвера соленоида Вы можете легко включить эту функцию, подключив к соленоиду, вместо одного транзистора,H-мостовой драйвер.

Оригинал статьи:

Теги

H-мостБыстрое затуханиеМагнитное полеОбмоткаСоленоидУправление соленоидомЭлектромеханическое устройство

Сохранить или поделиться

Соленоиды АКПП-что это? И с чем их едят.

Владельцы авто, которым необходим ремонт АКПП в Москве, нередко сталкиваются с неполадками с соленоидами. Вот тогда и возникает логичный вопрос, что это за элемент трансмиссии, какие функции он выполняет и для чего он вообще нужен. Специалисты нашей компании в своей практике, выполняя ремонт АКПП под ключ, нередко имеют непосредственное дело с данным компонентом и расскажут вам о нем в подробностях.

Соленоидом является электромагнитный клапан. Он подчиняется ЭБУ (блоку управления) автомата или Мехатронику, открывая/перекрывая канал в клапанной плите в процессе работы трансмиссии. Его основная задача направлять давление масла в определенный пакет сцепления, оперативно переключать передачи, а также активировать или отменять блокировку гидравлического трансформатора. И если с данным элементом возникают проблемы, то обычно нужны своевременные меры, к примеру, ремонт АКПП Пежо или других марок авто.

Конструктивные особенности 

Конструкция соленоидов автоматов ранее была проста и являлась по сути медной обмоткой с внутренним магнитным стержнем. На последний осуществляется подача постоянного тока. Если напряжения нет, клапан втягивается пружиной, а если подается ток, то возникающее поле выталкивает его. Сегодня же в автоматических трансмиссиях используются более современные, но в то же время сложные по конструкции соленоиды. Они управляются с помощью широко-импульсной модуляции, что гарантирует более плавное переключение передач, а также помогают в регулировке масла по различным направлениям (до пяти).

Современные вариации соленоидов конструктивно сложны и дорогостоящи. При этом они обеспечивают немало преимуществ, к числу главных из которых относится щадящий или даже почти отсутствующий износ гидравлической плиты.

В процессе ремонта АКПП при проблемах с соленоидами, как правило, достаточно замены неисправного компонента и проблема решается.

Все соленоиды автомата делятся на 3 вида:

  • EPC. Это соленоид, регулирующий линейное давление. Он контролирует давление масла в гидроблоке, обычно передает давление на все другие, имеющиеся в агрегате соленоиды.
  • ТСС. Данный соленоид выполняет блокировку гидротрансформаторной муфты, он включает и принудительно блокирует её. Через данный элемент проходят наибольшие загрязнения, в том числе нагретое масло.
  • Shift. Это переключающий соленоид, который ответственен собственно за переключение и осуществление блокировки селектора коробки. Обычно количество данных элементов равняется численности передач автомата.

Если в вашем автомобиле неисправны соленоиды автоматической КПП, то возможны негативные последствия для данного важного агрегата в целом. Основными предпосылками засорения или поломок соленоидов автомата являются рывки и толчки авто при смене передач. Как только вы заметили подобные проявления в работе трансмиссии, свяжитесь с нами

+7(499)347-47-27 и получите профессиональную бесплатную консультацию!

 

Что такое соленоиды в АКПП?

Что такое соленоиды в АКПП экскаватора, для чего они нужны, какие бывают?

Соленоид АКПП – это электромагнитный клапан-регулятор, который закрывает и открывает масляный канал. Его работу регулирует электронный блок управления. ЭБУ отправляет постоянные электрические импульсы с определенной частотой.

Соленоид служит для осуществления контроля за давлением масла на определенные связки сцепления, позволяя быстрое переключение передачи или снимая блокировку трансформатора. Соленоид АКПП принимает участие в регулировке управления режимами коробки передач.

Устройство соленоида

Конструкция соленоида проста. Он состоит из металлического стержня, который обвивает спираль с постоянным током. Стержень внутри подвижен, под влиянием тока движется от конца спирали к началу, благодаря пружине. Это позволяет то открывать, то закрывать поток масла.

Соленоид (электроклапан) находится в гидроблоке, где он вставлен в канал и прикреплен с помощью болта или специальной пластины и шлейфа или штекера электропроводки к блоку управления автоматики.

Для чего нужен соленоид

Соленоид АКПП контролирует передачу сигналов между гидравлической и электрической системами. В АКПП используется несколько соленоидов – не менее четырех.

Количество соленоидов в АКПП экскаватора зависит от сложности схемы и числа ступеней.

Типы соленоидов

  • Самые простые соленоиды типа on-off имеют элементарную конструкцию и работают по принципу открыть-закрыть. Стержень просто проходится по каналу и обеспечивает включение и выключение.
  • Соленоид типа «электромагнитный клапан» представляет собой гидравлический клапан. Он содержит канал для масла и шариковый клапан, который открывает и закрывает масляный канал.
  • Соленоид-регулятор или «электрорегулятор»
    представляет собой вентиль. В зависимости от типа импульса сечение соленоида приоткрывается и призакрывается. Таким образом ток передается с определенными перерывами и частотой.
  • Еще существуют довольно редкие соленоиды VBS. Они имеют низкую чувствительность к типам подающего давления и хорошо переносят высокое давление масла в линии. Их также называют золотниковыми, поскольку у них клапан – золотник.
  • Линейные соленоиды (или пропорциональные) включают муфту с отверстиями, которая помещена в сам соленоид. По муфте ходит золотник-плунжер.
  • VFS (Variable Force Solenoid) соленоиды имеют клапан, который меняет свой уровень открытия, а реакцию на колебания определяет связанный компьютер.

Соленоиды разделяют по функциональному назначению:

  • ЕРС или LPC (Line Pressure Control). Сам распределяет масло по другим соленоидам и каналам.
  • Соленоид ТСС. Влияет на муфту. Через него идет нефильтрованное и горячее масло с гидротрансформатора.
  • Shift solenoid. Переключает скорости.
  • Управляющий соленоид. Работает как транзистор в электросхеме. Их 2 типа: переключения передач, управления охлаждением масла.

В нашем каталоге представлены соленоиды в широком ассортименте. Поможем подобрать запчасти:

+7 (343) 2-061-061.

Что такое соленоид


что это такое, разновидности и устройство. Принцип работы

Соленоид – это обмотка, имеющая цилиндрический вид. Длина этой обмотки в десятки раз превышает ее диаметр. Само слово соленоид происходит из слияния двух терминов «solen», «eidos». Первое из них обозначает «труба», а второе слово переводится как «подобный».  На практике, это объясняет форму этой радиодетали, которая имеет вид трубы, но с обмоткой.

Другими словами, соленоид можно назвать отдельным видом катушки индуктивности. При подаче на нее электричества, внутри этой «трубы» образуется электромагнитное поле. Поле, своей силой, втягивает внутрь сердечник, который тем самым совершает механическое действие. Используется это например в изменении положения клапана или открывания замка двери.

В статье будет описано устройство соленоидов, сфера применения и другие вопросы, касающиеся этой радиодетали. Также в статье добавлен интересный файл и видеоролик по данной теме.

Соленоид с подключением

Описание и принцип работы соленоида

Линейный соленоид работает на том же основном принципе, что и электромеханическое реле, описанное в предыдущем уроке, и точно так же, как и реле, они также могут переключаться и управляться с помощью транзисторов или полевых МОП-транзисторов. Линейный соленоид — это электромагнитное устройство, которое преобразует электрическую энергию в механическое толкающее или тянущее усилие или движение.

Линейный соленоид в основном состоит из электрической катушки, намотанной вокруг цилиндрической трубки с ферромагнитным приводом или «плунжером», который может свободно перемещать или скользить «ВХОД» и «ВЫХОД» в корпусе катушек. Виды соленоидов представлены на рисунке ниже.

Соленоиды могут использоваться для электрического открывания дверей и защелок, открытия или закрытия клапанов, перемещения и управления роботизированными конечностями и механизмами и даже для включения электрических выключателей только путем подачи питания на его катушку. Соленоиды доступны в различных форматах, причем наиболее распространенными типами являются линейный соленоид, также известный как линейный электромеханический привод (LEMA) и вращающийся соленоид.

Соленоид и сфера применения

Оба типа соленоидов, линейный и вращательный доступны в виде удержания (с постоянным напряжением) или в виде защелки (импульс ВКЛ-ВЫКЛ), при этом типы защелки используются в устройствах под напряжением или при отключении питания. Линейные соленоиды также могут быть разработаны для пропорционального управления движением, где положение плунжера пропорционально потребляемой мощности. Когда электрический ток протекает через проводник, он генерирует магнитное поле, и направление этого магнитного поля относительно его северного и южного полюсов определяется направлением потока тока внутри провода.

Эта катушка проволоки становится « электромагнитом » со своими собственными северным и южным полюсами, точно такими же, как у постоянного магнита. Сила этого магнитного поля может быть увеличена или уменьшена либо путем управления количеством тока, протекающего через катушку, либо путем изменения количества витков или петель, которые имеет катушка. Пример «электромагнита» приведен ниже.

Магнитное поле, создаваемое катушкой

Когда электрический ток проходит через обмотки катушек, он ведет себя как электромагнит, и плунжер, который находится внутри катушки, притягивается к центру катушки с помощью магнитного потока внутри корпуса катушек, который, в свою очередь, сжимает небольшая пружина прикреплена к одному концу плунжера. Сила и скорость движения плунжеров определяются силой магнитного потока, генерируемого внутри катушки.

Когда ток питания выключен (обесточен), электромагнитное поле, созданное ранее катушкой, разрушается, и энергия, накопленная в сжатой пружине, заставляет поршень вернуться в исходное положение покоя. Это движение плунжера вперед и назад известно как «ход» соленоидов, другими словами, максимальное расстояние, на которое плунжер может проходить в направлении «вход» или «выход», например, 0–30 мм.

Такой тип соленоида обычно называется линейным соленоидом из-за линейного направленного движения и действия плунжера. Линейные соленоиды доступны в двух основных конфигурациях, которые называются «тягового типа», так как он тянет подключенную нагрузку к себе, когда они находятся под напряжением, и «толкающего типа», которые действуют в противоположном направлении, отталкивая его от себя при подаче питания. Как притягивающие, так и толкающие типы обычно имеют одинаковую конструкцию, с разницей в расположении возвратной пружины и конструкции плунжера.

Магнитное поле, создаваемое внутри.

Конструкция линейного соленоида вытяжного типа

Линейные соленоиды полезны во многих устройствах, которые требуют движения открытого или закрытого типа (например, внутри или снаружи), таких как дверные замки с электронным управлением, пневматические или гидравлические регулирующие клапаны, робототехника, управление автомобильным двигателем, ирригационные клапаны для полива сада и даже для дверного звонка. Они доступны как открытая рама, закрытая рама или герметичные трубчатые типы.

Материал в тему: Что такое кондесатор

Вращательный соленоид

Большинство электромагнитных соленоидов являются линейными устройствами, создающими линейную силу движения или движения вперед и назад. Однако имеются также вращательные соленоиды, которые производят угловое или вращательное движение из нейтрального положения либо по часовой стрелке, против часовой стрелки, либо в обоих направлениях (в двух направлениях). Вращающиеся соленоиды можно использовать для замены небольших двигателей постоянного тока или шаговых двигателей, если угловое движение очень мало, а угол поворота — это угол, смещенный от начального к конечному положению.

Обычно доступные ротационные соленоиды имеют перемещения 25, 35, 45, 60 и 90 o, а также многократные перемещения к определенному углу и от него, такие как самовосстановление в двух положениях или возврат в нулевое вращение, например, от 0 до 90- до -0 ° , самовосстановление в 3 положениях, например от 0 ° до +45 ° или от 0 ° до -45 °, а также фиксация в 2 положениях.

Соленоид в металлическом корпусе.

Вращающиеся соленоиды производят вращательное движение, когда под напряжением, обесточено, или изменение полярности электромагнитного поля изменяет положение ротора с постоянными магнитами. Их конструкция состоит из электрической катушки, намотанной вокруг стальной рамы с магнитным диском, соединенным с выходным валом, расположенным над катушкой.

Когда катушка находится под напряжением, электромагнитное поле генерирует множество северных и южных полюсов, которые отталкивают соседние постоянные магнитные полюса диска, заставляя его вращаться на угол, определяемый механической конструкцией вращающегося соленоида.

Вращающиеся соленоиды используются в торговых автоматах или игровых автоматах, для управления клапанами, затворами камер со специальными высокоскоростными, низкоэнергетическими или регулируемыми позиционирующими соленоидами с высоким усилием или крутящим моментом, такими как те, которые используются в точечно-матричных принтерах, пишущих машинках, автоматах или в автомобилях.

Схема устройства соленоида.

Электромагнитное переключение

Обычно соленоиды, линейные или вращающиеся, работают с приложением постоянного напряжения, но их также можно использовать с синусоидальными напряжениями переменного тока, используя двухполупериодные мостовые выпрямители для выпрямления питания, которые затем можно использовать для переключения соленоида постоянного тока. Малые соленоиды типа DC могут легко управляться с помощью транзисторных или полевых МОП-транзисторов и идеально подходят для использования в роботизированных устройствах.

Однако, как мы видели ранее с электромеханическими реле, линейные соленоиды являются «индуктивными» устройствами, поэтому требуется некоторая электрическая защита через катушку соленоида для предотвращения повреждения полупроводникового переключающего устройства высокими обратными ЭДС. В этом случае используется стандартный «Диод маховика», но вы также можете использовать стабилитрон или варистор малого значения.

Устройство электромагнитного клапана.

Снижение энергопотребления соленоида

Одним из основных недостатков соленоидов, особенно линейного соленоида, является то, что они являются «индуктивными устройствами», изготовленными из катушек с проволокой. Это означает, что соленоидная катушка преобразует часть электрической энергии, используемой для их работы, в «нагрев» из-за сопротивления провода. Другими словами, при длительном подключении к источнику электропитания они нагреваются, и чем дольше время, в течение которого питание подается на соленоидную катушку, тем горячее становится. Также, когда катушка нагревается, ее электрическое сопротивление также изменяется, позволяя течь большему току, повышая ее температуру.

При постоянном входном напряжении, подаваемом на катушку, катушка соленоидов не имеет возможности остыть, потому что входная мощность всегда включена. Чтобы уменьшить этот самогенерируемый эффект нагрева, необходимо уменьшить либо количество времени, в течение которого катушка находится под напряжением, либо уменьшить количество тока, протекающего через нее. Один из способов потребления меньшего тока заключается в подаче подходящего достаточно высокого напряжения на электромагнитную катушку, чтобы обеспечить необходимое электромагнитное поле для работы и посадки плунжера, но затем один раз активировать для снижения напряжения питания катушек до уровня, достаточного для поддержания плунжера, в «сидячем» или закрытом положении.

Используя этот метод, соленоид может быть подключен к его источнику напряжения на неопределенный срок (непрерывный рабочий цикл), так как мощность, потребляемая катушкой, и выделяемое тепло значительно уменьшаются, что может быть до 85-90% при использовании подходящего силового резистора. Однако мощность, потребляемая резистором, также будет генерировать определенное количество тепла, I 2 R (закон Ома), и это также необходимо учитывать.

Рабочий цикл соленоида

Другим более практичным способом уменьшения тепла, выделяемого катушкой соленоидов, является использование «прерывистого рабочего цикла». Прерывистый рабочий цикл означает, что катушка многократно переключается «ВКЛ» и «ВЫКЛ» на подходящей частоте, чтобы активировать механизм плунжера, но не дать ему обесточиться во время периода ВЫКЛ. Прерывистое переключение рабочего цикла является очень эффективным способом уменьшения общей мощности, потребляемой катушкой.

Рабочий цикл (% ED) соленоида — это часть времени «ВКЛ», когда на электромагнит подается напряжение, и это отношение времени «ВКЛ» к общему времени «ВКЛ» и «ВЫКЛ» для одного полного цикла операций. Другими словами, время цикла равно времени включения плюс время выключения. Рабочий цикл выражается в процентах, например:

Затем, если соленоид включен или включен на 30 секунд, а затем выключен на 90 секунд перед повторным включением, один полный цикл, общее время цикла включения / выключения составит 120 секунд, (30 + 90) поэтому рабочий цикл соленоидов будет рассчитываться как 30/120 сек или 25%. Это означает, что вы можете определить максимальное время включения соленоидов, если вам известны значения рабочего цикла и времени выключения.

Например, время выключения равно 15 секундам, рабочий цикл равен 40%, поэтому время включения равно 10 секундам. Соленоид с номинальным рабочим циклом 100% означает, что он имеет постоянное номинальное напряжение и поэтому может быть оставлен включенным или постоянно включен без перегрева или повреждения. В этом уроке о соленоидах мы рассматривали как линейный соленоид, так и вращающийся соленоид как электромеханический привод, который можно использовать в качестве выходного устройства для управления физическим процессом. В следующем уроке мы продолжим рассмотрение устройств вывода, называемых исполнительными механизмами, и устройства, которое снова преобразует электрический сигнал в соответствующее вращательное движение, используя электромагнетизм. Тип устройства вывода, которое мы рассмотрим в следующем уроке — это двигатель постоянного тока.

Материал по теме: Что такое реле времени.

Соленоид в упаковке

Соленоиды косвенного действия

Данный вид соленоида является более сложным, и понадобится больше времени для объяснения механизма его работы. Проще говоря, соленоид косвенного действия состоит из двух клапанов, соединённых в один механизм. Основной клапан (main valve) – это золотник, который работает по описанному выше принципу, второй используемый механизм – это управляющий клапан (pilot valve), который находится между золотником и электромагнитом. Управляющий клапан представляет собой маленький соленоид прямого действия, который активирует нажатие большого золотника. Обратите внимание, что соленоид, показанный на данном изображении, является соленоидом прямого действия, так как он напрямую воздействует на управляющий клапан, но вся конструкция в сборе является соленоидом косвенного действия.

Основное различие между соленоидами прямого действия и косвенного действия в том, как они взаимодействуют с механическими частями маркера. Соленоиды прямого действия работают напрямую с элементами механизма маркера. Соленоиды косвенного действия используют воздушный поток для управления золотником. Основная причина существования соленоидов косвенного действия – это их невероятно низкое потребление энергии по сравнению с соленоидами прямого действия. Например, если соленоиду прямого действия необходимо 4 ватта для воздействия на механизм, то соленоиду косвенного действия для того же воздействия нужно всего 0,5 ватта.

Схема работы соленоида.

Далее соленоиды делятся по количеству потоков. Для функционирования у соленоида должно быть хотя бы одно отверстие, через которое воздух поступает в соленоид, одно отверстие, из которого воздух поступает в механизм, и одно отверстие для сброса воздуха. Но в большинстве случаев используется конструкция с двумя отверстиями для подачи воздуха в механизм маркера и двумя отверстиями сброса воздуха. В настоящее время, в основном, используются три основных типа соленоидов:

  1. Четырёхпоточный золотниковый клапан (four way spool valve). Этот тип используется в большинстве полностью электропневматических маркеров, где для движения поршня назад и вперёд используется воздух. Например Ego, Angel, Shocker, Dye Matrix и т.п. Неправильно названный тривей (three way valve) на кокерах, тоже является примером четырёхпоточного поршня.
  2. Трехпоточный золотник, закрытый в состоянии покоя (3-way spool normally closed). Это трехпоточный клапан, который подаёт воздух при подаче на него напряжения. Когда этот соленоид в состоянии покоя, он не подаёт никакого давления, например pVI Shocker, Invert Mini.
  3. Трёхпоточный золотник, открытый в состоянии покоя (3-way spool normally open). Это трёхпоточный клапан, который подаёт давление в состоянии покоя, и перекрывает поток воздуха, когда на него подаётся напряжение, например Ion.

Управляющий клапан в соленоиде всегда является трёхпоточным, закрытым в состоянии покоя. Когда на соленоид подаётся напряжение, управляющий клапан открывается и подаёт воздух для того, чтобы сдвинуть золотник, который, в свою очередь, может быть и трехпоточным и четырёхпоточным.

Каждый соленоид косвенного действия делится на три сегмента: катушка (coil), управляющий клапан (pilot) и золотник (spool). Катушка – это единственная электромагнитная часть всего механизма. Состоит она из медной проволоки, обмотанной вокруг металлического кожуха, внутри которого находится металлический стержень, являющийся противоположным магнитным компонентом клапана. Стержень изготавливается из стали и имеет пружину с одного конца. На противоположном конце соленоида находится золотник, который является клапаном и основной движущейся частью соленоида. Золотники обычно изготавливаются из латуни или алюминия в зависимости от производителя.

Также на золотнике имеются разнообразные прокладки для того, чтобы перенаправлять воздушные потоки. И, наконец, последняя часть соленоида – управляющий клапан, который является “посредником” между движением стержня катушки и золотника. Основной компонент для управляющего клапана – круглый поршень, который передвигает золотник в открытое положение. Поршень представляет собой маленький пластиковый диск с прокладкой вокруг него. За поршнем находится маленький привод, деталь для удержания привода на месте и маленькая заглушка, находящаяся внутри привода. Большинство этих компонентов, как и корпус управляющего клапана, изготавливается из полимеров для того, чтобы улучшить скольжение и уплотнение.

Интересный материал для ознакомления: что такое вариасторы.

В заключение статьи, что же такое двелл? Это время, в течение которого на соленоид подаётся напряжение (соответственно, путь болта маркера в переднее положение + время, которое болт находится в переднем положении, выпуская воздух). При сильном понижении параметра двелл вам придётся компенсировать более короткое время пребывания болта в переднем положении путём повышения рабочего давления маркера, что не будет полезным для вашего маркера. Слишком завышенное значение параметра двелл приведёт к перерасходу воздуха, заряда батареи и большему износу самого соленоида.

Два одинаковых соленоида.

Как проверить работоспособность

Проводник, имеющий форму спирали, в котором возникает магнитное поле, называется соленоидом. Применяется в автомобилях и предназначен для переключения датчиков и клапанов на расстоянии. Таким образом, если клапан или какой-либо датчик перестал функционировать, то, прежде всего, проверке подвергают соленоид.

Для проверки потребуется следующее:

  • компрессор;
  • оборудование для диагностики;
  • различные инструменты – отвертки, ключи и другие.

Для проверки соленоида его необходимо переключить в режим “омметра”. Отыскать соленоид в автомобиле можно посредством технической документации, которая идет с каждым транспортным средством. Соленоид должен быть подключен к бортовому компьютеру. Обратить внимание и на то, в каком состоянии находится клапан. Он может быть закрытым или открытым.

  1. Следующим этапом следует проверка электрического сопротивления соленоида. В работе потребуется применить омметр, который следует подключить к клеммам компонента. О том, каким сопротивлением должен обладать соленоид в горячем и холодном состоянии, указано в технической документации. Проверить контур компонента на замыкание. Необходимо каждый контакт через корпус автомобиля замкнуть. В течение долгого периода эксплуатации в соленоиде скапливается большое количество загрязняющих компонентов. По возможности следует промыть соленоид в бензине. Возможно, что приходится иметь дело с неразборным компонентом. Тогда придется заменить старый соленоид на новый, и можно быть уверенным в том, что проблема устранена.
  2. Соленоид является источником мощного магнитного поля. В результате этого внутри скапливается большое количество металлических микрочастиц. Они оседают на стенках каналов и вскоре начинают препятствовать нормальной работе клапана. Подвижные части работают с перебоями. Удалять металлические микрочастицы можно посредством компрессора. Высокое давление воздуха удалит весь мусор, скопившийся за несколько лет или месяцев эксплуатации. Не забыть обратить внимание на то, в каком состоянии должен находиться клапан в обычном состоянии.
  3. Если соленоид закрыт в нормальном положении, то выполнить простой тест. Отключить устройство от источника питания. После этого направить струю воздуха, которая должна задерживаться внутри, а не выходить через выходной канал. Подать напряжение на соленоид. В данной ситуации воздушная струя должна начать выходить через выходной канал. Если условия выполняются, то можно сказать, что компонент находится в пригодном состоянии.
  4. С иной ситуацией придется столкнуться в случае с нормально открытым соленоидом. Как только компонент был обесточен, воздух должен начать выходить через выходной клапан. При подаче тока канал запирается, и воздух остается внутри.

Электромагнитный клапан.

Наличие короткого замыкания становится причиной низкого сопротивления. Его можно измерить и для этого необходимо отыскать электродвижущую силу, а также ее внутреннее сопротивление. На основании полученных сведений выполнить требуемые расчеты. Для расчета короткого замыкания потребуется лишь тестер.

Заключение

В данной статье представлены основные вопросы работы соленоида или электромагнитного клапана. Более подробно об этом устройстве можно узнать, прочитав статью Электромагнитное поле соленоида. В нашей группе ВК можно задавать вопросы и получать на них подробные ответы от профессиональных электронщиков. Чтобы подписаться на группу, вам необходимо будет перейти по следующей ссылке: https://vk.com/electroinfonet. В завершение статьи выражаем благодарность источникам, откуда была почерпнута информация:

www.wiki.amperka.ru

www.pb-all.ru

www.meanders.ru

www.kinergo.ru

Предыдущая

РадиодеталиЧто такое тепловое реле

Следующая

РадиодеталиЧто такое геркон и как применяется в быту?

Соленоиды АКПП. Что это? Описание Классификация, Проблемы, Болезни.

Данные являются справочными и не исключен процент неточностей. Перепроверяйте в других источниках.

Замена соленоида

Какой соленоид отвечает за 4 (заднюю, 1-2) передачу? Определить можно по мануалу для своей коробки … подробнее

Частые вопросы

Заменой соленоида иногда можно временно решить проблемы автомата, чаще всего с коробками DP0, где … подробнее

Проверка соленоидов

Проверить исправность соленоида можно омметром (для он-офф соленоидов) и … подробнее

Самый частый вопрос владельцев АКПП: «АКПП стала плохо переключаться, Компьютер показывает проблему в соленоиде В (С, D…). Скажите какой соленоид мне заменить, чтобы все опять заработало?» Кажется, что стоит заменить какой-то небольшой клапан-соленоид и можно опять ездить. Правда или нет? — здесь.

Что такое Соленоид?

Соленоид в АКПП это электромеханический кран-регулятор в АКПП, который в ответ на электроимпульс компьютера открывает или закрывает канал в гидроплите для управления потоками гидравлической жидкости.

Соленоиды управляют гидравлическими переключениями режимов работы современных АКПП, вариаторов и ДСГ. (Исключениями являются электрический Степ-мотор JF011 и Электроприводы некоторых ДСГ с сухим сцеплением)

Соленоиды пришли на смену Говернору — примитивному механико-гидравлическому клапану, переключавшему скорости в гидравлически управляемых трансмиссиях, типа того, что в унитазе открывает и закрывает воду для заполнения смывного бачка.

Конструкция соленоидов использует школьный опыт с магнитным стержнем внутри медной обмотки, по которой пропускается постоянный т

Соленоиды. Виды и устройство. Работа и особенности

Цилиндрическая обмотка, которая имеет длину, значительно больше ее диаметра, называется соленоидом. В переводе с английского, это слово обозначает – подобный трубе, то есть, это катушка, похожая на трубу.

Виды соленоидов

По назначению соленоиды разделяют на два класса:
  1. Стационарные. То есть, для магнитных полей стационарного вида, которые долго держатся при некоторых значениях.
  2. Импульсные. Для создания импульсных магнитных полей. Они могут существовать только в краткий период времени, не больше 1 с.

Стационарные способны создать поля не более 2,5х105 Э. Соленоиды импульсного типа могут создать поля 5х106 Э. Если при создании поля соленоиды не подвергаются деформации и не слишком греются, то магнитное поле прямо зависит от проходящего тока: Н = k*I, где k – постоянная величина соленоида, поддающаяся расчету.

Стационарные делятся:
  • Резистивные.
  • Сверхпроводящие.

Резистивные соленоиды производят из материалов, обладающих электрическим сопротивлением. В связи с этим вся подходящая к ним энергия переходит в теплоту. Чтобы избежать теплового разрушения устройства, необходимо отвести лишнее тепло. Для этих целей применяют криогенное или водяное охлаждение. Для этого требуется вспомогательная энергия, сравнимая с требуемой энергией для питания соленоида.

Сверхпроводящие соленоиды производят из сплавов, обладающих свойствами сверхпроводимости. Их электрическое сопротивление равно нулю при различных температурах во время эксперимента. При функционировании сверхпроводящего соленоида теплота выделяется только в подходящих проводниках и источнике напряжения. Источник питания в этом случае можно исключить, так как соленоид функционирует в короткозамкнутом режиме. При этом поле может существовать без расхода энергии бесконечно долго при условии сохранения сверхпроводимости.

Устройства для создания мощных магнитных полей включают в себя три главные части:
  1. Соленоид.
  2. Источник тока.
  3. Система охлаждения.

При проектировании соленоида берут во внимание величины внутреннего канала и мощности источника питания.

Создание устройства с резистивным соленоидом для образования стационарных полей является глобальной научно-технической задачей. В мире, в том числе и в нашей стране, существует всего несколько лабораторий с подобными устройствами. Применяются соленоиды различных конструкций, эксплуатация которых осуществляется около тепловой границы.

Для обслуживания таких устройств необходим персонал, состоящий из работников высокой квалификации, работа которых дорого ценится. Большая часть финансов расходуется на оплату электрической энергии. Эксплуатация и обслуживание таких мощных соленоидов со временем окупается, так как ученые и исследователи различных областей науки, из разных стран могут получать важнейшие результаты для развития науки.

Наиболее сложные и важные задачи можно решить путем применения сверхпроводящих соленоидов. Этот способ более эффективный, экономичный и простой. Для примера можно назвать создание мощных стационарных полей сверхпроводящими соленоидами. Наиболее оригинальное свойство сверхпроводимости – это отсутствие электрического сопротивления у некоторых сплавов и металлов при температуре ниже критического значения.

Явление сверхпроводимости позволяет производить соленоид, не имеющий диссипации энергии при прохождении электрического тока. Однако, образованное поле имеет ограничение в том, что при достижении некоторого значения критического поля свойство сверхпроводимости разрушается, и электрическое сопротивление возобновляется.

Критическое поле повышается при снижении температуры от 0 до наибольшего значения. Еще в 50-х годах прошлого века открыты сплавы, у которых критическая температура находится в интервале от 10 до 20 К. При этом они имеют свойства очень мощных критических полей.

Технология создания таких сплавов и производство из них материалов для катушек соленоидов очень трудоемка и сложна. Поэтому такие устройства имеют высокую стоимость. Однако их эксплуатация недорогая и простая в обслуживании. Для этого необходим только источник питания низкого напряжения небольшой мощности и жидкий гелий. Мощность источника понадобится не выше 1 киловатта. Устройство таких соленоидов состоит из катушки, выполненной из меди и сверхпроводника многожильным проводом, лентой или шиной.

Существует возможность снижения энергетических затрат на создание еще более мощных полей. Эта возможность реализуется в нескольких ведущих странах, в том числе и в России. Такой способ основан на применении комбинации из водоохлаждаемого и сверхпроводящего соленоидов. Его еще называют гибридным соленоидом. В этом устройстве интегрируются наибольшие достижимые поля обоих типов соленоидов.

Водоохлаждаемый соленоид должен находиться внутри сверхпроводящего. Создание гибридного соленоида является объемной и сложной научно-технической проблемой. Для ее решения требуется работа нескольких коллективов научных учреждений. Подобное гибридное устройство эксплуатируется в нашей стране в Академии наук. Там соленоид со сверхпроводящими свойствами имеет массу 1,5 тонны. Обмотка выполнена из специальных сплавов ниобия с цинком и титаном. Обмотка водоохлаждаемого соленоида выполнена медной шиной.

Устройство и принцип действия

Соленоидом также можно назвать катушку индуктивности, которая намотана проводом на каркас в виде цилиндра. Такие катушки могут быть намотаны как одним, так и несколькими слоями. Так как длина обмотки намного больше диаметра, то при подключении постоянного напряжения на эту обмотку, внутри катушки образуется магнитное поле.

Часто соленоидами называют электромеханические устройства, содержащие катушку, внутри которой имеется ферромагнитный сердечник. Такие устройства выполнены в виде втягивающих реле автомобильного стартера, различных электроклапанов. Втягивающим элементом такого своеобразного электромагнита является сердечник из ферромагнитного материала.

Если в устройстве соленоида нет сердечника, то при подключении постоянного тока вдоль обмотки образуется магнитное поле. Индукция этого поля равна:

Где, N – количество витков в обмотке, l – длина катушки, I – ток, протекающий по соленоиду, μ0 — вакуумная магнитная проницаемость.

На концах соленоида величина магнитной индукции в два раза ниже, по сравнению с внутренней частью, так как две части соленоида совместно образуют двойное магнитное поле. Это применимо к длинному или бесконечному соленоиду, в сравнении с диаметром каркаса обмотки.

По краям соленоида магнитная индукция равна:
Так как соленоиды являются катушками индуктивности, следовательно, соленоид может запасать энергию в магнитном поле. Эта энергия равна работе, совершаемой источником, для образования тока в обмотке.
Этот ток образует в соленоиде магнитное поле:
Если ток в катушке изменяется, то возникает ЭДС самоиндукции. В этом случае напряжение на соленоиде определяется:
Индуктивность соленоида определяется:

Где, V – объем катушки соленоида, z – длина проводника катушки, n – количество витков, l – длина катушки, μ0 — вакуумная магнитная проницаемость.

При подключении к проводникам соленоида переменного напряжения, магнитное поле будет создаваться тоже переменным. Соленоид имеет сопротивление переменному току в виде комплекса двух составляющих: активной и реактивной. Они зависят от индуктивности и электрического сопротивления проводника катушки.

Похожие темы:

Принцип работы соленоида

Линейный соленоид

Линейный соленоид — это электромагнитное устройство, которое преобразует электрическую энергию в механическое толкающее или тянущее усилие или движение.

Соленоиды используются во многих устройствах для обеспечения линейного или вращательного приведения в действие  механических систем.

Хотя управление соленоидом может быть таким же простым, как включение и выключение нагрузки (например, выключатель), часто более высокая производительность может быть получена с помощью специализированной интегральной микросхемы  для его управления.

Принцип работы соленоида

Самая примитивная конструкция соленоида представляет собой катушку, создающую магнитное поле.

Устройства, которые мы называем соленоидами, состоят из катушки и движущегося сердечника из железа или другого материала.

При подаче тока в катушку сердечник втягивается и приводит в движение механический объект, соединенный с сердечником.

Простой соленоид показан ниже:

Для приведения в движение сердечника на катушку подается напряжение. Поскольку индуктивное сопротивление катушки довольно велико для ускорения процессов срабатывания на катушку подают повышенное напряжение. Втягивающая сила сердечника пропорциональна току.

Для удержания механического устройства в активной зоне необходим гораздо меньший ток. Если ток в катушке после доведения механического устройства до конечной точки не уменьшить, то это вызовет значительно больший нагрев соленоида.

Для решения этой проблемы можно использовать  драйвер постоянного тока. Ток можно контролировать по времени для обеспечения минимальных тепловых потерь при максимально необходимом удерживающем моменте.

Простые драйверы для соленоидов

Самый простой способ управлять соленоидом — включить и выключить ток.

Это часто делается с помощью переключателя MOSFET с низкой стороны и токового защитного диода (рисунок ниже).

В этой схеме ток ограничен только напряжением питания и постоянным сопротивлением соленоида.

Электромеханические характеристики простого привода соленоида ограничены. Поскольку полное напряжение и ток применяются в течение 100% времени, ток втягивания ограничивается постоянной мощностью рассеяния соленоида. Большая индуктивность катушки ограничивает скорость нарастания тока при включении соленоида.

Высокопроизводительный драйвер соленоида

В большинстве применений полный ток необходим только для втягивания соленоида. После завершения движения уровень тока в соленоиде может быть снижен, что приводит к экономии энергии и значительно меньшему количеству тепла, выделяемого в катушке. Это также позволяет использовать более высокое напряжение питания, что обеспечивает форсировку тока втягивания, чтобы сделать процесс втягивания сердечника соленоида более быстрым и обеспечить большую силу втягивания.

Понравилась статья? Расскажите друзьям: Оцените статью, для нас это очень важно:

Проголосовавших: 2 чел.
Средний рейтинг: 5 из 5.

назначение клапана в коробке передач

Соленоиды, не имеют ничего общего с обычной солью, хотя по звуку эти понятия несколько роднятся. На самом деле соленодоиды-это такие клапана в легковой машине.

Зачем они нужны?

Соленоиды, обеспечивают в машине открытие специального клапана, который в свою очередь нужен для смазки АКПП. Такие Соленоиды для АКПП, сами по-себе не работают. Их функционал зависит от работы электронного блока в авто.

Также стоит указать на то, что и сами АКПП, являются клапанами непростыми, а электромагнитными. С их помощью владелец авто может регулировать бесперебойную и надежную как смазку, так и охлаждение всех находящихся в трансмиссии частей.

Что собой представляет подобный клапан?

Строение соленоидов АКПП довольно простое. В обычный клапан такой конструкции входит магнитный стержень, имеющий обмотку из меди. Таким образом, когда авто готово к движению и все важные узлы уже находятся под напряжением, соленоид открывает и закрывает специальный канал в котором содержится смазочное масло для АКПП. Тем самым охлаждая важные узлы в работе авто.

В чем принцип действия?

Он до банальности простой. Когда напруги нет, то соленоид АКПП, притягивается к масляному каналу за счет пружин. Так происходит закрытие канала. Однако при поступлении тока, возникает магнитное поле за счет которого пружина как бы автоматически выталкивает клапан наружу, открывая доступ к маслу для смазки.

Разновидности клапанов

Современные соленоиды в отличие от устаревших классических устроены несколько сложнее и управляются за счет импульсной модуляции. Такое нововведение позволило клапану открываться намного плавнее чем обычно. В результате чего количество поступающего масла увеличивается, плавно растекаясь по деталям, обеспечивая более качественную смазку АКПП.

Преимуществом современных соленоидов можно назвать экономность последних при выходе из строя. Замены осуществляются по одному, а не комплектом как в классическом варианте.

Типы клапанов на сегодня

Среди нынешних деталей, как например, соленоид АКПП можно выделить несколько самых распространенных типов электроклапанов авто.

Итак:

1. 3, 4, 5-WAY электроклапана, они служат «переключателями». Бывают как шариковыми, так и золотниковыми.

2. EPC или LPC –эти модели осуществляют контролирующую функцию линейного давления.

3. ТСС больше служит для осуществления блокировки гидротрансформатора.

4. Shift solenoid — соленоид-переключатель, служащий для переключения скоростей, его еще называют «шифтовиком».

5. Современные клапана, так называемые функциональные, которые обеспечивают управление клапанами непосредственно самой плиты по типу транзистора в стандартной электросхеме.

6. Модель обеспечивающая качество переключения передач и работает она лишь для мягкого переключения со скольжением передач.

7. Соленоид управляющий охлаждением смазки. Его работа сродни термостату, который осуществляет открытие канала для понижения температуры масла через внешний радиатор, к примеру.

Как видите, на сегодня типов и видов соленоидов очень большое количество. Причем, их конструкции и возможности все время расширяются и усложняются одновременно, а диагностика и ремонт упрощается до банальной замены. Хотя еще недавно в большинстве случаев требовалась чистка соленоидов.

Как распознать поломку?

Соленоид АКПП при неисправности можно определить по некоторым признакам:

1. Ваша АКПП стала намного чаще перестраиваться в режим аварийности.

2. Если при стандартном переключении скоростного режима появились резкие толчки.

3. Если при плавном наборе оборотов отчетливо слышны удары в коробке.

Таким образом, заметив такие признаки в машине, владельцу нужно срочно провести глубокую сервисную диагностику и при обнаружении прибегнуть к ремонту АКПП. Поскольку в подобных случаях мастера сервисных центров чаще всего обнаруживают именно неисправности соленоидов.

Возможные причины выхода из строя клапанов

Современные соленоиды, способны выходить из рабочего строя, как и любой другой сложный компонент авто. Причем причины могут быть не только из-за износа последних, но и связанные с другими скорее внешними причинами.

1. Одной из причин неисправности АКПП и соленоидов в частности может стать применение владельцем автомобиля плохого, некачественного масла. Что же происходит в этом случае? На частях клапана начинает коксоваться масляный осадок, что в определенный момент заклинит в одном положении шток, а значит и сам канал и ни о каком нормальном функционале уже речь идти не может.

Ремонт соленоида в этом случае сложный и дорогостоящий, поскольку менять придется не один,а все сразу. Избежать этого поможет регулярная замена расходно-смазочных материалов.

2. К поломке электроклапанов может привести и неисправность блока управления авто. Но проверить так это или нет можно лишь путем компьютерной диагностики машины. Цена восстановления при этом будет высокой за счет стоимости самого блочка.

Характер езды

Как бы это удивительно не казалось, но от характера езды на вашем авто, во многом зависит и срок службы который сможет прослужить вам соленоид. Специалисты утверждают что более мягкая неторопливая езда на машине значительно продлевает срок службы соленоидов.

А вот если вы поклонник более агрессивной манеры ведения своего авто, то должны знать, что частое нажатие на педаль газа и частое переключение передачи, станет причиной отказа от работы, выхода из рабочего строя соленоида, износа в прямом смысле слова, буквально на первой сотне километров.

Износ плунжера также станет причиной отказа работы клапана, будет наблюдаться нерегулярная подача тока, затем вы заметите что плохо подается смазка в АКПП, дальше вы увидите плохой функционал гидроблока и коробки в целом и так далее. То есть банальное чрезмерное использование педали сцепления, может привести к автоматической неисправности и нарушению работы электроклапана-соленоида.

Чем чревато?

Многих автовладельцев часто волнует вопрос о том, можно ли игнорировать отработавший свой ресурс электроклапан и чем это чревато, если ли какая –то альтернатива или нужно срочно ехать в СТО.

Давайте по порядку. По сути электроклапана открывают канал, заблокированного сцепления фрикционов. Конечно скоростя можно переключать и с толчками, не страшно, тем более что вы знаете, что это неисправный клапан. Но при этом, нельзя также забывать и о том, что может быть не до конца открытым либо закрытым сам канал, что сродни недоотжатому в МКП сцеплению.

Это создаст недостачу давления и работу в сухом режиме, что станет причиной сжигания и масла и фрикционов, начнется выработка всего железа и втулки. В конечном итоге вы получите смерть соленоидов из-за их работы на полное сечение.

Что это значит?

Лишь то, что после выработки ресурса втулок вибрации, полетят все валы, а также и сочленения. Итог будет таковым, что ремонтировать вашу коробку уже не будет смысла, проще будет купить ее новую.

Поэтому любите свое авто, как себя, делайте все вовремя и машинка прослужит вам долгие годы. Ведь неверную работу клапанов-соленоидов можно сравнить с болезнью человека, такой как ангина или ГРИПП. Перенося которую на ногах, человек гробит свое сердце навсегда, так и тут.

Итоги

Давайте подведем итоги. Самыми распространенными причинами отказа электроклапанов в коробке, являются:

1. Засорение. Высочайший урон приносит клеевой слой на фрикционах. Все канальчики забиваются, а плунжеры при этом клинит. Нештатный функционал соленоидов-клапанов может нарушить работу всей АКПП. Значит гидравлический блок время от времени все-таки стоит чистить и желательно его менять по мере изнашивания фрикционов. Особого внимания заслуживает фрикцион гидротрансформатора.

2. Выработка самого клапана-соленоида и его частей. Смиритесь, они к сожалению, тоже не вечны и имеют свой разумный ресурс. Хорошо бы выполнять их замену по регламенту, не дожидаясь пока компьютер при диагностике станет показывать ошибку.

Помните даже максимально современным и надежным электроклапанам замена нужна уже на 200000 километрах пробега! Самые незначительные изменения характеристик в работе электроклапанов гидроблока коробки, повлекут за собой наличие в движении пробуксовок, толчков при смене передач.

При длительной ненормальной эксплуатации поломаются все железные детали коробки: корзина сцепления, лента торможения, планетарные механизмы и прочее. А восстановление с заменой последних в денежном плане выйдет гораздо дороже текущего периодического сервиса.

Поделитесь информацией с друзьями:


СОЛЕНОИД — Физический энциклопедический словарь

(от греч. solen — трубка и eidos — вид), свёрнутый в спираль изолированный проводник, по к-рому течёт электрич. ток. Обладает значит. индуктивностью и малым активным сопротивлением и ёмкостью. В ср. части внутр. полости С., длина к-рого значительно больше диаметра, магн. поле С. направлено параллельно его оси и однородно (рис.), причём его напряжённость пропорц. силе тока и (приближённо) числу витков.

Внеш. магн. поле С. подобно полю стержневого магнита. С. с железным сердечником во внутр. полости представляет собой электромагнит.

Источник: Физический энциклопедический словарь на Gufo.me


Значения в других словарях
  1. соленоид — СОЛЕН’ОИД, соленоида, ·муж. (от ·греч. solen — трубка и eidos — вид) (тех., физ.). Проволочная спираль, вокруг которой, при пропускании электрического тока, создается магнитное поле. Толковый словарь Ушакова
  2. соленоид — -а, м. физ., тех. Намотанный на цилиндрическую поверхность проводник, по которому течет электрический ток. [От греч. σωλήν — трубка и ε’ι̃δου — вид] Малый академический словарь
  3. соленоид — орф. соленоид, -а Орфографический словарь Лопатина
  4. соленоид — соленоид м. Проволочная спираль, намотанная на сердечник, вокруг которой при пропускании электрического тока создается магнитное поле. Толковый словарь Ефремовой
  5. соленоид — Соленоид, соленоиды, соленоида, соленоидов, соленоиду, соленоидам, соленоид, соленоиды, соленоидом, соленоидами, соленоиде, соленоидах Грамматический словарь Зализняка
  6. Соленоид — См. Гальванизм и Электродинамика. Энциклопедический словарь Брокгауза и Ефрона
  7. соленоид — Солен/о́ид/. Морфемно-орфографический словарь
  8. соленоид — Соленоида, м. [от греч. solen – трубка и eidos – вид] (тех., физ.). Проволочная спираль, вокруг к-рой, при пропускании электрического тока, создается магнитное поле. Большой словарь иностранных слов
  9. соленоид — сущ., кол-во синонимов: 1 катушка 19 Словарь синонимов русского языка
  10. Соленоид — (от греч. solen — трубка и eidos — вид) катушка индуктивности обычно в виде намотанного на цилиндрическую поверхность изолированного проводника, по которому течёт электрический ток. В средней части внутренней полости… Большая советская энциклопедия
  11. СОЛЕНОИД — СОЛЕНОИД, ЭЛЕКТРОМАГНИТ, в котором мягкий железный сердечник двигается, открывая или закрывая электрическую цепь, таким образом работая как переключатель, или РЕЛЕ. Научно-технический словарь
  12. соленоид —

Что такое соленоид? (с иллюстрациями)

A соленоид — это устройство, преобразующее энергию в поступательное движение. Этот энергия может исходить от электромагнитного поля, пневматического (пневматического) камера, или гидравлический (заполненный жидкостью) цилиндр. Эти устройства обычно встречается в сборках электрического звонка, автомобильных стартерах, промышленные пневмомолоты и многие другие машины, которые всплеск силы для перемещения определенной части.

Соленоид.

В чтобы понять основной принцип, человек может изучить типичный автомат для игры в пинбол. В начале игры упирается стальной шар на плунжере с резиновым наконечником, который удерживается на месте за счет сжатия пружина, что означает, что у него нет энергии для перемещения мяча в состоянии покоя. В рука игрока обеспечивает дополнительную энергию, так как узел плунжера вытащил обратно. После отпускания пружина заставляет почти весь поршень кинетическая энергия штифта на небольшой площади стального шара.Мяч бросается на игровое поле, и начинается игра в пинбол. Это руководство поршень представляет собой элементарный пример соленоида.

Семь соленоидов.

сложность использования ручных поршней для пинбола на других машинах заключается в том, что кто-то должен постоянно тянуть пружину назад и высвобождать энергию рука.Усовершенствованный соленоид обеспечит собственные средства отвода назад на штифт и контролируя его отпускание. Это принцип простой электрический, в котором металлический цилиндр действует как «поршень.»

А пружина сжатия частично удерживает этот металлический штифт из электромагнитный корпус.Когда питание от аккумулятора или электрического генератор обтекает электромагнит, металлический штифт или цилиндр магнитно притягивается внутри корпуса, так же, как рука игрока тянет поршень обратно в примере с пинболом. Когда электрический ток останавливается, штифт отпускается, и пружина сжатия отправляет его вперед со значительной силой. Булавка может ударить внутрь колокола или с силой вытолкните деталь из формовочной машины. Многие электронные машины содержат множество соленоидов.

Другое типы зависят от сжатого воздуха для их мощности. Один поршень может быть помещенный в герметичный цилиндр, подключенный к источнику сжатый воздух. Сильная внутренняя пружина может удерживать поршень в поместите, пока давление воздуха не достигнет заданного уровня, а затем поршень освобожден.Сжатый воздух может выйти, поскольку поршень движется вперед.

Потому что энергия, выделяемая соленоидом, может быть сконцентрирована, пневматическая популярны для тяжелых инструментов и приложений механической обработки, требующих существенная мощность. Отбойный молоток — хороший пример этого типа в действие.Центральный поршень вбивается воздухом в бетон, затем отдача курка возвращает поршень в исходное состояние должность.

An даже более мощный соленоид использует гидравлику в качестве источника энергии. Поршень или палец находится в цилиндре, заполненном гидравлической системой. жидкость.Когда эта гидравлическая жидкость заполняет цилиндр, все толкается вперед, включая поршень или штифт. Когда поршень движется к кусок металла или другая цель, скопление жидкости становится очень устойчивым на сжатие, и поршень сконцентрирует все энергия на все, что он встречает, даже на самый тяжелый титан.

Когда соленоид высвободил всю свою энергию, гидравлическая жидкость стекает из камеры и поршень возвращается в исходное положение должность.Это действие может произойти в считанные секунды. Этот тип настолько мощный, что обычно используется только для самых тяжелых проекты. Волновые бассейны используют их для освобождения гигантских стопоров на дно их резервуаров. Производители самолетов используют этот тип для гнуть титан и другие тяжелые металлы.

Соленоид — это электромагнитное устройство, используемое для дистанционного или автоматического переключения, приведения в действие или регулировки вторичного устройства..

Что такое соленоид — принцип его работы и типы

Соленоиды — это простые компоненты, которые можно использовать для различных приложений. Название «соленоид» происходит от греческого слова «Solen», что означает канал или трубу. Соленоиды используются как в бытовом, так и в промышленном оборудовании, они доступны в различных исполнениях, каждый из них имеет свои специфические области применения. Несмотря на то, что приложение меняется, принцип их работы всегда остается прежним. Здесь мы обсудим работу соленоида и различные типы соленоидов.

Что такое соленоид?

Соленоид — это длинный кусок проволоки, намотанный в форме катушки. Когда электрический ток проходит через катушку, внутри катушки создается относительно однородное магнитное поле.

Соленоид может создавать магнитное поле из электрического тока, и это магнитное поле можно использовать для создания линейного движения с помощью металлического сердечника. Это простое устройство можно использовать в качестве электромагнита, индуктора или миниатюрной беспроводной приемной антенны в цепи.

Принцип работы соленоида

Соленоид просто работает по принципу «электромагнетизма». Когда в катушке создается ток, протекающий через магнитное поле, если вы поместите металлический сердечник внутри катушки, магнитные линии потока будут сосредоточены на сердечнике, что увеличивает индукцию катушки по сравнению с воздушным сердечником. Эта концепция электромагнитной индукции была более детально проработана в нашем предыдущем проекте катушки Тесла.

Большая часть потока сосредоточена только на сердечнике, в то время как часть потока появляется на концах катушки, а небольшое количество потока появляется вне катушки.

Магнитная сила соленоида может быть увеличена за счет увеличения плотности витков или увеличения тока, протекающего в катушке.

Как и все другие магниты, активированный соленоид имеет как положительный, так и отрицательный полюса, через которые объект может притягиваться или отталкиваться.

Типы соленоидов

На рынке доступны различные типы соленоидов, классификация основана на материалах, конструкции и функциях.

  • Ламинированный соленоид переменного тока
  • DC- C соленоид рамы
  • DC- D соленоид рамы
  • Линейный соленоид
  • Поворотный соленоид

Ламинированный соленоид переменного тока

Ламинированный соленоид переменного тока состоит из металлического сердечника и катушки с проволокой.Сердечник изготовлен из ламинированного металла для уменьшения паразитного тока, что помогает улучшить характеристики соленоида.

Соленоид переменного тока имеет особое преимущество, потому что он может создавать большую силу при первом ходе. Это потому, что они имеют пусковой ток (мгновенный высокий входной ток, потребляемый источником питания или электрооборудованием при включении). Они способны использовать большее количество ходов, чем многослойный соленоид постоянного тока.

Они доступны в различных конфигурациях и диапазонах, и они производят чистый жужжащий звук во время работы.

Ламинированный соленоид переменного тока может использоваться в разнообразном оборудовании, требующем немедленных действий, например, в медицинском оборудовании, замках, транспортных средствах, промышленном оборудовании, принтерах и в некоторых бытовых приборах.

Соленоид C-образной рамы постоянного тока

Рамка C относится к конструкции соленоида.Соленоид DC C-Frame имеет только рамку в форме буквы C, которая покрыта вокруг катушки.

Соленоид DC C-Frame используется во многих повседневных применениях из-за более контролируемого хода. Хотя говорят, что это конфигурация постоянного тока, они также могут использоваться в оборудовании, предназначенном для питания переменного тока.

Источник изображения: https://uk.rs-online.com

Этот тип соленоида в основном используется в игровых автоматах, фотографических ставнях, сканерах, автоматических выключателях, счетчиках монет и автоматах для размена купюр.

Соленоид D-образной рамы постоянного тока

Этот тип соленоида состоит из двух частей, закрывающих катушки. Они имеют ту же функцию, что и соленоид C-образной рамы, поэтому D-образная рама также может использоваться с питанием переменного тока и имеет операцию регулируемого хода.

Соленоид DC с D-образной рамой используется как в обычных, так и в медицинских приложениях, таких как игровые автоматы, банкоматы и анализаторы крови и газов.

Линейный соленоид

Линейные соленоиды более известны в народе.Он состоит из катушки с проволокой, которая намотана на подвижный металлический сердечник, который помогает нам прикладывать тянущее или толкающее усилие к механическому устройству.

Этот тип соленоидов чаще всего используется в пусковых устройствах. Этот механизм переключения помогает в замыкании цепи и позволяет току проходить через механизм.

Линейные соленоиды особенно используются в автоматизации и высокозащищенных дверных механизмах и стартерах автомобилей и мотоциклов.

Поворотный соленоид

Поворотный соленоид — это уникальный тип соленоида, который используется в различных приложениях, где требуется простой процесс автоматического управления. Он работает по тому же принципу, что и другие соленоиды, и имеет те же элементы, катушку и сердечник, но у них другое действие.

Металлический сердечник крепится к диску и имеет небольшие канавки под ним. Размер канавок точно соответствует размерам канавок в корпусе соленоида.Он также имеет шарикоподшипники для облегчения движения.

Когда соленоид срабатывает, сердечник втягивается в корпус соленоида, и сердечник диска начинает вращаться. Эта установка будет иметь место пружины между сердечником и корпусом соленоида. После отсоединения источника питания пружина толкает сердечник диска в исходное положение.

Поворотный соленоид более прочен по сравнению со всеми другими типами соленоидов. Первоначально они были разработаны только для защитных механизмов, но в настоящее время вы сможете найти их во многих автоматизированных промышленных механизмах, таких как лазер и затвор.

Заключение

Теперь вы знаете о соленоидах , принципах работы и различных типах соленоидов , доступных на рынке. Соленоиды — это простое и эффективное решение для управления клапанами и электромагнитными переключателями или механическими блокировками.

Их принцип действия и мгновенный отклик сделали их лучшим решением для приложений, требующих большого количества энергии в небольшом пространстве и где требуется быстрая, стабильная и надежная работа.

Вот нескольких приложений, которые используют соленоид вместе со схемой его драйвера:

Теперь вы знаете все о соленоиде, так что вы можете приступить к реализации этих знаний своим творчеством, чтобы воспользоваться свойствами соленоида для создания вашего следующего изобретения.

.

Что такое соленоид — типы, принцип работы и его применение

Соленоиды — это простые электрические компоненты, которые находят множество применений в повседневной жизни. Сам термин происходит от греческого названия «солен», которое обозначает канал или трубу. Вторая часть названия взята из греческого названия «эйдос», которое относится к очертанию. В основном это деталь в виде трубы. Соленоид используется во множестве приложений, и существует множество типов конструкций соленоидов.У каждого из них есть свои свойства, которые делают его полезным во многих точных приложениях. Различная конструкция этих компонентов не изменяет их необходимых рабочих характеристик, и конструкция соленоидов может быть выполнена по-разному. Как правило, соленоид работает по общему электрическому принципу, но механическая энергия этого устройства распределяется по-разному в разных конструкциях.

Что такое соленоид и принцип его работы

Соленоид — это очень простой компонент, который включает в себя катушку с проволокой, покрытую вокруг сердечника, сделанного из металла.Когда к соленоиду подается ток, он создает постоянное магнитное поле. Электричество превращается в магнетизм, затем оно превращается в электричество, и поэтому эти две силы объединяются в одну.

Однородное поле соленоида привлекает тем, что, если соленоид имеет неизмеримую длину, магнитное поле будет одинаковым везде вдоль элемента. В соленоиде это иногда означает, что очень маленькие электрические компоненты могут выполнять изумительный объем работы.Например, мощный соленоид может просто захлопнуть клапан, закрытие которого потребовало бы даже самого крепкого сантехника.

Различные типы соленоидов

На рынке доступны различные типы соленоидов. Они различаются по материалу, дизайну и функциям. Но все виды соленоидов основаны на одних и тех же электрических принципах.

  • Ламинированный соленоид переменного тока
  • Соленоид C-рамы постоянного тока
  • Соленоид D-образной рамы постоянного выполнили свой первый удар.Они также могут использовать более длинный ход, чем соленоид постоянного тока. Они доступны в нескольких различных конфигурациях и диапазонах. Эти типы соленоидов будут издавать чистый звук при использовании. Многослойный соленоид переменного тока
    Соленоид с C-образной рамой постоянного тока

    Соленоид с C-образной рамой постоянного тока использует только рамку в форме буквы C, которая покрыта вокруг катушки. Этот вид соленоидов имеет широкий спектр различных применений. Несмотря на то, что они известны в конфигурации постоянного тока, они также могут быть разработаны для использования с питанием переменного тока.


    Соленоид C-образной рамы постоянного тока
    Соленоид D-образной рамы постоянного тока

    Соленоидные шестерни DC D-образной рамы имеют раму, состоящую из двух частей, которая покрыта вокруг катушек. Они используются в нескольких различных приложениях, например, в промышленных. Как и C-Frame, эти соленоиды также могут быть сконструированы в качестве альтернативы переменному току для приложений, когда свойства соленоида переменного тока более привлекательны, чем соленоида постоянного тока.

    Электромагнит DC D-образной рамы
    Линейный соленоид

    Этот тип соленоидов более знаком большинству людей.Они способны использовать тянущее или толкающее усилие на механическом устройстве и могут использоваться для множества задач измерения. Эти соленоиды используются в различных приложениях. Например, соленоид на пусковом устройстве транспортного средства, в состав которого входит двигатель. Когда электрический ток протекает через соленоид, он будет двигаться линейно, чтобы соединить два контакта.

    Линейный соленоид

    Когда два контакта соединяются, они пропускают энергию от аккумуляторной батареи к различным компонентам автомобиля и запускают автомобиль.Лучшее применение соленоида — электрический замок. Когда замок прикреплен к засову на двери, он может немедленно защитить дверь, достаточную, чтобы выдержать большое количество насилия.

    Поворотный соленоид

    Поворотный соленоид — хороший пример механической силы, которую можно использовать различными методами, чтобы упростить процесс автоматического управления и довольно легко сделать жизнь проще. В этом соленоиде аналогичная конструкция катушки и сердечника, хотя и несколько измененная. Во вращающемся соленоиде вместо соленоида используется диск, представляющий собой простое устройство с сердечником и катушкой.Корпус соленоида совмещен с канавками, а шарикоподшипники используются для облегчения движения.

    Поворотный соленоид

    При срабатывании соленоида сердечник втягивается обратно в катушку. Эта сила преобразуется в силу вращения диска. Большинство устройств также имеют пружину. Когда источник питания отсоединен от соленоида, пружина заставляет сердечник вытягиваться из катушки, освобождая диск и переводя его обратно в свое уникальное положение.

    Подобно многим электрическим устройствам, этот инструмент был разработан как устройство безопасности.Этот продукт был впервые использован во время Второй мировой войны как способ повышения прочности устройств, используемых в бомбах. В настоящее время такие соленоиды представляют собой электрические компоненты общего назначения, которые очень подходят для использования в тяжелых промышленных условиях.

    Применения соленоида
    • Соленоид — это важная катушка с проводом, которая используется в электромагнитах, индукторах, антеннах, клапанах и т. Д. Применение соленоидов различается по множеству типов, таких как медицинские, запорные системы, промышленное использование, нижняя часть линейные и автомобильные соленоиды.
    • Соленоид используется для электрического управления клапаном, например, сердечник соленоида используется для приложения механической силы к клапану.
    • Они также могут использоваться в определенных типах дверных запорных систем, которые используют электромагнит и обеспечивают очень надежное закрытие.
    • Соленоид используется во многих различных устройствах и продуктах, таких как компьютерные принтеры, механизмы впрыска топлива, используемые в автомобилях и в различных промышленных условиях.
    • Главное преимущество соленоида в том, что при подаче электричества реакция соленоида происходит мгновенно.
    • Эта быстрая реакция — один из наиболее важных факторов при решении задач применения соленоидов.

    Таким образом, речь идет о различных типах соленоидов, включая многослойный соленоид переменного тока, соленоид с рамой постоянного тока, соленоид с D-образной рамой постоянного тока, линейный соленоид, вращающийся соленоид и трубчатый соленоид. Кроме того, любые вопросы по реализации электрических проектов, пожалуйста, оставьте свои отзывы или предложения в разделе комментариев ниже. Вот вам вопрос, Какова функция соленоида?

    Фото:

    .

    Что такое соленоид и магнитное поле соленоида

    Что такое соленоид и магнитное поле соленоида
    Что такое соленоид? Соленоид — это эмалевый провод (катушка), намотанный на круглую форму, сделанный из твердых материалов, таких как сталь, для создания однородного магнитного поля. Он действует как электромагнит, когда через него проходит электрический ток. Он также используется для управления движением объектов, например, для управления переключением реле.
    Его размер варьируется от менее четверти дюйма до более 15 дюймов в диаметре.
    Магнитное поле соленоида:

    Есть два основных закона, которыми управляют соленоиды, а именно:

    • Закон Фарадея
    • Закон Ампера
    Закон Фарадея Закон Фарадея говорит, что когда проводник движется внутрь магнитное поле, оно производит ЭДС, а индуцированная ЭДС или напряжение пропорциональны скорости изменения магнитного потока и количеству витков катушки.
    Генерируемое напряжение = E = -N dɵ / dt
    Где
    E = индуцированное напряжение
    N = количество витков
    ɵ = BA = где B = магнитный поток, A = площадь катушки.
    Закон Ампера

    MMF (магнитная движущая сила) вокруг замкнутого контура равна электрическому току, заключенному в контуре.
    BL = µNI
    Так как он концентрирует магнитные линии потока, его сердечник изготовлен из ферромагнитных материалов. Когда электрический ток проходит через катушку, в материале сердечника возникает магнитный поток. Некоторый магнитный поток появляется вне катушки (около концов сердечника), и небольшое количество потока течет через катушку.

    Сердечник соленоида:

    Соленоид — это базовое устройство, которое используется для создания электромагнитного тракта для передачи максимальной плотности магнитного потока с минимальным потреблением энергии.Другими словами, это устройство, преобразующее электрический сигнал в механическое движение. Полезная цель соленоида — получить взаимосвязь между переменными ампер-витками и плотностью магнитного потока, работающей в воздушном зазоре, то есть передать максимальную энергию (NI) от катушки соленоида в рабочую зону. Важно учитывать влияние тепла, поскольку увеличение температуры катушки снижает рабочую мощность соленоида.

    Основные термины, относящиеся к соленоидам и приводам.
    Насыщение:

    Насыщение пути железа в соленоиде учитывается двумя способами:

    • Железо перестает переносить любое увеличение потока.
    • Точка, в которой железо начинает насыщаться.

    При увеличении входной мощности плотность магнитного потока увеличивается до насыщения железа. Любое дальнейшее увеличение мощности приведет к увеличению нагрева без увеличения силы и крутящего момента. Выходное усилие можно увеличить, изменив площадь пути утюга.

    Ампер-витков:

    Ток зависит от количества витков медного провода. Магнитная цепь определяет значение магнитного потока внутри соленоида, используя постоянное напряжение для уменьшения ампер-витков.т.е.
    BL = µNI или
    B = µ (N / L) I
    B = µnL

    Номинальное сопротивление и ток катушки
    Номинальное сопротивление и ток катушки можно найти с помощью простого закона Ома
    Сопротивление = V2 / P
    Ток = P / V
    Тепло:

    Тепло является функцией мощности в соленоиде и рассеивается потоком воздуха.

    Рабочий цикл:

    Рабочий цикл определяется временем включения / выключения. Если соленоид находится под напряжением ¼, то рабочий цикл составляет 25%. Он определяет количество потребляемой мощности и тепла.Соленоид разработан для непрерывного режима работы и может рассеивать в десять раз большую потребляемую мощность при нагрузке 10%. Время включения соленоида составляет одну секунду, что не вызовет каких-либо повреждений, но если на соленоид подается питание в течение 10 минут при нагрузке 25%, а время включения составляет 600 секунд, то один импульс может сжечь весь соленоид.

    Рабочая скорость:

    Время подачи питания на соленоид для завершения хода измеряется от начала начального импульса до положения подачи питания на соленоид.Это время зависит от рабочего цикла, температуры окружающей среды, входной мощности и нагрузки для данного соленоида.

    Типы соленоидов:

    Соленоиды были разделены на две основные категории:

    1. Линейный соленоид
    2. Поворотный соленоид
    1. Линейные соленоиды: Линейный соленоид представляет собой электромагнитное или электромеханическое устройство. преобразовывать электрическую энергию в магнитный сигнал или механическое движение. Он работает по тому же принципу, что и электромеханические реле, и может управляться с помощью MOSFET, транзисторов и т. Д.Он может быть спроектирован для пропорционального движения относительно потребляемой мощности, включая приложение тяги и толкания. Они используются для обеспечения высокой силы, потому что они разработаны за счет комбинации высокого магнитного потока и ферромагнитного материала для обеспечения большей мощности. Все линейные соленоиды являются тянущими, поэтому узел плунжера (как якоря) втягивается и движется к упору, когда соленоид находится под напряжением.
    Применение и использование линейных соленоидов:

    Линейные соленоиды используются в дверных замках, гидрораспределителях, роботах, автоматических выключателях, медицинском оборудовании, автомобильной трансмиссии, монетоприемнике, оросительных клапанах и почтовых машинах.

    2. Поворотные соленоиды: Поворотный соленоид также является электромеханическим устройством, которое используется для вращательного или углового движения, которое производит вращение в обе стороны, а именно по часовой стрелке или против часовой стрелки.
    Он также используется там, где требуется очень небольшое угловое перемещение, а шаговый двигатель постоянного тока не может справиться с этой задачей.
    Доступные поворотные соленоиды обеспечивают моменты самовосстановления в двух положениях (от 0 ° до 90 ° и от 90 ° до 0 °). Трехпозиционное самовосстановление (от 0 ° до + 45 ° или от 0 ° до -45 °) и двухпозиционное самовосстановление.
    Он похож на линейный соленоид, но разница в том, что сердечник установлен в центре большого плоского диска.
    Применение вращающихся соленоидов:

    Поворотные соленоиды используются в лазерах, торговых автоматах, станках, обработке фотографий, медицинских аппаратах, сортировщиках и почтовых машинах.

    Применение соленоидов в промышленности:

    Соленоиды используются почти везде в промышленности. Вот некоторые из их основных применений:

    • Запорный механизм
    • Автомобильное применение
    • Медицинское применение
    • Промышленное использование
    • Релейное переключение Управление
    • Система кондиционирования воздуха
    • Сельскохозяйственная система

    Несколько слов:
    Будучи вовлеченным в процесс проектирования и изготовления соленоида, он является одним из лучших исполнительных устройств с точки зрения размера, стоимости и простой установки, а также обеспечивает возможное решение для клиента в короткие сроки.С точки зрения использования и применения совершенно очевидно, что он играет важную роль в области медицинских технологий, безопасности и других общих отраслях в современном мире.

    Вы тоже можете прочитать

    .

    Простая английская Википедия, бесплатная энциклопедия

    Магнитное поле, создаваемое соленоидом

    Соленоид представляет собой трехмерную проволочную структуру. Когда этот провод наматывается на металлический блок в катушке и через него пропускается электричество, он обладает некоторыми особыми магнитными свойствами. Электромагнитная индукция делает его электромагнитом, который можно включать и выключать. Сторона, в которой течение кажется движущимся по часовой стрелке, — это Южный полюс, а сторона, в которой течение, кажется, движется против часовой стрелки, — это Северный полюс.Соленоид работает как стержневой магнит и поэтому имеет множество применений.

    Этот принцип используется, среди прочего, для создания клапанов. Когда соленоид управляет электрическим переключателем, это реле.

    В машинах для игры в пинбол, транспортных средствах и традиционных дверных звонках используются соленоиды.

    Викискладе есть медиафайлы, связанные с соленоидами .
    .

    Что такое соленоидный клапан и как он работает?

    Электромагнитные клапаны используются везде, где требуется автоматическое регулирование потока жидкости. Они все в большей степени используются в самых разных типах установок и оборудования. Разнообразие доступных конструкций позволяет выбрать клапан в соответствии с конкретным применением.

    ОБЩЕЕ

    Электромагнитные клапаны используются везде, где требуется автоматическое регулирование потока жидкости. Они все в большей степени используются в самых разных типах установок и оборудования.Разнообразие доступных конструкций позволяет выбрать клапан в соответствии с конкретным применением.

    СТРОИТЕЛЬСТВО

    Электромагнитные клапаны — это блоки управления, которые при подаче электроэнергии или обесточивании либо перекрывают, либо пропускают поток жидкости. Привод имеет форму электромагнита. При подаче энергии создается магнитное поле, которое натягивает плунжер или поворотный якорь против действия пружины. В обесточенном состоянии плунжер или поворотный якорь возвращается в исходное положение под действием пружины.

    РАБОТА КЛАПАНА

    По способу срабатывания различают клапаны прямого действия, клапаны с внутренним управлением и клапаны с внешним управлением. Еще одна отличительная особенность — это количество портов или количество потоков («путей»).

    КЛАПАНЫ ПРЯМОГО ДЕЙСТВИЯ

    У электромагнитного клапана прямого действия уплотнение седла прикреплено к сердечнику соленоида. В обесточенном состоянии отверстие седла закрыто, которое открывается, когда клапан находится под напряжением.

    КЛАПАНЫ ПРЯМОГО ДЕЙСТВИЯ 2-ХОДОВЫЕ

    Двухходовые клапаны — это запорные клапаны с одним входным и одним выходным отверстиями (рис.1). В обесточенном состоянии пружина с сердечником при помощи давления жидкости удерживает уплотнение клапана на седле клапана, перекрывая поток. При подаче напряжения сердечник и уплотнение втягиваются в катушку соленоида, и клапан открывается. Электромагнитная сила больше, чем объединенная сила пружины и силы статического и динамического давления среды.

    фигура 1

    КЛАПАНЫ ПРЯМОГО ДЕЙСТВИЯ 3-ХОДОВЫЕ

    Трехходовые клапаны имеют три штуцера и два седла клапана.Одно уплотнение клапана всегда остается открытым, а другое закрытым в обесточенном режиме. Когда катушка находится под напряжением, режим меняется на противоположный. Трехходовой клапан, показанный на рис. 2, выполнен с сердечником плунжерного типа. Различные операции клапана могут быть получены в зависимости от того, как текучая среда соединена с рабочими портами на рис. 2. Давление текучей среды нарастает под седлом клапана. Когда катушка обесточена, коническая пружина плотно прижимает нижнее уплотнение сердечника к седлу клапана и перекрывает поток жидкости.Порт A выпускается через R. Когда катушка находится под напряжением, сердечник втягивается, седло клапана в Порте R закрывается подпружиненным верхним уплотнением сердечника. Текучая среда теперь течет от P к A.

    фигура 2 В отличие от версий с сердечником плунжерного типа, клапаны с поворотным якорем имеют все портовые соединения в корпусе клапана. Изолирующая диафрагма предотвращает контакт текучей среды с камерой змеевика. Клапаны с поворотным якорем могут использоваться для управления любым трехходовым клапаном.Основной принцип конструкции показан на рис. 3. Клапаны с поворотным якорем стандартно оснащены ручным дублером.

    фигура 3

    ЭЛЕКТРОМАГНИТНЫЕ КЛАПАНЫ С ВНУТРЕННИМ ПИЛОТОМ

    В клапанах прямого действия силы статического давления увеличиваются с увеличением диаметра отверстия, что означает, что магнитные силы, необходимые для преодоления сил давления, соответственно становятся больше. Поэтому электромагнитные клапаны с внутренним управлением используются для переключения более высоких давлений в сочетании с отверстиями большего размера; в этом случае перепад давления жидкости выполняет основную работу по открытию и закрытию клапана.

    2-ХОДОВЫЕ КЛАПАНЫ С ВНУТРЕННИМ ПИЛОТОМ

    Электромагнитные клапаны с внутренним управлением оснащены 2- или 3-ходовым пилотным соленоидным клапаном. Мембрана или поршень обеспечивают уплотнение для седла главного клапана. Работа такого клапана показана на рис. 4. Когда пилотный клапан закрыт, давление жидкости увеличивается с обеих сторон диафрагмы через выпускное отверстие. Пока существует разница давлений между впускным и выпускным портами, запорная сила доступна за счет большей эффективной площади в верхней части диафрагмы.Когда пилотный клапан открывается, давление сбрасывается с верхней стороны диафрагмы. Большая эффективная сила чистого давления снизу поднимает диафрагму и открывает клапан. Как правило, клапаны с внутренним управлением требуют минимального перепада давления для обеспечения удовлетворительного открытия и закрытия. Omega также предлагает клапаны с внутренним управлением, спроектированные с соединенным сердечником и диафрагмой, которые работают при нулевом перепаде давления (рис. 5).

    фигура 4

    МНОГООБХОДИМЫЕ ЭЛЕКТРОМАГНИТНЫЕ КЛАПАНЫ С ВНУТРЕННИМ ПИЛОТОМ

    4-ходовые электромагнитные клапаны с внутренним управлением используются в основном в гидравлических и пневматических системах для приведения в действие цилиндров двустороннего действия.Эти клапаны имеют четыре патрубка: впускной патрубок P, два патрубка A и B цилиндра и один патрубок выпускного патрубка R. 4/2-ходовой тарельчатый клапан с внутренним управлением показан на рис. 6. В обесточенном состоянии клапан пилотный клапан открывается при соединении входа давления с пилотным каналом. Обе тарелки главного клапана находятся под давлением и переключаются. Теперь соединение порта P подключено к A, а B может выходить через второй ограничитель через R.

    цифра 5

    КЛАПАНЫ С НАРУЖНЫМ УПРАВЛЕНИЕМ

    В этих типах для приведения в действие клапана используется независимая управляющая среда.На рис. 7 показан поршневой клапан с угловым седлом и закрывающей пружиной. В негерметичном состоянии, седло клапана закрываются. Трехходовой электромагнитный клапан, который может быть установлен на приводе, управляет независимой управляющей средой. Когда на соленоидный клапан подается питание, поршень поднимается против действия пружины, и клапан открывается. Версия с нормально открытым клапаном может быть получена, если пружина находится на противоположной стороне поршня привода. В этих случаях независимая управляющая среда подключается к верхней части привода.Версии двойного действия, управляемые 4/2-ходовыми клапанами, не содержат пружины.

    рисунок 6

    МАТЕРИАЛЫ

    Все материалы, из которых изготовлены клапаны, тщательно отбираются в соответствии с различными типами применения. Материал корпуса, материала уплотнения и материала соленоида выбирается для оптимизации функциональной надежности, совместимости с жидкостями, срока службы и стоимости.

    КУЗОВ

    Корпуса клапанов нейтральной жидкости изготовлены из латуни и бронзы.Для жидкостей с высокими температурами, например пара, доступна коррозионно-стойкая сталь. Кроме того, полиамидный материал используется по экономическим причинам в различных пластиковых клапанах.

    СОЛЕНОИДНЫЕ МАТЕРИАЛЫ

    Все части электромагнитного привода, которые контактируют с жидкостью, изготовлены из аустенитной коррозионно-стойкой стали. Таким образом обеспечивается устойчивость к коррозионному воздействию нейтральных или умеренно агрессивных сред.

    МАТЕРИАЛЫ УПЛОТНЕНИЯ

    Конкретные механические, термические и химические условия в области применения влияют на выбор материала уплотнения.Стандартный материал для нейтральных жидкостей при температурах до 194 ° F — обычно FKM. Для более высоких температур используются EPDM и PTFE. Материал PTFE универсально устойчив практически ко всем техническим жидкостям.

    НОМИНАЛЬНОЕ ДАВЛЕНИЕ — ДИАПАЗОН ДАВЛЕНИЯ

    Все значения давления, приведенные в этом разделе, представляют собой избыточное давление. Номинальное давление указано в фунтах на квадратный дюйм. Клапаны надежно работают в заданных диапазонах давления. Наши цифры действительны для диапазона пониженного напряжения от 15% до перенапряжения 10%.Если 3/2-ходовые клапаны используются в другом режиме, допустимый диапазон давления изменяется. Более подробная информация содержится в наших технических паспортах.

    В случае работы в вакууме необходимо следить за тем, чтобы вакуум был на стороне выхода (A или B), в то время как более высокое давление, то есть атмосферное давление, подключено к входному отверстию P.

    ЗНАЧЕНИЯ РАСХОДА

    Расход через клапан определяется конструктивным исполнением и типом потока.Размер клапана, требуемый для конкретного применения, обычно определяется номиналом Cv. Этот показатель разработан для стандартных единиц и условий, то есть расхода в галлонах в минуту и ​​использования воды при температуре от 40 ° F до 86 ° F при перепаде давления 1 фунт / кв. Приведены значения Cv для каждого клапана. Стандартизированная система значений расхода также используется для пневматики. В этом случае воздушный поток в SCFM вверх по потоку и падение давления 15 фунтов на квадратный дюйм при температуре 68 ° F.

    СОЛЕНОИДНЫЙ ПРИВОД

    Общей чертой всех соленоидных клапанов Omega является система соленоидов с эпоксидной изоляцией.В этой системе вся магнитная цепь — катушка, соединения, ярмо и направляющая трубка сердечника — объединены в один компактный блок. Это приводит к тому, что большая магнитная сила удерживается в минимальном пространстве, обеспечивая первоклассную электрическую изоляцию и защиту от вибрации, а также внешних коррозионных воздействий.

    КАТУШКИ

    Катушки Omega доступны для всех обычно используемых напряжений переменного и постоянного тока. Низкое энергопотребление, особенно в случае соленоидных систем меньшего размера, означает, что возможно управление через твердотельные схемы.

    рисунок 7 Доступная магнитная сила увеличивается по мере того, как воздушный зазор между сердечником и гайкой заглушки уменьшается, независимо от того, используется ли переменный или постоянный ток. Электромагнитная система переменного тока имеет большую магнитную силу, доступную при большем ходе, чем сопоставимая соленоидная система постоянного тока. Графики зависимости хода от силы, показанные на рис. 8, иллюстрируют эту зависимость.

    Ток, потребляемый соленоидом переменного тока, определяется индуктивностью. С увеличением хода индуктивное сопротивление уменьшается и вызывает увеличение потребления тока.Это означает, что в момент обесточивания ток достигает максимального значения. Противоположная ситуация применяется к соленоиду постоянного тока, где потребление тока зависит только от сопротивления обмоток. Сравнение во времени характеристик включения соленоидов переменного и постоянного тока показано на рис. 9. В момент подачи питания, т. Е. Когда воздушный зазор максимален, электромагнитные клапаны потребляют гораздо более высокие токи, чем когда сердечник полностью заполнен. втянут, т. е. воздушный зазор закрыт.Это приводит к высокой производительности и расширенному диапазону давления. В системах постоянного тока после включения тока поток увеличивается относительно медленно, пока не будет достигнут постоянный ток удержания. Таким образом, эти клапаны могут управлять только более низким давлением, чем клапаны переменного тока, при тех же размерах отверстий. Более высокие давления могут быть получены только за счет уменьшения размера отверстия и, следовательно, пропускной способности.

    ТЕПЛОВЫЕ ЭФФЕКТЫ

    Когда на катушку соленоида подано напряжение, всегда выделяется определенное количество тепла.Стандартная версия электромагнитных клапанов имеет относительно небольшой подъем температуры. Они предназначены для достижения максимального повышения температуры 144 ° F в условиях непрерывной работы (100%) и при 10% перенапряжении. Кроме того, обычно допустима максимальная температура окружающей среды 130 ° F. Максимально допустимые температуры жидкости зависят от конкретных материалов уплотнения и корпуса. Эти цифры можно получить из технических данных.

    ОПРЕДЕЛЕНИЕ ВРЕМЕНИ (VDE0580) ВРЕМЯ ОТВЕТА

    Небольшие объемы и относительно высокие магнитные силы, связанные с соленоидными клапанами, обеспечивают быстрое время отклика.Для специальных применений доступны клапаны с разным временем отклика. Время отклика определяется как время между подачей сигнала переключения и завершением механического открытия или закрытия.

    ПО ПЕРИОДУ

    Период включения определяется как время между включением и выключением тока соленоида.

    ПЕРИОД ЦИКЛА

    Суммарное время включенного и выключенного периодов — это период цикла. Предпочтительный период цикла: 2, 5, 10 или 30 минут.

    ОТНОСИТЕЛЬНЫЙ РАБОЧИЙ ЦИКЛ

    Относительный рабочий цикл (%) — это процентное отношение периода под напряжением к общему периоду цикла. Непрерывная работа (100% рабочий цикл) определяется как непрерывная работа до достижения установившейся температуры.

    РАБОТА КЛАПАНА

    Кодировка клапана всегда состоит из заглавной буквы. Сводка слева подробно описывает коды различных операций клапана и указывает соответствующие стандартные символы цепи.

    ВЯЗКОСТЬ

    Технические данные действительны для вязкости до указанного значения.Допускается более высокая вязкость, но в этих случаях диапазон допуска напряжения уменьшается, а время отклика увеличивается.

    ДИАПАЗОН ТЕМПЕРАТУР

    Температурные пределы для текучей среды всегда указаны. Различные факторы, например Однако условия окружающей среды, цикличность, скорость, допуск напряжения, детали установки и т. д. могут влиять на температурные характеристики. Следовательно, приведенные здесь значения следует использовать только в качестве общего руководства. В случаях, когда речь идет о работе при экстремальных температурах, вам следует обратиться за советом в технический отдел Omega.

    Техническое обучение Пример использования .

Электричество и магнетизм

Если длина соленоида много больше его диаметра (l >> 2R), мы возвращаемся к формуле для поля в бесконечно длинном соленоиде (6.20). Относительная разница этих двух значений равна

 

По условию эта разница мала: , то есть мало отношение диаметра соленоида к его длине: 2R/l << 1. Поэтому можно воспользоваться формулой разложения квадратного корня

 

Отсюда

или

Подставляя численное значение d, находим, что разница будет менее половины процента при выполнении соотношения

Иными словами, соленоид может рассматриваться как бесконечно длинный, если его длина в двадцать или более раз превышает радиус.

 

Пример 2. Найти магнитное поле Ве в крайней торцевой точке оси соленоида конечной длины l. Сравнить с результатом предыдущего примера.

Решение. Магнитное поле в торцевой точке оси соленоида конечной длины l дается тем же интегралом (6.19), но теперь пределы интегрирования будут выглядеть иначе

(6.22)

Отношение полей в средней и крайней точках оси соленоида равно

 

Это отношение всегда меньше единицы (то есть поле на торце меньше поля в середине соленоида). При l >> R имеем 

Этот результат легко понять. Представим себе бесконечный соленоид, который мысленно рассекаем пополам в точке наблюдения. Можно считать, что поле в этой точке создается двумя одинаковыми «полубесконечными» соленоидами, расположенными по разные стороны от нее. Ясно, что при удалении одного из них точка наблюдения становится торцом оставшегося «полубесконечного» соленоида, а магнитная индукция в ней уменьшиться именно в два раза.

Это — так называемый краевой эффект. Пример демонстрирует, что недостаточно выполнения соотношения l >> R, чтобы пользоваться формулами для бесконечно длинного соленоида; надо еще, чтобы точка наблюдения находилась далеко от его концов.

На рис. 6.25 представлен опыт по исследованию распределения силовых линий магнитного поля вокруг соленоида. Поле соленоида, ось которого лежит в плоскости пластинки, сосредоточено в основном внутри соленоида. Силовые линии внутри имеют вид параллельных прямых вдоль оси катушки, а поле снаружи практически отсутствует.

Рис. 6.25. Визуализация силовых линий магнитного поля

Видео 6.1.  Силовые линии магнитного поля проводников с током различной формы: прямой ток, соленоид, один виток.

Соленоиды автоматической коробки передач

Соленоидом принято называть кран-регулятор электромеханического типа, который регулирует подачу масла в гидроплите для управления автоматической коробкой передач.

До того как появились соленоиды использовали гувернеры. Это примитивные механико-гидравлические клапана, которые были ответственны за перемену передач в АКПП. Нынче эту роль взяли на себя соленоиды. Ими комплектуют не только автоматические коробки передач, но также ДСГ и вариаторы.

Если обратить внимание на соленоид, то можно заметить, что в его основе медная обмотка, внутри которой стоит магнитный стержень. Движение катушки внутри сердечника в одну сторону происходит под влиянием магнитного поля, в другую — с помощью пружины.

Соленоид стоит непосредственно в гидроблоке, то есть в гидравлической клапанной плите.

При помощи прижимной пластины или болта соленоид зафиксирован в канале гидроблока. С другой стороны к нему подсоединен шлейф электропроводки. Этот самый шлейф с обратной стороны подключен к блоку управления.

Стоит принять во внимание, что если вышел из строя соленоид, то первым делом следует проверить шлейф. Это расходный материал, который служит короткий период времени.

Если, осматривая коробку передач, не удалось обнаружить сверху гидроблок, то стоит поискать ее сбоку. У некоторых АКПП этот элемент находится именно там.

Посредством соленоида происходит соединение электрической и гидравлической систем коробки. С частой периодичностью именно в этом соединении удается обнаруживать ошибку оборудованием для диагностики.

Соленоиды типа On-Off

Применение соленоидов началось в 80-х годах прошлого века. Их ставили в американские АКПП. Были представлены катушкой с медной обмоткой. В таких соленоидах, в результате толкания стержня, открывался и закрывался канал, по которому гналось масло. Элемент имел два положение — «Открыто» и «Закрыто».

Соленоид-электроклапан


Отличается от представленного выше наличием канала для масла с двумя выходами. Подача масла в таких соленоидах регулируется шариковым клапаном. Также они известны, как «электромагнитные клапана». Преимущество соленоидов-электроклапанов заключается в простоте их замены. Элемент держит давление в системе за счет колец-прокладок из резины. Если соленоид был обесточен, то в работу включается пружина. Клапан оснащен специальным фильтром, который препятствует попаданию металлической пыли на пружину.

Соленоиды 3-way

3-way соленоид — это «переключатель», соединяющий три канала. В зависимости от положения шарика открывается проход в тот или иной канал. Если это обычное положение, то оно предназначено для сброса давления из сцепления.

В конце прошлого года конструкторы стали требовать установки интеллектуальных систем управления. Таким образом, появились соленоиды-регуляторы, работающие по принципу «Вентиль». Они могут, как слегка приоткрывать, так и закрывать сечение по кривой. Положение зависит напрямую от импульсного напряжения, полученного от компьютера.

Новейший вид — управляющий соленоид

Посредством гидравлического способа он управляет клапанами. Он самостоятельно подает давление на фрикционы и поршни, и сбрасывает его. Связаться с отделом продаж для бесплатной консультации

Соленоид. Электромагниты. Все о магнитах :: Класс!ная физика


СОЛЕНОИД

ЭЛЕКТРОМАГНИТ


Соленоид – это катушка индуктивности в виде намотанного на цилиндрическую поверхность изолированного проводника, по которому течёт электрический ток. Электрический ток в обмотке создает в окружающем пространстве магнитное поле соленоида.

Соленоид становится магнитом.
Железные опилки притягиваются к концам катушки при прохождении
через нее электрического тока и отпадают при отключении тока.

Сила магнитного поля катушки с током зависит от числа витков катушки,
от силы тока в цепи и от наличия сердечника в катушке.
Чем большее число витков в катушке и чем больше сила тока, тем сильнее магнитное поле. Железный сердечник, введенный внутрь катушки с током усиливает магнитное поле катушки


Если подвесить соленоид на нити, то он повернется и сориентируется в магнитном поле Земли
подобно свободно вращающейся магнитной стрелке.

Конец соленоида, из которого магнитные линии выходят, становится северным полюсом, а другой конец, в который магнитные линии входят, — южным полюсом магнита-соленоида.
___

Графически изображение магнитного поля соленоида похоже на магнитное поле полосового магнита.

Магнитные линии магнитного поля катушки с током замкнутые кривые
и направлены снаружи катушки от северного полюса к южному полюсу.
___

Внутри соленоида, длина которого значительно больше диаметра, магнитные линии магнитного поля параллельны и направлены вдоль соленоида.

Устали? — Отдыхаем!

Как работают соленоиды — инженерное мышление

Объяснение основ работы с соленоидом

В этой статье мы собираемся изучить, как работают соленоиды, как увидеть магнитное поле, как создать электромагнит из провода, правило правого захвата, примеры реальных соленоидов и как сделать соленоид. .
Прокрутите вниз, чтобы увидеть обучающее видео YouTube

Если вы работаете с соленоидными клапанами, вам нужно загрузить приложение Magnetic Tool от Danfoss.Приложение позволяет легко проверить правильность работы электромагнитного клапана и работает как с версиями переменного, так и с постоянным током.

🎁 Вы можете бесплатно скачать приложение Magnetic Tool для Android и iPhone

Итак, мы начнем со стандартного стержневого магнита. Это постоянный магнит, вы, наверное, видели эти типы раньше, их концы отмечены буквой «N» для севера и «S» для южного магнитного полюса.

Стержневой магнит

Мы можем использовать магнитное поле для перемещения других объектов.Проблема с этим типом магнита заключается в том, что магнитное поле не может быть легко и практически отключено, поэтому в этом случае гвоздь будет оставаться прикрепленным, пока мы физически не оторвем его.

Магнит притягивает гвоздь

Если мы поместим два из этих магнитов вместе, мы увидим, что аналогичные полярные концы будут отталкиваться друг от друга, но противоположные полярные концы будут притягиваться друг к другу.

Магниты противостоят и притягивают северный и южный полюса как работают соленоиды

Если я затем поднесу компас к магниту, мы увидим, что когда я перемещаю компас по периметру магнита, на компас воздействует магнитное поле.Циферблат компаса будет вращаться для совмещения с противоположным полярным концом магнита и будет следовать линиям магнитного поля. Помните, что противоположности притягиваются.

Мы можем увидеть эти магнитные линии, если мы поместим стержневой магнит на лист белой карты, а затем посыпаем сверху железными опилками. Железные опилки выравниваются с линиями магнитного поля, чтобы создать этот узор. Эти линии всегда образуют замкнутые петли и проходят с севера на юг, хотя поле не движется и не движется, это стационарная силовая линия.

Силовые линии магнитного поля, как работают соленоиды

Как я уже упоминал, проблема постоянных магнитов в том, что они всегда включены, и их невозможно легко или практически невозможно отключить или контролировать. Однако мы можем управлять электромагнитным полем и генерировать его с помощью стандартного провода.

Если я поднесу компас к медному проводу, мы увидим, что он не влияет на компас. Однако, если я теперь подключу источник питания к каждому концу провода, мы увидим, что, как только я пропущу ток через провод, ток создаст электромагнитное поле, и это изменит направление компаса.

Электромагнитное поле на медном проводе

Электромагнитное поле действует по кругу вокруг провода.

Если я помещу циркуль вокруг провода и пропущу через него ток, мы увидим, что все они указывают на круг. Если я изменю направление тока на противоположное, то компасы покажут противоположное направление.

Электромагнитное поле юстировки компаса

Если мы теперь возьмем провод и намотаем на него катушку, мы сможем усилить электромагнитное поле.

Теперь, если я подключу к катушке источник питания и пропущу через нее ток.Мы видим, что это повлияет на компас, и теперь он указывает на конец катушки, как это было с постоянным магнитом. Если я перемещу компас по периметру катушки, компас будет вращаться, чтобы выровняться с линиями магнитного поля. Если я переверну ток, мы увидим, что магнитные полюса также перевернутся.

Выравнивание магнитного поля катушки

Когда ток течет по проводу, он создает круговое магнитное поле вокруг провода, как мы видели недавно. Но когда мы наматываем провод в катушку, каждый провод по-прежнему создает магнитное поле, за исключением того, что силовые линии сливаются вместе, образуя большее и более сильное магнитное поле.

Мы можем сказать, на каком конце будет северный и южный полюс электромагнитной катушки, используя правило для правой руки. Это говорит о том, что если мы сожмем руку в кулак вокруг соленоида и направим большой палец в направлении обычного потока тока, то это будет от положительного к отрицательному (на самом деле он переходит от отрицательного к положительному, но пока не беспокойтесь об этом), тогда большой палец указывает на северный конец, и ток будет течь в направлении ваших пальцев.

Катушка соленоида правила захвата правой руки

Если я подключу этот небольшой соленоид к источнику питания, мы увидим, что поршень может быть втянут электромагнитным полем, как только ток начнет течь через катушку.Если я отключу мощность, пружина вернет поршень в исходное положение.

Соленоид рабочий

Сделать основной соленоид

Для основного корпуса соленоида мы можем просто использовать часть пластиковой ручки Bic. Я расплавил концы и сплющил их, чтобы удержать медную катушку.

Для поршня я воспользуюсь железным гвоздем и, чтобы убедиться, что он входит в центр ручки, я воспользуюсь надфилем, чтобы обеспечить гладкую посадку.

Теперь нам нужно намотать катушку.Я собираюсь использовать эмалированный провод диаметром 26 или 0,4 мм, который я купил в Интернете. Поэтому мы просто хотим намотать медный провод как можно плотнее от одного конца до другого. У нас должно получиться что-то вроде этого.

Катушка электромагнитного клапана

Затем нам нужно обернуть его еще несколько раз в противоположных направлениях, чтобы сделать его прочнее. 3 или 4 длины обертки, вероятно, подойдут. Я не считал количество поворотов для этого, потому что просто делаю для вас небольшой пример.

Когда проволока полностью обернута, мы можем просто разрезать проволоку и освободить ее от барабана.Затем мы хотим просто использовать наждачную бумагу, чтобы удалить эмаль с конца, что улучшит электрическое соединение.

Если железный гвоздь помещен концентрически внутри катушки, но не полностью внутри, мы видим, что поршень гвоздя втягивается внутрь электромагнитным полем при прохождении тока. Если бы мы поместили пружину в конец, она вернулась бы в исходное положение.

Самодельная катушка соленоида

Если мы полностью поместим поршень в катушку, а затем подаем ток, магнитное поле переместит поршень, и мы сможем использовать это для создания толкающей силы.Опять же, если на дальнем конце была пружина, ее можно было вернуть в исходное положение.

Самодельный реверс катушки соленоида

Как работает соленоид?

Что такое соленоид?

Соленоид — это общий термин для катушки с проволокой, используемой в качестве электромагнита. Это также относится к любому устройству, которое преобразует электрическую энергию в механическую с помощью соленоида. Устройство создает магнитное поле из электрического тока и использует магнитное поле для создания линейного движения.Обычно соленоиды используются для питания переключателя, например стартера в автомобиле, или клапана, например, в спринклерной системе.

Как работает соленоид

Соленоид представляет собой катушку с проволокой в ​​форме штопора, обернутую вокруг поршня, часто сделанного из железа. Как и во всех электромагнитах, при прохождении электрического тока через провод создается магнитное поле. Электромагниты имеют преимущество перед постоянными магнитами в том, что их можно включать и выключать подачей или снятием электрического тока, что делает их полезными в качестве переключателей и клапанов и позволяет полностью автоматизировать их.

Как и все магниты, магнитное поле активированного соленоида имеет положительные и отрицательные полюса, которые будут притягивать или отталкивать материал, чувствительный к магнитам. В соленоиде электромагнитное поле заставляет поршень двигаться вперед или назад, именно так движение создается катушкой соленоида.

Как работает электромагнитный клапан?

В клапане прямого действия электрический ток активирует соленоид, который, в свою очередь, тянет поршень или плунжер, который иначе заблокировал бы поток воздуха или жидкости.В некоторых электромагнитных клапанах электромагнитное поле не действует напрямую, открывая канал. В управляемых клапанах соленоид перемещает плунжер, который создает небольшое отверстие, и давление через отверстие — это то, что управляет уплотнением клапана. В обоих типах электромагнитным клапанам требуется постоянный поток электрического тока, чтобы оставаться открытым, потому что после прекращения подачи тока электромагнитное поле рассеивается, и клапан возвращается в исходное закрытое положение.

Электрические соленоиды

В автомобильной системе зажигания соленоид стартера действует как реле, устанавливая металлические контакты для замыкания цепи.Соленоид стартера получает небольшой электрический ток при включении зажигания автомобиля, обычно при повороте ключа. Затем магнитное поле соленоида сжимает контакты, замыкая цепь между аккумулятором автомобиля и стартером. Соленоиду стартера требуется постоянный поток электричества для поддержания цепи, но поскольку двигатель запускается самостоятельно, соленоид неактивен большую часть времени.

Использование соленоидов

Соленоиды невероятно универсальны и чрезвычайно полезны.Их можно найти во всем: от автоматизированного заводского оборудования до пейнтбольного оружия и даже дверных звонков. В дверном звонке звуковой сигнал раздается, когда металлический поршень ударяет по тоновой полосе. Сила, которая перемещает поршень, представляет собой магнитное поле соленоида, который получает электрический ток при нажатии на дверной звонок.

Соленоиды и электромагнитные клапаны | Кертисс-Райт

Наш широкий ассортимент соленоидов и электромагнитных клапанов включает стандартные и конфигурируемые конструкции в различных стилях соленоидов.Мы также можем поставить модифицированные стандартные конструкции, соответствующие вашим конкретным приложениям, или уникальные индивидуальные конструкции для крупных OEM-производителей.

Наш ассортимент соленоидов подходит для использования на дорогах и внедорожниках, например:

  • Строительство
  • Сельскохозяйственная техника
  • Погрузочно-разгрузочные работы
  • Автомобили специального назначения
  • Промышленное оборудование

В Curtiss Wright вы найдете множество различных промышленных продуктов, таких как датчики, элементы управления джойстиками, фейдеры и устаревшие продукты.Чтобы получить дополнительную информацию о любом продукте, прочтите соответствующие документы, в которых описаны сборки и возможности.

ВЫ МОЖЕТЕ ПРОСМОТРЕТЬ НАШ АССОРТИМЕНТ СОЛЕНОИДОВ И СОЛЕНОИДНЫХ КЛАПАНОВ НИЖЕ —

65

Что такое электромагнитный клапан?

Электромагнитный клапан — это электромагнитный компонент, преобразующий электрическую энергию в механическую работу.Он используется для управления скоростью потока в механических системах с гидравлическим или пневматическим приводом.

Как работают электромагнитные клапаны?

Электромагнитные клапаны имеют катушку с проволокой вокруг металлического сердечника. Когда вы пропускаете через него электрический ток, вокруг катушки образуется магнитное поле, которое создает линейное движение . Эффективно преобразует электрическую энергию в механическую . Электромагнитный клапан состоит из катушки, плунжера и втулки в сборе и в основном используется для управления потоком жидкости или газа в положительном, полностью закрытом или полностью открытом режиме.Это происходит по тому же принципу, когда на электромагнитную катушку подается напряжение в нормально закрытом клапане, магнитное поле поднимает плунжер, позволяя потоку материала. В нормально открытом клапане плунжер внутри предотвращает поток газа или жидкости, когда катушка находится под напряжением. Магнитное поле имеет положительные и отрицательные полюса , как и все магниты, притягивая или отталкивая материал. Однако в соленоиде электромагнитное поле заставляет поршень двигаться вперед и назад. По сути, соленоид работает, открывая и закрывая клапан при активации.

Преимущества электромагнитного клапана:
  • Используется для открытия, закрытия, смешивания или направления жидкости или газа через клапан.
  • Быстродействующий и полностью автоматизированный
  • Длительный срок службы
  • Высокая надежность
  • Компактная конструкция
Для чего используется электромагнитный клапан?
Соленоиды

универсальны и используются во множестве приложений. Каждая доступная конструкция соленоида имеет свойства, которые делают его полезным и подходящим компонентом для различных приложений.Используется в автоматизированном заводском оборудовании, дверных звонках, автомобилях, динамиках, управлении процессами очистки и многих других промышленных установках, таких как системы пропана и закачки азота, также известные как соленоидные клапаны. Соленоиды также известны как преобразователи, которые преобразуют энергию в линейное движение .

Как я могу определить, что мой электромагнитный клапан неисправен?

Вы можете сразу сказать , что соленоидный клапан неисправен, если он не открывается, не закрывается или остается частично открытым. .Также возможно гудение или перегоревшая катушка. Если катушка перегорела, она не подлежит ремонту и подлежит замене. При замене электромагнитных клапанов электропитание должно соответствовать напряжению и частоте катушки. Катушка будет отображать максимально допустимую частоту, что снизит вероятность неисправности.

Почему выходят из строя электромагнитные клапаны?

Существует несколько распространенных неисправностей, которые могут привести к выходу из строя электромагнитных клапанов. Чаще всего это происходит, когда на соленоид впервые подается питание, на его катушку поступает большой ток, который уменьшается при закрытии плунжера.Если он не закрывается, это может привести к перегреву и возгоранию катушки. Симптомами являются следы ожогов, холод при включении и бесконечное сопротивление.

Частицы грязи могут вызвать утечку клапана из-за мелких частиц стружки и ржавчины на седле или отверстиях клапана. Очень важно очистить детали клапана и убедиться, что трубы чистые.

Расход и давление также могут вызвать неисправность клапана. Если клапан не открывается или не закрывается правильно, целесообразно проверить, совпадает ли направление потока с показателями корпуса клапана, как указано в руководстве клапана.

В редких случаях катушка перегорает из-за перенапряжения. Необходимо проверить источник питания, напряжение и частоту, чтобы убедиться, что они правильные.

Это также вызовет проблемы, если на клапане есть поврежденное уплотнение. Если клапан не закрывается или протекает, осмотрите мембраны, уплотнения и уплотнительные кольца и замените поврежденные или изношенные детали. Вы должны использовать фильтр, чтобы избежать любого риска неисправности из-за твердых частиц.

Как выбрать электромагнитный клапан?

Выбор правильного соленоидного клапана во многом зависит от среды, с которой он будет сталкиваться, и области применения.Чтобы убедиться в пригодности, необходимо изучить многие компоненты.

В первую очередь следует обратить внимание на следующие черты:

  1. Функция
  2. Длина хода и сила
  3. Размер
  4. Напряжение
  5. Рабочий цикл

Следует учитывать и другие факторы, такие как требования к потоку, материал, размер отверстия, температура и время отклика.

Типы электромагнитных клапанов

Существует много типов электромагнитных клапанов, но основными двумя являются прямого действия или пилотные .Каждый тип — полезный компонент, зависящий от его применения.

Электромагнитные клапаны с пилотным управлением являются наиболее широко используемыми клапанами и используют линейное давление для открытия и закрытия центрального отверстия в клапане.

ПРЕИМУЩЕСТВА:
  • Простая установка
  • Экономичный
  • Используется при высоком давлении
  • Пульт
  • Меньшая мощность

В то время как электромагнитные клапаны прямого действия могут работать с нуля и не требуют разницы давлений между портами для работы.

ПРЕИМУЩЕСТВА:
  • Различные варианты клапанов
  • Используется при отрицательном давлении
  • Компактная конструкция
  • Разрешить проход частиц мусора

Компания Curtiss Wright предлагает широкий выбор электромагнитных клапанов, которые подходят для различных областей применения.

КЛАПАНЫ СОЛЕНОИДНЫЕ

Электромагнитные клапаны — это блоки управления, которые переключаются между включенным и отключенным током. Они будут либо открывать, либо закрывать отверстие внутри клапана, позволяя или предотвращая поток жидкости или газа.

Компания Curtiss Wright производит широкий ассортимент электромагнитных клапанов для различных промышленных применений, включая системы ABS с пневматическим управлением для прицепов грузовых автомобилей.

СВЯЗАННЫЕ ТОВАРЫ:

GV0624 — Электромагнитный клапан, GV0625 — Электромагнитный клапан, GV0627 — Электромагнитный клапан, GV1032 — Электромагнитный клапан, MV SD237 — Электромагнитный клапан, MV SD298 — Электромагнитный клапан

ЛАМИНИРОВАННЫЕ СОЛЕНОИДЫ ПЕРЕМЕННОГО ТОКА
Многослойные соленоиды

переменного тока — это электромагнитные устройства, которые обеспечивают чрезвычайно короткое время закрытия (от 8 до 16 миллисекунд) и создают большие начальные силы притяжения.Одним из основных преимуществ многослойных соленоидов переменного тока является то, что при подаче электричества соленоид мгновенно реагирует, что жизненно важно для приложений, в которых он используется. Эти типы соленоидов производятся с использованием специальных технологий и материалов, таких как тонкие листы или ламинаты, которые индивидуально изолированы и собраны.

СВЯЗАННЫЕ ТОВАРЫ:

ML1441 — Многослойный соленоид переменного тока (модель TT2), ML1951 — Многослойный соленоид переменного тока (Модель TT4), ML2551 — Многослойный соленоид переменного тока (Модель TT6), ML2566 — Многослойный соленоид переменного тока (Модель TT10)

ЗАПОРНЫЕ ЭЛЕКТРОМАГНИТНЫЕ КЛАПАНЫ

В фиксирующем соленоиде используется материал постоянного магнита в сочетании с соленоидной катушкой, что позволяет плунжеру сохранять заданное положение без необходимости постоянного приложения мощности.С помощью всего лишь быстрого и короткого импульса тока фиксирующий соленоид может выполнять операции нажатия, вытягивания, удержания и отпускания, что делает его очень рентабельным. Двунаправленные открытые рамы с магнитной фиксацией оснащены фиксирующими соленоидами, поскольку эти модели электромеханически приводят нагрузку в действие в обоих направлениях, удерживая ее в магнитном фиксаторе в любом положении без питания.
Фиксирующие соленоиды обычно используются в устройствах безопасности, автоматических дверных доводчиках, замках, медицинском оборудовании и оборудовании с батарейным питанием.

СВЯЗАННЫЕ ТОВАРЫ:

GK0625 — фиксирующий соленоид (постоянный магнит), GK0641 — фиксирующий соленоид (постоянный магнит), GK0730 — фиксирующий соленоид (постоянный магнит), GK0740 — фиксирующий соленоид (постоянный магнит), GK1037 — фиксирующий соленоид)

(постоянный магнит)
ЛИНЕЙНЫЕ ЭЛЕКТРОМАГНИТНЫЕ КЛАПАНЫ ОТКРЫТОЙ РАМЫ

Линейный соленоид с открытой рамой имеет открытый металлический каркас, который включает в себя механически незащищенную видимую обмотанную лентой или отформованную катушку и подвижный плунжер в центре катушки.Они развивают линейную силу в одном направлении, тянущую или толкающую, когда они находятся под напряжением. Это простейшая и наиболее экономичная конструкция линейного соленоида, обычно используемая в приложениях, в которых точность и чрезвычайно долгий срок службы не имеют решающего значения.

Есть два типа соленоидов с открытой рамой —

  • Стиль С-образной рамы (или U-образной рамы), в котором катушка заключена с одной стороны
  • Стиль D Frame (или Box Frame), в котором катушка заключена с двух сторон
СВЯЗАННЫЕ ТОВАРЫ

КЛАПАНЫ СОЛЕНОИДНЫЕ ТРУБНЫЕ

Трубчатый соленоид — это электрический компонент, использующий электромагнитную силу.Он более эффективен с точки зрения магнитного поля благодаря закрытой катушке внутри стальной трубы, что позволяет минимизировать утечку и максимизировать производительность. Наши трубчатые соленоиды — популярный выбор для приложений, требующих высокого уровня производительности при небольшом и компактном размере. В Curtiss Wright мы также можем поставить нестандартные конструкции трубчатых соленоидов для тяжелых условий эксплуатации до Ø100 мм с усилием 100 Н при ходе 50 мм.

СВЯЗАННЫЕ ТОВАРЫ:

GT0639 — трубчатый компактный соленоид, GT0852 — трубчатый соленоид, GT1152 — трубчатый соленоид, GT4036 — трубчатый соленоид, GT4045 — трубчатый соленоид, MT0525 — трубчатый соленоид, MT0618 — трубчатый соленоид (MT1020) — трубчатый соленоид (MT1020) — трубчатый соленоид (MT1020) Блокировка)

Соленоиды, Запчасти и аксессуары для промышленных соленоидов

Соленоид является неотъемлемым компонентом двигателей всех размеров и, как следствие, имеет множество применений в повседневной жизни.Соленоиды можно найти в различных коммутационных устройствах и реле, блокировках, пускателях и клапанах.

Если вам нужны промышленные соленоиды, соленоидные датчики, комплекты соленоидных пружин или любые другие аксессуары для соленоидов, мы в Allied Electronics можем помочь. Как ведущие поставщики промышленных электронных компонентов, у нас есть целый ряд соленоидов от ведущих брендов, таких как Guardian Electric, Johnson Electric и Deltrol Controls, которые готовы к отправке уже сегодня.

Что такое соленоиды?

Соленоид — это электрическое выходное устройство, которое преобразует электрический ток в линейное механическое движение.Он состоит из катушки с проволокой, корпуса и подвижного поршня, известного как якорь.

После подачи электрического тока вокруг катушки образуется магнитное поле, притягивающее якорь к ее центру.

Поскольку катушка соленоида состоит из медной проволоки, когда через нее протекает электрический ток, создается сильное магнитное поле. Корпус соленоида, обычно сделанный из стали или железа, окружает катушку, концентрируя магнитное поле, создаваемое катушкой.Подвижная часть соленоида, плунжер, передает линейное движение от соленоида к компоненту, для работы которого он предназначен.

Как работают соленоиды?

Чрезвычайно полезный и универсальный соленоид представляет собой катушку с проволокой, намотанную на поршень, который обычно делается из железа. Когда электрический ток проходит через провод, создается магнитное поле.

Как и у любого магнита, у соленоида есть положительный и отрицательный полюса, которые будут притягивать или отталкивать чувствительные к нему материалы.Электромагнитное поле в соленоиде заставляет поршень двигаться вперед или назад.

Существуют ли разные типы соленоидов?

В зависимости от ваших потребностей доступно несколько различных типов соленоидов.

Линейные соленоиды

Линейные соленоиды состоят из проволочной катушки, которая намотана штопором вокруг подвижного металлического сердечника. Они используют толкающую / тянущую силу на подвижной металлической пробке, замыкая цепь, когда катушки линейного соленоида активируются электрическим током.

Благодаря плавному движению линейные соленоиды часто используются в стартерах.

Трубчатые соленоиды

Трубчатые соленоиды работают, создавая двухтактное усилие на металлическом сердечнике. Трубчатый соленоид заключен в металлическую втулку, которая помогает минимизировать утечку магнитного потока.

Это помогает оптимизировать работу трубчатого соленоида, а также делает его идеальным для безопасной установки в широком диапазоне устройств с большим ходом, таких как рулевое управление и гидравлические клапаны.

Поворотные соленоиды

Аналогичным образом, вращающиеся соленоиды используют проволочную катушку вокруг металлического сердечника. Однако в этом случае сердечник монтируется на диск.

Когда соленоид электрически заряжен, система прорезанных канавок и шарикоподшипники обеспечивают вращательное движение. Когда ток отключается, пружина возвращает поворотный соленоидный диск в исходное положение.

Преимущество вращающихся соленоидов перед линейными соленоидами состоит в том, что они более прочные и упругие.Они часто используются в прецизионном промышленном оборудовании, таком как лазеры и ставни.

Здесь, в Allied Electronics, мы также храним аксессуары для соленоидов, включая запасные комплекты пружин соленоидов.

Для чего используются соленоиды?

Бытовое оборудование, такое как стиральные машины и дверные звонки, — не единственное место, где вы найдете соленоиды. От сельскохозяйственных систем и медицинского оборудования до систем кондиционирования воздуха и промышленного оборудования соленоиды очень важны во многих автоматизированных приложениях.Они также невероятно полезны для контроля давления воды, воздуха и зажимов.

Соленоиды используются в широком спектре приложений, в том числе:

  • Промышленные: в таких приложениях, как автоматические выключатели, дозирующие насосы, силовые гвоздезабиватели, банковские банкоматы, распределение энергии, карты с ключом безопасности и медицинские респираторы, вы найдете соленоиды. . Устройства, которые требуют вращения, блокировки, позиционирования, отклонения или удержания, потребуют соленоидов.
  • Автомобильная промышленность: Соленоиды обычно используются в современных автомобилях, поскольку они используются в производственном процессе.В автомобильной промышленности соленоиды могут быть в системах безопасности, системах управления кондиционированием воздуха и механизмах отключения развлекательных систем. Вы также можете ожидать найти их в элементах управления топливной системой, регулируемых фазах и фазах кулачка, органах управления трансмиссией, органах управления тормозной системой и высокотемпературных клапанах.
  • Медицинское оборудование: Соленоиды часто имеют жизненно важное значение в медицинском оборудовании. Когда врачу необходимо контролировать поток лекарства, попадающий в кровоток человека, он будет использовать дозирующую машину с соленоидом.Кроме того, диализный аппарат использует соленоиды для контроля кровотока пациента во время лечения.

Для таких приложений, как сельское хозяйство и строительство, хорошо спроектированные соленоиды помогают оборудованию соответствовать требованиям эффективности, производительности, выбросов и безопасности.

Почему для ваших соленоидов выбирают Allied Electronics?

Независимо от того, ищете ли вы соленоиды Guardian Electric, аксессуары для соленоидов White-Rodgers, электрические соленоиды или даже соленоидные датчики, вы обязательно найдете то, что ищете здесь, в Allied Electronics.Мы не только являемся крупнейшим авторизованным дистрибьютором промышленных электронных компонентов в Северной Америке, мы также гордимся тем, что предлагаем продукцию, которая соответствует самым высоким отраслевым стандартам безопасности и производительности.

Чтобы помочь вам найти то, что вам нужно, наша функция поиска позволит вам выполнить поиск в нашем обширном ассортименте соленоидов по наиболее популярным вариантам или по конкретным производителям. Кроме того, если вы знаете название / номер продукта, вы можете ввести его в строку поиска, чтобы найти нужный электрический соленоид.

Если вы в чем-то не уверены или не можете найти нужный соленоид, свяжитесь с нами. Наши дружелюбные консультанты всегда рядом, если вам потребуется помощь. Вы также можете воспользоваться нашим центром экспертного контента для получения дополнительной полезной информации.

Соленоид

Соленоид

Соленоид [nb 1] представляет собой катушку, намотанную в плотно упакованную спираль. В физике термин соленоид относится к длинной тонкой петле из проволоки, часто обернутой вокруг металлического сердечника, который создает магнитное поле, когда через него проходит электрический ток.Соленоиды важны, потому что они могут создавать контролируемые магнитные поля и могут использоваться в качестве электромагнитов. Термин соленоид относится конкретно к магниту, предназначенному для создания однородного магнитного поля в объеме пространства (где можно провести некоторый эксперимент).

В технике термин соленоид может также относиться к множеству преобразователей, которые преобразуют энергию в поступательное движение. Этот термин также часто используется для обозначения электромагнитного клапана, который представляет собой интегрированное устройство, содержащее электромеханический соленоид, который приводит в действие пневматический или гидравлический клапан, или электромагнитный переключатель, который представляет собой особый тип реле, внутри которого используется электромеханический соленоид для управлять электрическим выключателем; например, соленоид автомобильного стартера или линейный соленоид, который является электромеханическим соленоидом.

Магнитное поле соленоида

Внутри

Это производное магнитного поля вокруг соленоида, достаточно длинное, чтобы можно было игнорировать краевые эффекты. На диаграмме справа мы сразу знаем, что поле указывает в положительном направлении z внутри соленоида и в отрицательном направлении z вне соленоида.

Мы видим это, применяя правило захвата правой рукой для поля вокруг проволоки.Если мы обхватим правой рукой провод, указав большим пальцем в направлении тока, изгиб пальцев покажет, как ведет себя поле. Поскольку мы имеем дело с длинным соленоидом, все компоненты магнитного поля, не направленные вверх, компенсируются симметрией. Снаружи происходит аналогичная отмена, а поле только направлено вниз.

Теперь рассмотрим воображаемую петлю c , которая находится внутри соленоида. По закону Ампера мы знаем, что линейный интеграл B (вектор магнитного поля) вокруг этой петли равен нулю, поскольку он не включает в себя электрические токи (можно также предположить, что циркулирующее электрическое поле, проходящее через петлю, является постоянным при такие условия: постоянный или постоянно меняющийся ток через соленоид).Выше мы показали, что поле направлено вверх внутри соленоида, поэтому горизонтальные участки контура c ничего не вносят в интеграл. Таким образом, интеграл от верхней части 1 равен интегралу нижней стороны 2. Поскольку мы можем произвольно изменять размеры контура и получить тот же результат, единственное физическое объяснение состоит в том, что подынтегральные выражения фактически равны, то есть магнитное поле внутри соленоида радиально однородно. Однако обратите внимание, что ничто не запрещает ему изменяться в продольном направлении, что на самом деле так и есть.

снаружи

Аналогичный аргумент можно применить к контуру a , чтобы сделать вывод о том, что поле вне соленоида радиально однородно или постоянно. Этот последний результат, который строго верен только около центра соленоида, где силовые линии параллельны его длине, важен, поскольку он показывает, что внешнее поле практически равно нулю, поскольку радиусы поля вне соленоида будут стремиться к бесконечность.

Можно также использовать интуитивный аргумент, чтобы показать, что поле вне соленоида фактически равно нулю.Линии магнитного поля существуют только в виде петель, они не могут расходиться или сходиться к точке, как силовые линии электрического поля (см. Закон Гаусса для магнетизма). Линии магнитного поля следуют продольной траектории соленоида внутри, поэтому они должны идти в противоположном направлении за пределами соленоида, чтобы линии могли образовывать петлю. Однако объем снаружи соленоида намного больше, чем объем внутри, поэтому плотность силовых линий снаружи значительно снижается. Напомним, что внешнее поле постоянно.Чтобы общее количество силовых линий было сохранено, внешнее поле должно стремиться к нулю, поскольку соленоид удлиняется.

Количественное описание

Теперь мы можем рассмотреть воображаемую петлю b . Возьмите линейный интеграл B вокруг петли с длиной петли l . Горизонтальные компоненты исчезают, а внешнее поле практически равно нулю, поэтому закон Ампера дает нам:

, где μ 0 — магнитная постоянная, N количество витков, i электрический ток. Этимология : Французский solénoïde , греческий solen «труба, канал» + сочетание греческой формы eidos «form, shape» [1]

Ссылки

Внешние ссылки

Gears Magazine | Промывка и очистка соленоидов

На протяжении многих лет я слышал несколько различных философий, касающихся промывки и очистки соленоидов.Большинство гидравлических машин для испытания соленоидов имеют либо режим промывки, либо внешнюю систему очистки соленоидов. Это легко представить, как если бы вы помещали соленоид в своего рода посудомоечную машину и использовали горячую ATF для удаления грязи и мусора. Во время работы в Zoom Technology я посетил нескольких клиентов, которые устанавливали соленоиды в свою машину Answermatic Solx и запускали их в режиме промывки в течение тридцати минут или более для каждого соленоида. Первоначально вы могли увидеть, как выходит черный слой грязи, но после нескольких циклов жидкость оставалась «чистой», выходящей из соленоида, но мы думали, что если что-то хорошее, то больше — лучше.В этой статье я хочу честно взглянуть на промывку и чистку соленоидов.

Во-первых, откуда берутся грязь и мусор, которые мы пытаемся вымыть. Когда трансмиссия была первоначально собрана, все было чистым и новым, а все детали, жидкость и фильтр были чистыми и собраны в чистой среде. «Грязь» возникает из-за нормального износа деталей внутри трансмиссии. Очевидное место будет от лент и клатчей. Если они поскользнутся или сгорают, большая часть этого материала будет циркулировать по всему устройству.На втором месте — любые детали во вращающемся узле, подшипники, втулки и стали. Все, что движется, со временем изнашивается, и износ в основном представляет собой удаляемый материал, который снова будет циркулировать внутри устройства. Третье место было бы от гидроблока. Все мы знакомы с износом корпуса клапана, и, опять же, по мере износа клапанов и отверстий клапанов этот материал удаляется и циркулирует внутри устройства.

За исключением катастрофического отказа трансмиссии, весь этот мусор в основном вызван нормальным износом трансмиссии.Большая его часть улавливается фильтром или оседает в поддоне. Мы можем разбить этот материал на три типа. Первый — неметаллический (материал сцепления и ремня). Второй — немагнитный металлический материал (алюминий и латунь). Последний — это магнитный металлический материал (и износ от стальных деталей, таких как подшипники и стали). Представьте типичную коробку передач GM с магнитом для пончиков в углу. Когда вы очищаете поддон, первые два предмета, которые не попадают в фильтр, будут иметь тенденцию покрывать поддон или собираться в областях, в которых поток жидкости не постоянный во время работы.Третий предмет (сталь) собирается на магните.

Что такое соленоид в своей базовой форме? Вспомните урок естествознания в начальной школе, когда вы взяли гвоздь, намотали на него катушку проволоки и подали на него ток (рис. 1). Вы сделали электромагнит. Ток в проволоке, намотанной вокруг гвоздя, намагничивает его, и вы можете поднимать сталь. Чем больше витков проволоки и чем выше сила тока, тем сильнее магнит. Гвоздь должен был быть стальным, поскольку кусок алюминия или латуни ни на что не годился.Соленоид — это в основном то же самое. У нас есть катушка с проволокой и стальной (или железный) сердечник. Когда мы активируем соленоид, вместо того, чтобы поднимать предметы, мы используем эту магнитную силу для перемещения шара к седлу или перемещения клапана как части регулирующего соленоида. Увеличение тока в случае регулирующего соленоида увеличивает силу и позволяет нам контролировать давление с высокой степенью точности. Вспомните урок естествознания еще раз, когда мы сделали электромагнит из катушки с проволокой и гвоздя.Когда вы отключите ток, гвоздь потеряет большую часть своего магнетизма. Однако он сохранял бы очень слабое магнитное поле даже при отключенном токе. Если бы нам повезло, он, возможно, подобрал бы скрепку, но эту концепцию слабого намагничивания важно помнить при обсуждении промывки и очистки.

Хочу разобрать простой соленоид переключения передач. На Рисунке 2 вы можете увидеть каждую часть типичного узла соленоида переключения передач. Маленькая булавка контактирует с мячом.Этот штифт удерживается пружиной по направлению к катушке и перемещается, чтобы прижать шар к седлу, когда соленоид находится под напряжением, и, следовательно, блокирует поток. Весь поток жидкости происходит внутри пластмассового конца, в котором находятся шар и седло. Снаружи гильзы, показанной рядом с катушкой, все остальные детали между пластиковым седлом и катушкой изготовлены из стали. Внешний корпус, удерживающий все это вместе, не показан.

Я хочу выделить три момента, когда дело доходит до промывки и очистки этого соленоида.

  1. Большинство соленоидных машин работают при максимальной температуре около 160F. Это безопасный предел для оператора. В транспортном средстве трансмиссия обычно работает при 200F или более. Пока мы промываем «горячей» жидкостью, она на самом деле немного холоднее, чем нормальная рабочая температура соленоида.
  2. В большинстве машин с соленоидом я могу изменять входное давление на соленоид во время промывки машины. Это дает мне возможность установить его выше, чем обычно при работе, и более высокое давление может помочь смыть накопившуюся грязь и мусор в нормальных путях потока.
  3. Если мы посмотрим на путь потока соленоида, то увидим, что с помощью этого соленоида мы можем промыть только вокруг шара и седла. Штифт, пружина или сердечник внутри катушки не находятся на пути потока, который мог бы обеспечить реальную промывку. Что бы мы ни делали, эти части нельзя смыть, и все, что там скопилось, останется.

Вывод из этого состоит в том, что у нас есть ограничения на промывку и очистку этого соленоида. Первоначальный выброс жидкости под высоким давлением очистит все, что она может, в области шара и седла, но, как мы видим, дальнейшие действия не обеспечат дополнительной промывки.

Разберем регулирующий соленоид, как мы сделали соленоид переключения передач. Как вы можете видеть на рисунке 3, есть сходство с соленоидом переключения передач. Ключевое отличие состоит в том, что вместо шара и седла у нас есть клапан регулирования давления, который управляется током. По мере того, как ток в электромагнитной катушке изменяется, диафрагма перемещается вперед и назад, что приводит к перемещению клапана регулирования давления. На этом соленоиде также есть три отдельных порта: впускной, выпускной и выпускной.Внутри этого соленоида также есть два различных пути потока: один между впуском и выпуском, а другой — между впуском и выпуском. Когда дело доходит до промывки и очистки этого соленоида, я хотел бы выделить три момента.

  1. На всех портах соленоида есть экраны. Соленоиды регулирования давления обычно регулируют давление, а не расход. Поток через эти соленоиды низкий, и экраны будут действовать как ограничители потока, если вы попытаетесь протолкнуть жидкость с более высоким давлением. В отличие от соленоидов переключения передач, мы не можем протолкнуть большое количество жидкости, чтобы промыть этот соленоид.
  2. Взгляните на обломки внутри этого соленоида. Это было снято с машины, которая пришла на ремонт. Это был нормальный сервис, без катастрофических сбоев. Металлический сердечник, который является частью диафрагмы, сделан из стали и (снова возвращаясь к нашему научному классу) будет магнитным при подаче тока и удерживать слабое магнитное поле в выключенном состоянии. Посмотрите на застрявший внутри мусор, притянутый магнетизмом. Если не разрезать его, вы не сможете реально «вымыть» мусор из соленоида.Кроме того, этот мусор более или менее удерживается на месте магнитным полем каждый раз, когда соленоид находится под напряжением. Даже при выключенном соленоиде на него будет действовать слабое магнитное поле.
  3. Если мы посмотрим на пути потока этого соленоида, все происходит на конце, противоположном катушке. У нас есть движение сердечника внутри катушки к диафрагме, но нет пути потока, который мог бы обеспечить реальную промывку. Эту область соленоида нельзя промыть.

Вывод из этого состоит в том, что промывка, вероятно, даже менее эффективна, чем соленоид переключения передач. Большинство мест, где будет скапливаться мусор, недоступны или недоступны для уборки. Мы также боремся с магнетизмом и низким потоком через соленоид, даже если мы используем более высокое давление для промывки соленоида.

Хочу прокомментировать размагничивание. Вы можете размагнитить (или размагнитить) сталь, подав переменный ток либо на проволоку, намотанную вокруг нее, либо как отдельное поле. За прошедшие годы было продано несколько инструментов для размагничивания, которые выглядят как круглая палочка, и концепция заключалась в том, что вы использовали их для удаления магнетизма на внутренних стальных компонентах, вызванного нормальной работой.Как только вы это сделаете, любой магнитный материал внутри будет вымываться, когда мы удалим магнитное поле, удерживающее его на месте. При этом следует помнить о двух вещах.

  1. Магнетизм и электромагнетизм сложны. Принципы и конструкция сложны, и универсальный инструмент для размагничивания любого соленоида, независимо от того, сколько в нем стали или сколько в нем стали, — непростая задача.
  2. Даже если у меня есть инструмент для размагничивания, который справится с этой задачей, единственный способ по-настоящему промыть соленоид — это переместить его из закрытого в открытое положение.Как только я подаю ток на соленоид, чтобы открыть или закрыть его, я повторно приложил магнитное поле, и мы вернулись туда, откуда начали, сводя на нет любой эффект размагничивания.

Стоит ли делать вывод, что промывка и очистка соленоидов не стоит затраченных усилий? Следует ли нам опасаться их повторного использования, потому что на самом деле нет способа полностью очистить их? Дело в том, что соленоиды предназначены для работы с некоторым количеством мусора, который со временем накапливается. Между фильтром передачи и экранами на соленоиде все, что находится внутри, очень хорошо и обычно собирается в областях, не критичных для его функции.Нам следует искать правильную работу соленоида. Шар и седло могут изнашиваться или треснуть, регулирующий соленоид может изнашиваться и либо заедать, либо не иметь возможности повторно регулировать давление. Мой совет, когда дело доходит до промывки и чистки соленоидов, будет следующим:

  1. Очистите соленоид снаружи. Как вы можете видеть на Рисунке 4, этот регулирующий соленоид притягивает мусор на конце. Мы, конечно, не хотим вводить это в нашу новую реконструкцию.
  2. Выполните промывку как можно лучше.Мы вытолкнем немного мусора, но если оставить его в режиме промывки более чем на несколько циклов, это не принесет особого дополнительного преимущества.
  3. Проверить соленоид на соответствие общепринятому стандарту. Работает ли он правильно и повторяется ли он каждый раз, когда мы его проверяем. Это выявит любые проблемы износа внутри соленоида и позволит нам быстро определить, можно ли его повторно использовать или пора его утилизировать.

Это позволит максимально эффективно использовать ваше время и оборудование при работе с утилизированными соленоидами.


Гарретт Хернинг — директор по технической поддержке и продажам компании Hydra-Test USA. Он инженер-электрик и инженер-механик с опытом работы в области автомобильных испытаний и проектирования испытательного оборудования в таких компаниях, как Axil-line, Zoom Technology и Power Test. Он проживает недалеко от Милуоки, штат Висконсин, с женой и двумя детьми в возрасте 11 и 2 лет.

Общие сведения об электрических соленоидах — MRO MagazineMRO Magazine

Чаще всего электрические соленоиды используются для линейного срабатывания клапанов и реле в системах управления.Хотя соленоиды кажутся относительно простыми устройствами, существует ряд рабочих характеристик, которые, если их понять, значительно упростят их применение и обслуживание.

Электричество, проходящее по проводу, создает вокруг этого провода магнитную силу или поток по кругу. Направление и сила этого потока зависят от направления и силы электрического тока в проводе, а направление его вращения определяется «правилом правой руки».Оберните правую руку вокруг провода, указав большим пальцем в направлении тока (перед этим убедитесь, что провод хорошо изолирован). Ваши пальцы будут указывать в направлении потока силового поля. Когда этот провод наматывается в катушку, поток фокусируется в центре катушки с силой, соответствующей количеству витков проволоки.

Хотя это магнитное силовое поле обтекает катушку в относительно изолированной атмосфере, оно обнаруживает, что проводимость черных металлов намного легче переносится.Это непреодолимая тенденция магнитного потока находить этот «легкий путь», который создает знакомое всем нам магнитное притяжение.

Катушка с проволокой окружена стальным кожухом для сбора и обеспечения легкого пути для периферийных сил и уменьшения электрической энергии, поддерживающей поток в этой нежелательной области. Железный плунжер плавает в центре катушки и обычно подпружинен, так что в обесточенном состоянии создается воздушный зазор между плунжером и концом корпуса или полюсного наконечника (см. Рисунок 1).Когда катушка находится под напряжением, плунжер втягивается к полюсному наконечнику, пытаясь закрыть воздушный зазор. Это действие плунжера используется, чтобы толкать или тянуть управляющий элемент клапана или реле, чтобы изменить его рабочее состояние.

Соленоиды переменного тока

Соленоид переменного тока приводится в действие током, меняющимся от положительного пика через ноль до отрицательного пика и обратно со скоростью 60 полных циклов в секунду. Магнитное поле является самым сильным в отрицательных и положительных пиках, но когда ток проходит через ноль, тянущая сила на плунжер уменьшается, и давление пружины начинает втягивать плунжер.Это движение плунжера внутрь и наружу создает неприемлемый звук жужжания или дребезжания.

Чтобы исправить это, небольшое кольцо из медной проволоки вставляют в канавку в полюсном наконечнике или концевом блоке соленоида так, чтобы плунжер прилегал к нему, когда он полностью втянут. Медное кольцо, будучи очень проводящим, позволяет индуцировать или генерировать в нем относительно высокий уровень электрического тока магнитным полем. Это индуцированное электрическое поле создает собственное магнитное поле, которое отстает от первичного поля на 90 электрических градусов или 1/4 цикла переменного тока.Когда переменный ток проходит через ноль, поток затеняющего кольца перекрывает нулевой зазор и, если плунжер контактирует с затеняющим кольцом, удерживает плунжер на месте, устраняя гудение.

Переменный ток также создает различные уровни протекания тока в электромагнитных катушках в зависимости от положения плунжера. Когда на соленоидную катушку сначала подается напряжение и воздушный зазор находится в самом широком месте, магнитная цепь является неполной, сопротивление или импеданс переменного тока низкое, а электрический ток, требуемый катушкой, высокий.Этот высокий уровень тока называется «пусковым током» и возникает только в цепях переменного тока.

Когда плунжер начинает двигаться к полюсному наконечнику, уменьшая воздушный зазор, сопротивление или импеданс переменного тока начинает расти, и результирующий ток катушки начинает уменьшаться до тех пор, пока плунжер не будет полностью втянут (см. Рисунок 3). Электрический ток в катушке стабилизируется в этой точке до расчетного уровня катушки, называемого «ток удержания». Пусковой ток может быть в 3–10 раз выше, чем ток удержания, и может вызвать условия экстремального перегрева, что приведет к перегоранию катушки, если он будет продолжительным.

Жужжание катушки

Жужжание катушки указывает на то, что плунжер не полностью установлен. Это состояние вызывает ситуацию броска тока, который, если он сохраняется, может привести к перегреву катушки и возможному выгоранию. Жужжащая катушка соленоида переменного тока «кричит» на вас, чтобы вы немедленно проверили затеняющее кольцо на предмет повреждений или путь поршня на предмет грязи или мусора. Катушка непрерывного действия способна выдерживать тепло, выделяемое постоянным током удержания, но не постоянным пусковым током.Слишком часто катушку меняют, не устраняя причину гудения и перегорания.

Частота работы соленоида переменного тока также влияет на накопление тепла в катушке. Каждый раз, когда на катушку воздействуют выделяющие тепло уровни пускового тока, ее температура повышается немного выше. Если частота цикла превышает способность катушки рассеивать это дополнительное тепло, катушка сгорит.

Соленоиды постоянного тока

Соленоиды постоянного тока более просты по конструкции, им не мешают пусковые токи и необходимость в затемняющих кольцах.Тепло, выделяемое сопротивлением току в обмотках катушки, постоянно и слабее, независимо от положения плунжера. Поэтому выгорание катушек постоянного тока встречается редко.

Поток, генерируемый вокруг катушки, заряженной постоянным током (электричество движется только в одном направлении), индуцирует собственный электрический ток в проводе катушки в обратном направлении. Этот индуцированный ток, хотя и слабее, чем ток в первичной обмотке, препятствует нарастанию магнитного потока до максимальной силы (см. Рисунок 2).Результирующая задержка времени срабатывания, вообще говоря, будет вызывать более медленное действие, чем соленоид переменного тока аналогичного размера.

Скачки напряжения

Любая нагрузка, создающая магнитную силу, например двигатель или соленоид, классифицируется как индуктивная нагрузка. Когда питание отключено, коллапсирующее магнитное поле генерирует или индуцирует электрический импульс высокого напряжения в направлении, обратном направлению основного тока. Этот индуцированный импульс обычно до 10 раз превышает линейное напряжение, но имеет очень низкий расход или ток.Это происходит с переменным током, но сильнее при использовании постоянного тока. Искра, возникающая при размыкании переключателя, или искры, возникающие вокруг щеток в электроинструментах, вызваны этим индуцированным электрическим импульсом или скачком напряжения.

Скачки напряжения могут быть очень вредными для других компонентов в электрических цепях, таких как выпрямители и почти все электронное оборудование. Пики могут также вызывать другие электрические помехи или сигналы низкого напряжения в соседних линиях, близких к линиям, несущим пики напряжения. Этот электрический шум может создавать ложные сигналы в электронном управляющем оборудовании на основе транзисторов, но обычно его можно контролировать, устанавливая недорогие устройства подавления вокруг катушек или двигателей, вызывающих проблему.

Тед Гроув, менеджер по корпоративному обучению Wainbee Limited, Миссиссога, Онтарио, является опытным инструктором по гидравлическому обучению. Посетите веб-сайт www.mromagazine.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *