РазноеРеостат для чего нужен: Реостаты. Устройство, виды, назначение и области применения

Реостат для чего нужен: Реостаты. Устройство, виды, назначение и области применения

Содержание

Для чего нужен реостат, принцип его работы в цепи. Видеоурок «Реостаты

Прибор, способный справляться с изменением сопротивления, принято называть реостатом. Структурно он представлен набором резисторов, которые подключены между собой ступенчато, и может обеспечивать непрерывное изменение сопротивления. В отдельную категорию выделяются устройства, осуществляющие плавное регулирование без разрыва сети. Чтобы определиться, для чего нужен реостат, нужно детальнее рассмотреть его особенности и принцип работы.

Описываемые приспособления универсальны в применении. В зависимости от непосредственного назначения их принято разделять на такие виды:

Важно! Реостаты применяются в качестве ограничителей тока в обмотках возбуждения электромашин с постоянным током.

Таким способом выравниваются сильные перепады электрического тока, а также динамические перегрузки, влекущие повреждение привода и всего механизма, подведенного к нему. Обеспечение подходящего сопротивления в момент запуска продлевает эксплуатационный срок коллектора и щеток.

В отдельную группу выделяются потенциометры. Они представляют собой делители напряжения, в основу которых заложены переменные резисторы. Такие приборы дают возможность применять в электронных схемах разное напряжение без дополнительных блоков питания, трансформаторов. Регулирование силы тока посредством реостата часто задействуется в радиотехнической сфере. Ярким тому примером выступает изменение громкости в динамиках.

Описываемые приспособления похожи по своему функциональному назначению. Конструктивно и визуально самым простым считается реостат ползункового типа. Он подсоединяется к цепи с помощью верхней и нижней клеммы. Прибор сконструирован таким способом, что ток поступает по всей длине провода, а не в поперечном направлении витков. Это осуществляется благодаря надежной изоляции проводников.

Важно! Большинство положений бегунка используют только часть реостата.

При изменении длины проводника осуществляется регулировка силы электротока в рабочей цепи. С целью предупреждения преждевременного износа витков ползунок оснащается скользящим контактом (колесико или стержень из графита).

Часто реостат применяют для регулирования в цепи вместо потенциометра. В таком случае выполняется его подключение с помощью трех клемм. В нижней части две из них являются входом, соединяются с источником напряжения. Одна нижняя клемма и верхняя свободная используются в качестве выхода. Когда происходит передвижение ползунка, напряжение без труда регулируется.

Реостат имеет свойство функционировать в балластном режиме, в чем может возникнуть необходимость при создании активной нагрузки во время потребления энергии. В такой ситуации рекомендуется учитывать рассеивающие способности используемого агрегата. Если есть избыточное тепло, прибор выходит из строя. При подключении в электросеть нужно правильно рассчитать рассеиваемую мощность реостата, если требуется, создать достаточное и правильное охлаждение.

Большой популярностью пользуются реостаты, имеющие внешнее оформление в виде тора. Основная сфера их применения — электротранспорт (трамваи), промышленная отрасль. Регулирование осуществляется путем перемещения ползунка по кругу. Передвижение такой детали выполняется по обмоткам, которые расположены тороидально.

Устройство, выполненное по принципу тора, видоизменяет сопротивление практически без разрыва цепи. Его противоположностью является агрегат рычажного типа. Принцип работы такого реостата основан на том, что резисторы закреплены на специальной раме, они выбираются посредством специального рычага. При любой коммутации происходит разрыв контура.

Схемы, в которых задействуется рычажный прибор, лишены плавной регулировки сопротивления. Какие-либо переключения влекут за собой поступательное изменение показателей в сети. Что касается дискретности шагов, она зависит от диапазона регулировки и численности резисторов, присутствующих на раме.

Еще одной разновидностью выступают штепсельные реостаты, с помощью которых осуществляется ступенчатая регулировка сопротивления. Основное отличие — изменение параметров внутри сети без предварительного разрыва цепи. Когда штепсель поступает на перемычку, основная доля тока идет без сопротивления. Перенаправление тока на резистор осуществляется путем вытаскивания штепселя.

Жидкостные и ламповые приспособления относятся к специфическим видам реостатов.

Ввиду наличия определенных недостатков они имеют узкую, специализированную сферу применения:

  1. Приборы жидкостного типа задействуются во взрывоопасной сфере в качестве управляющих деталей двигателя.
  2. Ламповые изделия характеризуются малой точностью и надежностью. Часто используются в учебных заведениях на уроках физики, в лабораториях, исследовательских центрах.

Определив, для чего предназначены реостаты, следует подробнее рассмотреть их составляющую сторону. В зависимости от материала, используемого на производстве, выделяются следующие установки:

  • керамические — особенность заключается в применении при небольших мощностях;
  • металлические — нашли широкое потребление в разных направлениях деятельности человека;
  • угольные — их основное использование в промышленности.

Важно! Тепло отводится масляным, водяным или воздушным путем. Если нет возможности рассеивания тепла с рабочей поверхности, задействуется жидкостное охлаждение. Теплоотдача может повышаться за счет применения вентилятора и радиатора.

Напряжение, сила тока в рабочей цепи, положение ползунка в реостате и оказываемое им сопротивление находятся в непосредственной зависимости. Такая особенность положена в основу датчика угла поворота. В подобном приборе конкретная электрическая величина соответствует определенному положению ротора.

В настоящее время подобные датчики заменяются усовершенствованными оптическими и магнитными аналогами. Причиной тому выступает неустойчивость зависимости сопротивления и угла по отношению к температурному действию. Постепенное вытеснение датчиков реостатного типа еще обусловлено переходом на цифровые, более удобные системы. Сегодня резистивные измерители задействуются в схемах, где присутствуют аналоговые сигналы.

Зная, для чего нужны реостаты электрического типа, легко можно объяснить их широкое использование в автомобилестроении, технике, промышленности. Сопротивление необходимо для работы радиотехники, при запуске электродвигателей, они применимы в виде активной нагрузки. Выход из строя небольшого прибора может повлечь сбой работы всей системы. В этом и заключается важность реостатов

Закон Ома наглядно показывает, что силу тока в цепи можно изменять путем включения в нее электрического аппарата – резистора или реостата, имеющего некоторое электрическое сопротивление. Этим свойством широко пользуются в практике для регулирования и ограничения тока в двигателях, генераторах и других электрических устройствах.

Резисторы и реостаты (рисунок 8) обычно изготовляют из проволоки или ленты, материалом для которой служат сплавы металлов, обладающие высоким удельным сопротивлением (константан, никелин, манганин, фех­раль), что дает возможность для изготовления этих аппаратов применять про­волоку наименьшей длины. В устройствах радиотехники и электроники часто применяют резисторы, выполненные из графита.

Рисунок 8 – Устройство реостатов:

а – с плавным изменением сопротивления, б – со ступенчатым изменением сопротивления, в – из чугунных пластин, г – из фехралевой ленты

Реостат r может быть включен в цепь между источником и приемни­ком r н электрической энергии (рисунок 9а ). В этом случае при изменении сопротивления реостата, например, вследствие перемещения подвижного контакта изменяется сила тока

I , проходящего через источник и приемник. Этот ток протекает только по части реостата. Однако реостат можно вклю­чить в цепь таким образом, чтобы ток проходил по всему его сопротивлению, а к приемнику ответвлялась только часть тока источника. В этом случае два крайних зажима 1 и 2 реостата (рисунок 9б ) подключают к источнику элек­трической энергии, а один из этих зажимов, например 2 , и подвижной кон­такт реостата 3 присоединяют к приемнику r н . Очевидно, что при таком включении к приемнику будет подаваться напряжение U , которое зависит от сопротивления части реостата, включенной между зажимом 2 и подвижным контактом.

Рисунок 9 – Схемы включения реостатов:

а – последовательно в цепь приемника электрической энергии, б – в качестве делителя напряжения

Следовательно, передвигая подвижной контакт реостата, можно изме­нять напряжение U , подводимое к приемнику.

Реостат, включенный по схеме, показанной на рисунке 9б , называется делителем напряжения или потенциометром. Если сопротивление приемника относительно велико по сравнению с сопротивлением реостата, то напряже­ние на зажимах приемника

где r 1 и r 2 – сопротивления частей реостата.

КОНТРОЛЬНЫЕ ВОПРОСЫ

1. Из чего состоит электрическая цепь?

2. Какие приборы могут выступать в качестве источников и приемников энергии?

3. Внешний и внутренний источник электрической энергии.

4. Что называется электрическим током, силой тока? Направление тока. Какой ток называется переменным, постоянным?

5. Электропроводность вещества: разделение на проводники, диэлектрики, полупроводники.

6. Что называется электрическим полем?

7. Что такое напряженность электрического поля?

8. Что такое энергия электрического поля?

9. Понятие электрического потенциала.

10. Что называется электрическим напряжением?

Для того чтобы создать электрический ток, необходимо составить замкнутую электрическую цепь из электрических приборов.
Элементы электрической цепи соединяются проводами и подключаются к источнику питания.

Самая простая электрическая цепь состоит из:
1. источника тока
2. потребителя электроэнергии — (лампа, электроплитка, электродвигатель, электробытовые приборы)
3. замыкающего и размыкающего устройства — (выключатель, кнопка, рубильник)
4. соединительных проводов

Чертежи, на которых показано, как электрические приборы соединены в цепь, называются электрическими схемами.
На электрических схемах все элементы электрической цепи имеют условные обозначения.

1 — гальванический элемент
2 — батарея элементов
3 — соединение проводов
4 — пересечение проводов на схеме без соединения
5 — зажимы для подключения
6 — ключ
7 — электрическая лампа
8 — электрический звонок
9 — резистор (или иначе сопротивление)
10- нагревательный элемент
11 — предохранитель

Существуют сопротивления, величину которых можно плавно изменять.
Это могут быть переменные резисторы или сопротивления, называемые реостатами.

Таким образом, реостаты — это приборы, сопротивление которых можно регулировать.
Они применяются тогда, когда необходимо менять силу тока в цепи.

Реостат отличается от переменного резистора своей конструкцией и большой мощностью.

На электрической схеме реостат имеет своё условное обозначение:

С помощью перемещаемого движка (2) можно увеличивать или уменьшать величину сопротивления (между контактами 1 и 2), включаемого в электрическую цепь.

Попробуй, глядя на рисунок, выяснить для себя в какую сторону надо перемещать движок, чтобы:
а) увеличить сопротивление, включенное в цепь?
б) уменьшить сопротивление?
Умение пользоваться реостатом пригодится тебе для проведения лабораторных работ.
Приготовься к этому заранее!

ИНТЕРЕСНО

В электрических схемах применяются символические изображения входящих в нее элементов и устройств. Физические величины также принято обозначать буквенными символами.
Немецкий профессор Г.К. Лихтенберг из Геттенгена первый предложил ввести электрические символы, обосновал их практическое применение и использовал в своих работах!
Благодаря ему, в электротехнике появляются математические знаки плюс и минус для обозначения электрических зарядов. Символы, предложенные Г.К. Лихтенбергом, прижились и известны теперь даже школьникам.
Г.К Лихтенберг родился в Германии и в 1769 году стал профессором физики. Многочисленные работы по математике, метеорологии, геодезии и электричеству способствовали избранию Лихтенберга Почетным членом Петербургской Академии наук.
В 1769 году в Геттингене он установил первый в Германии громоотвод на университетской библиотеке.

ЗНАЕШЬ ЛИ ТЫ

В 1881 году в Париже на электротехнической выставке впервые демонстрировалось самое современное для того времени изобретение. Это был обычный для нас выключатель. Публика была в восторге!

Английский ученый со смешной фамилией Кавалло, живший на рубеже 18-19 веков, первым предложил конструкцию электрических проводов. Он предлагал натянутую отожженную медную или латунную проволоку нагревать в пламени свечи или просто куском раскаленного железа, покрывать смолой и обматывать полотняной лентой, также равномерно покрытой смолой. Изолированную таким способом проволоку следовало защищать чехлом из шерсти. Ну чем не основные элементы современного кабеля: токопроводящая жила, изоляция, защитный покров. Провод предполагалось изготовлять отрезками по 6–9 м, а места соединения отрезков тщательно обматывать промасленным шелком.

А НУ-КА, СООБРАЗИ

Если у вас есть электрозвонок, питающийся от батарейки, источник тока, провода, то как соединить провода, чтобы замыкание цепи вызвало только один удар молоточка звонка?

Не забывайте выключать свет!

Резисторы. Закон Ома наглядно показывает, что силу тока в электрической цепи можно изменять, включая в нее различные сопротивления. Этим свойством широко пользуются на практике для регулирования и ограничения тока в обмотках двигателей, генераторов и других электрических потребителях. Электрический аппарат, предназначенный для включения в электрическую цепь с целью регулирования или ограничения проходящего по ней тока, называют резистором. Резисторы бывают с постоянным или регулируемым сопротивлением. Последние иногда называют реостатами.
Резисторы обычно изготовляют из проволоки или ленты, материалом для которых служат сплавы металлов, обладающие высоким удельным сопротивлением (константан, никелин, манганин, фехраль). Это дает возможность для изготовления резисторов применять проволоку наименьшей длины. В электрических цепях, по которым проходят сравнительно небольшие токи (например, в цепях управления, в устройствах электроники и радиотехники), часто применяют непроволочные резисторы, выполненные из графита и других материалов.
Реостаты могут выполняться с плавным или ступенчатым изменением сопротивления. В лабораториях для управления электрическими машинами и испытательными устройствами часто используют ползунковый реостат с плавным изменением сопротивления (рис. 16, а). Такой реостат состоит из изоляционной трубки 4, на которую навита проволочная спираль 5. К виткам этой спирали прикасается подвижной контакт 2. Зажим 1 реостата соединяется с подвижным контактом, другой зажим 3 — с одним из концов спирали. Перемещая подвижной контакт, можно изменять длину проволоки, расположенной между зажимами реостата, и тем самым изменять его сопротивление.
Для пуска и регулирования электрических двигателей станков, грузоподъемных механизмов и пр. применяют ползунковый реостат со ступенчатым изменением сопротивления (рис. 16, б). Реостат состоит из ряда одинаковых сопротивлений 9 (секций), присоединенных к контактам 8. Для включения в цепь того или иного числа секций служит ползунок 7 со штурвалом 6.
Для регулирования тока при пуске тяговых двигателей электрических локомотивов постоянного тока применяют реостаты со ступенчатым изменением сопротивления (пусковые реостаты). Отдельные секции реостата в процессе пуска замыкаются накоротко дистанционно управляемыми выключателями, называемыми контакторами.
На некоторых электровозах (например, электровозах ЧС) пусковые реостаты выполнены из чугунных литых пластин 10 особой формы, напоминающей зигзагообразно уложенную ленту. Отдельные пластины собирают на изолированных шпильках и прикрепляют к основанию 11 (рис. 16, в).

В последнее время пусковые реостаты электровозов и моторных вагонов выполняют из фехралевой ленты 12, намотанной на фарфоровые изоляторы 13 (рис. 16, г). Так же устроены и реостаты, служащие для регулирования тока возбуждения тяговых двигателей на электровозах и тепловозах. Реостаты из фехралевой ленты более

прочны, более устойчивы против тряски и вибраций и имеют меньшую массу, чем реостаты, выполненные из чугунных пластин.
Схемы включения реостатов. Реостат 2 (рис. 17) может быть включен последовательно в цепь между источником 1 и приемником 4 электрической энергии. В этом случае при изменении сопротивления реостата, т. е. при перемещении подвижного контакта 3, изменяется сила тока в приемнике. Этот ток проходит только по части сопротивления реостата.
Однако реостат можно включать в цепь таким образом, чтобы ток проходил по всему его сопротивлению, а к приемнику ответвлялась только часть тока источника. В этом случае два крайних зажима 2 и 4 реостата (рис. 18) подключают к источнику 5, а один из этих зажимов, например 4, и подвижной контакт 3 реостата — к приемнику 1. Очевидно, что при таком включении к приемнику будет подаваться напряжение U, равное падению напряжения между зажимом 4 и подвижным контактом 3 реостата. Следовательно, передвигая подвижной контакт реостата, можно изменять напряжение U, подводимое к приемнику, и силу тока в нем. Напряжение U представляет собой только часть напряжения Uи на зажимах источника.
Реостат, включенный по схеме рис. 18, называется делителем напряжения, или потенциометром.

Реостатом называется аппарат, состоящий из набора резисторов и устройства, с помощью которого можно регулировать сопротивление включенных резисторов и благодаря этому регулировать переменный и постоянный ток и напряжение.

Различают реостаты с воздушным и жидкостным (масляным или водяным) охлаждением . Воздушное охлаждение может применяться для всех конструкций реостатов. Масляное и водяное охлаждение используется для металлических реостатов, резисторы могут либо погружаться в жидкость, либо обтекаться ею. При этом следует иметь в виду, что охлаждающая жидкость должна и может охлаждаться как воздухом, так и жидкостью.

Металлические реостаты с воздушным охлаждением получили наибольшее распространение. Их легче всего приспособить к различным условиям работы как в отношении электрических и тепловых характеристик, так и в отношении различных конструктивных параметров. Реостаты могут выполняться с непрерывным или со ступенчатым изменением сопротивления.

Переключатель ступеней в реостатах выполняется плоским. В плоском переключателе подвижный контакт скользит по неподвижным контактам, перемещаясь при этом в одной плоскости. Неподвижные контакты выполняются в виде болтов с плоскими цилиндрическими или полусферическими головками, пластин или шин, располагаемых по дуге окружности в один или два ряда. Подвижный скользящий контакт, называемый обычно щеткой, может выполняться мостикового или рычажного типа, самоустанавливающимся или несамоустанавливающимся.

Несамоустанавливающийся подвижный контакт проще по конструкции, но ненадежен в эксплуатации ввиду частого нарушения контакта. При самоустанавливающемся подвижном контакте всегда обеспечиваются требуемое контактное нажатие и высокая надежность в эксплуатации. Эти контакты получили преимущественное распространение.

Достоинствами плоского переключателя ступеней реостата являются относительная простота конструкции, сравнительно небольшие габариты при большом числе ступеней, малая стоимость, возможность установки на плите переключателя контакторов и реле для отключения и защиты управляемых цепей. Недостатки — сравнительно малая мощность переключения и небольшая разрывная мощность, большой износ щетки вследствие трения скольжения и оплавления, затруднительность применения для сложных схем соединения.

Металлические реостаты с масляным охлаждением обеспечивают увеличение теплоемкости и постоянной времени нагрева за счет большой теплоемкости и хорошей теплопроводности масла. Это позволяет при кратковременных режимах резко увеличивать нагрузку на резисторы, а следовательно, сократить расход резистивного материала и габариты реостата. Погружаемые в масло элементы должны иметь как можно большую поверхность, чтобы обеспечить хорошую теплоотдачу. Закрытые резисторы погружать в масло нецелесообразно. Погружение в масло защищает резисторы и контакты от вредного воздействия окружающей среды в химических и других производствах. Погружать в масло можно только резисторы или резисторы и контакты.

Отключающая способность контактов в масле повышается, что является достоинством этих реостатов. Переходное сопротивление контактов в масле возрастает, но одновременно улучшаются условия охлаждения. Кроме того, за счет смазки можно допустить большие контактные нажатия. Наличие смазки обеспечивает малый механический износ.

Для длительных и повторно-кратковременных режимов работы реостаты с масляным охлаждением непригодны ввиду малой теплоотдачи с поверхности бака и большой постоянной времени охлаждения. Они применяются в качестве пусковых реостатов для асинхронных электродвигателей с фазным ротором мощностью до 1000 кВт при редких пусках.

Наличие масла создает и ряд недостатков: загрязнение помещения, повышение пожарной опасности.

Рис. 1. Реостат с непрерывным изменением сопротивления

Пример реостата с практически непрерывным изменением сопротивления приведен на рис. 1. На каркасе 3 из нагревостойкого изоляционного материала (стеатит, фарфор) намотана проволока резистора 2. Для изоляции витков друг от друга проволоку оксидируют. По резистору и направляющему токоведущему стержню или кольцу 6 скользит пружинящий контакт 5, соединенный с подвижным контактом 4 и перемещаемый при помощи изолированного стержня 8, на конец которого надевается изолированная рукоятка (на рисунке рукоятка снята). Корпус 1 служит для сборки всех деталей и крепления реостата, а пластины 7 — для внешнего присоединения.

Реостаты могут включаться в схему как переменный резистор (рис. 1, а) или как (рис. 1,6). Реостаты обеспечивают плавное регулирование сопротивления , а следовательно, и тока или напряжения в цепи и находят широкое применение в лабораторных условиях в схемах автоматического управления.

Схемы включения пусковых и регулировочных реостатов

На рисунке 2 показана схема включения с помощью реостата двигателя постоянного тока небольшой мощности.


Рис. 2 . Схема включения реостата: Л — зажим, соединенный с сетью, Я — зажим, соединенный с якорем; М — зажим, соединенный о цепью возбуждения, О — холостой контакт, 1 — дуга, 2 — рычаг, 3 — рабочий контакт.

Перед включением двигателя необходимо убедиться в том, что рычаг 2 реостата находится на холостом контакте 0. Затем включают рубильник и рычаг реостата переводят на первый промежуточный контакт. При этом двигатель возбуждается, а в цепи якоря появляется пусковой ток, величина которого ограничена всеми четырьмя секциями сопротивления Rп. По мере увеличения частоты вращения якоря пусковой ток уменьшается и рычаг реостата переводят на второй, третий контакт и т. д., пока он не окажется на рабочем контакте.

Пусковые реостаты рассчитаны на кратковременный режим работы, а поэтому рычаг реостата нельзя длительно задерживать на промежуточных контактах : в этом случае сопротивления реостата перегреваются и могут перегореть.

Прежде чем отключить двигатель от сети, необходимо рукоятку реостата перевести в крайнее левое положение. При этом двигатель отключается от сети, но цепь обмотки возбуждения остается замкнутой на сопротивление реостата. В противном случае могут появиться большие перенапряжения в обмотке возбуждения в момент размыкания цепи.

При пуске в ход двигателей постоянного тока регулировочный реостат в цепи обмотки возбуждения следует полностью вывести для увеличения потока возбуждения.

Для пуска двигателей с последовательным возбуждением применяют двухзажимные пусковые реостаты, отличающиеся от трехзажимных отсутствием медной дуги и наличием толь ко двух зажимов — Л и Я.

Реостаты со ступенчатым изменением сопротивления (рис. 3 и 4 ) состоят из набора резисторов 1 и ступенчатого переключающего устройства.

Переключающее устройство состоит из неподвижных контактов и подвижного скользящего контакта и привода. В пускорегулирующем реостате (рис. 3 ) к неподвижным контактам присоединены полюс Л1 и полюс якоря Я, отводы от элементов сопротивлений, пусковых и регулировочных, согласно разбивке по ступеням и другие управляемые реостатом цепи. Подвижный скользящий контакт производит замыкание и размыкание ступеней сопротивления, а также всех других управляемых реостатом цепей. Привод реостата может быть ручной (при помощи рукоятки) и двигательный.

Рис. 3 R пк — резистор, шунтирующий катушку контактора в отключенном положении реостата, R огр — резистор, ограничивающий ток в катушке, Ш1, Ш2 — параллельная обмотка возбуждения электродвигателя постоянного тока, С1, С2 — последовательная обмотка возбуждения электродвигателя постоянного тока.

Рис. 4 R пр — сопротивление предвключенное, ОВ — обмотка возбуждения электродвигателя постоянного тока.

Реостаты по типу приведенных на рис. 2 и 3 нашли широкое распространение. Их конструкции обладают, однако, некоторыми недостатками, в частности большим числом крепежных деталей и монтажных проводов, особенно в реостатах возбуждения, которые имеют большое число ступеней.

Схема включения маслонаполненного реостата серии РМ , предназначенный для пуска асинхронных двигателей с фазным ротором, приведен на рис. 5. Напряжение в цепи ротора до 1200 В, ток 750 А. Коммутационная износостойкость 10 000 операций, механическая — 45 000. Реостат допускает 2 — 3 пуска подряд.

Рис. 5

Реостат состоит из встроенных в бак и погруженных в масло пакетов резисторов и переключающего устройства. Пакеты резисторов набираются из штампованных из электротехнической стали элементов и крепятся к крышке бака. Переключающее устройство — барабанного типа, представляет собой ось с закрепленными на ней сегментами цилиндрической поверхности, соединенными по определенной электрической схеме. На неподвижной рейке укреплены соединенные с резисторными элементами неподвижные контакты. При повороте оси барабана (маховиком или двигательным приводом) сегменты как подвижные скользящие контакты перемыкают те или иные неподвижные контакты и тем самым меняют значение сопротивления в цепи ротора.

Facebook

Twitter

Вконтакте

Одноклассники

Google+

для чего нужен реостат — Школьные Знания.com

Лыжник массой 80 кг бежит по склону батута высотой 39,2 м. Какова средняя сила сопротивления при движении по склону, если до начала прыжка скорость лы … жника составляла 24 м / с?

Масса тела 900 г, объём 300 см. Определите плотность тела (выразите в кг/м3)

Задание 3.Сосуд содержит смесь воды и льда при температуре 0 °С. Масса воды равна 0,8 кг, масса льда равна 100 г. После введения водяного пара при тем … пературе 100 °С установилась температура, равная 30 °С. 2 налили 100 г води. Скільки олії треба налити поверх води, щоб гідростатичний тиск на дно подвої … вся? Густина води та олії відповідно 1 та 0,9 г/см A Б B 100 г / 200 г 125 г Г немае правильної відповіді​

ДАЮ 42 БАЛЛА СРОЧНО ПРОШУ

Дам 20 баллов, нужно срочно! В изогнутую трубку, запаянную с одного конца, налита жидкость с плотностью ρ = 800 кг/м3 и не смешивающаяся с ней жидкост … ь в два раза большей плотности. h = 20 см, атмосферное давление при проведении эксперимента равно 101 кПа, g = 10 Н/кг. Чему равно давление воздуха над поверхностью жидкости в точке А (в кПа) внутри закрытого участка трубки? Ответ округлите до десятых.

Установите соответствие: 1. Мензурка 2. Курвиметр 3. Штангенциркуль 4. Одометр a. Прибор, измеряющий большие расстояния при помощи количества вращения … колёс b. Прибор, измеряющий с высокой точностью внешние и внутренние размеры тела c. Прибор, измеряющий объём тела и имеющий шкалу измерения d. Прибор, измеряющий длину кривых линий

В каких случаях удобно выражать значение физических величин в кратных или дольных величин?​

Через некоторое время после прыжка из самолета, раскрылся парашют и ускорение парашютиста достигло 5 〖м⁄с〗^2. Каков вес парашютиста после торможения … если его масса равна 70 кг ?​

Для чего нужен реостат в электрической цепи – регулируемое сопротивление

Устройство и принцип работы

Если рассматривать реостатную конструкцию, то необходимо отметить несколько основных его частей:

  • это трубка из керамики;
  • на нее намотана металлическая проволока, концы которой выведены на контакты, расположенные на противоположных концах керамической трубки;
  • выше трубки установлена металлическая штанга, на одной стороне которой установлен контакт;
  • на штанге закреплен движущийся контакт, который электрики называют ползун.

Теперь, как все это работает. Обратите внимание на рисунок ниже.

Первая позиция (а) – контакт (движущийся) посередине. Это говорит о том, что ток будет проходить только через половину прибора. Вторая позиция (б) говорит о том, что задействован проводник полностью. То есть, его длина максимальная, значит, и сопротивление максимальное, при этом сила тока уменьшилась. Понятно, что чем больше сопротивление, тем меньше сила тока. Третья позиция (в) – здесь все наоборот: снижается сопротивление, увеличивается сила тока.

Хотелось бы обратить ваше внимание на то, что керамическая трубка, используемая в реостатной конструкции, полая. Это необходимая составляющая, которая позволяет прибору охлаждаться при прохождении через проводник электроэнергии. Добавим: считается, что самые безопасные реостаты – это те, которые закрыты кожухом.

Как включается реостат в цепь

Во-первых, этот прибор в электрическую цепь включается только последовательно. Во-вторых, один из контактов подключается к ползуну, с помощью которого и регулируется величина тока в цепи. Но необходимо отметить, что этот управляющий элемент можно использовать и для регулировки напряжения в электрической цепочке. Здесь может быть использовано несколько схем с одним сопротивлением или двумя. Понятно, что чем меньше элементов в электрической цепочке, тем проще она.

Реостаты – это универсальные приборы. Их сегодня используют не только для управления силой тока и напряжением. К примеру, в телевизорах они установлены для увеличения или уменьшения звука. Да и переключение каналов косвенно связано с ними же.

И еще один момент. В электрических схемах обозначение этих приборов вот такое:

или такое

На первом рисунке более подробно расписана схема подключения, где красный прямоугольник – это и есть проводник, накрученный на керамическую основу. Синяя линия – это контакт, через который подводится питающий провод. Зеленная стрелка – это ползун. Она направлена влево, что говорит о том, что перемещая ползунок влево, мы уменьшаем сопротивление проводника. И, наоборот, перемещаем контакт вправо, увеличиваем сопротивление.

Рисунок второй более упрощенный. На нем всего лишь прямоугольник, показывающий наличие сопротивления, и стрелка, которая показывает, что этот показатель можно изменять.

Конечно, вся эта информация касается простейших элементов. Но необходимо отметить, что реостаты могут быть разными, все зависит от того места, куда они должны быть установлены. Есть различия и по токопроводящему материалу, который лежит в основе. К примеру, это может быть уголь, металлы, жидкости и керамика. К тому же процесс охлаждения производится воздушным путем или при помощи жидкостей, и это может быть не только вода.

В своих самодельных поделках радиолюбители практически всегда применяют переменные резисторы для регулировки громкости или напряжения ну и естественно, каких либо других параметров. Но прибор с кнопками на лицевой панели смотрится куда более интересно и современно, чем с обыкновенными ручками-крутилками. Применения микроконтроллерного управления не всегда целесообразно в простеньких поделках, а также тяжело для новичка, а вот повторить описанный ниже электронный переменный резистор сможет, наверное, каждый.

Электронный переменный резистор

Схема имеет настолько малые габариты, что ее можно впихнуть в практически любое самодельное устройство. Она полностью выполняет функцию обыкновенного переменного резистора, не содержит дефицитных и специфических компонентов.

Основу ее составляет полевой транзистор КП 501 (или любой другой его аналог).


Нажимая кнопку SB1, мы накапливаем заряд на электролитическом конденсаторе С 1, что позволяет приоткрыть транзистор и повлиять на сопротивление на выходных клеммах схемы. Нажимая кнопку SB2, мы разряжаем конденсатор С 1, что приводит к постепенному закрыванию транзистора. При постоянном зажатии, какой либо из кнопок, изменения сопротивления производиться плавно.

Плавность регулировки такого электронного переменного резистора зависит от емкости конденсатора С 1 и номинала резистора R 1. Максимальное сопротивление, которое способна имитировать схема зависит от подстроечного резистора R 2. Схема начинает работать сразу и дополнительной настройки не требует, кроме как подстройки максимального сопротивления резистором R 2.

После отключения питания схемы, такой электронный переменный резистор не сбрасывает настройки сразу, а сопротивление схемы увеличивается постепенно, что связанно с саморазрядом конденсатора С 1. При использовании нового и качественного конденсатора С 1 настройки схемы могут продержаться около суток.

Наверное, самым востребованным применением этой схемы станет электронный регулятор громкости. Такая электронная регулировка громкости не лишена своих недостатков, но важнейшим фактором для радиолюбителей наверняка станет простота повторения.

Демонстрацию работы этой схемы смотрим ниже, ставим лайк, а также подписываемся на наши странички в соц. сетях!

Прим. В ролике электронный аналог переменного резистора настроен на 10 кОм. Используемый мультиметр Bside ADM01 имеет автоматическое переключение диапазонов и при их переключении не всегда слету определяет текущее сопротивление схемы.

На практике часто приходится менять силу тока в цепи, делая ее то больше, то меньше. Так, изменяя силу тока в динамике радиоприемника, мы регулируем громкость звука. Изменением силы тока в электродвигателе швейной машины можно регулировать скорость его вращения.

Во многих случаях для регулирования силы тока в цепи применяют специальные приборы — реостаты.

Простейшим реостатом может служить проволока из материала с большим удельным сопротивлением, например, никелиновая или нихромовая. Включив такую проволочку в цепь источника электрического тока через контакты А и С и передвигая подвижный контакт С, можно уменьшать или увеличивать длину включенного в цепь участка АС. При этом будет меняться сопротивление цепи, а, следовательно, и сила тока в ней, это покажет амперметр.

Реостатам, применяемым на практике, придают более удобную и компактную форму. Для этой цели используют проволоку с большим удельным сопротивлением, а для того чтобы длинная проволока не мешала ее наматывают спиралью.

Один из реостатов (ползунковый реостат) изображен на рисунке а), а его условное обозначение в схемах — на рисунке б).

В этом реостате никелиновая проволока намотана на керамический цилиндр. Над обмоткой расположен металлический стержень, по которому может перемещаться ползунок. Своими контактами он прижат к виткам обмотки.

Электрический ток в цепи проходит от витков проволоки к ползунку, а через него в стержень, имеющий на конце зажим 1. С помощью этого зажима и зажима 2, соединенного с одним из концов обмотки и расположенного на корпусе реостата, реостат подсоединяют в цепь.

Стрелками указано как протекает электрический ток через реостат

Перемещая ползунок по стержню, можно увеличивать или уменьшать сопротивление реостата, включенного в цепь. То есть мы увеличиваем или уменьшаем количество витков по которым протекает электрический ток (чем больше витков, тем больше сопротивление).

Каждый реостат рассчитан на определенное сопротивление (чем больше проволоки намотано, тем большее сопротивление может дать такой реостат) и на наибольшую допустимую силу тока, превышать которую не следует, так как обмотка реостата накаляется и может перегореть. Сопротивление реостата и наибольшее допустимое значение силы тока указаны на реостате (см. рисунок а).

Теперь самое время перейти от теории к практике!

Часть 1. Регулировка силы тока в лампочке.

На видео видно, как передвигая ползунок реостата вправо и влево, лампочка горит ярче или тусклее.

Понять принцип опыта можно взглянув на схему (см. рисунок 4).

На рисунке указана схема цепи, которую мы собирали в видео. Полное сопротивление цепи состоит из сопротивления Rл лампочки и сопротивления включенной в цепь части проволоки (на рисунке заштрихована) реостата. Незаштрихованная часть проволоки в цепь не включена. Если изменить положение ползунка, то изменится длина включенной в цепь части проволоки, что приведет к изменению силы тока.

Так, если передвинуть ползунок в крайнее правое положение (точка С), то в цепь будет включена вся проволока, сопротивление цепи станет наибольшим, а сила тока — наименьшей, поэтому нить лампочки будет гореть тускло или совсем не будет гореть (так как эл. ток такой силы не может разогреть спираль лампочки до свечения).

Если же передвинуть ползунок реостата в положение А, то электрический ток совсем не будет идти по проволоке реостата и, следовательно, сопротивление реостата будет равно нулю. Весь ток будет расходоваться на горение лампы, и она будет светить максимально ярко.

Часть 2. Включение лампочки от карманного фонаря в сеть 220 В.

Внимание! Не повторяйте этот опыт самостоятельно. Напоминаем, что поражение электрическим током осветительной сети может привести к смерти.

Что произойдет, если включить лампочку от фонарика в осветительную сеть напряжением 220 В? Понятно, что лампочка, рассчитанная на работу от батареек с суммарным напряжением 3,5 Вольт (3 пальчиковых батарейки), не способна выдержать напряжение в 63 раза большее – она сразу перегорит (может и взорваться).

Как тогда это сделать? На помощь придет уже известный нам прибор – реостат.

Нам нужен такой реостат, который способен был задержать бурный поток электрического тока, идущего от осветительной сети, и превратить его в тоненький ручеек электричества, который будет питать нашу хрупкую лампочку не нанося ей вреда.

Мы взяли реостат с сопротивлением 1000 (Ом). Это значит, что если эл. ток будет проходить по всей проволоке этого реостата, то на выходе из него получится ток с силой всего лишь 0,22 Ампер.

I=U/R=220 В / 1000 (Ом) = 0, 22 А

Для питания же нашей лампочки нужно даже более сильное электричество (0,28 А). То есть реостат не пропустит достаточное количество тока, чтобы зажечь нашу маленькую лампочку.

Это мы и наблюдаем во второй части видео, где в крайнем положении ползунка лампочка не горит, а при передвижении его вправо лампочка начинает загораться все ярче и ярче (подвигая ползунок мы запускаем все больше тока).

В определенный момент (на определенном положении ползунка реостата) лампочка перегорает, потому что реостат (при данном положении ползунка) пропустил слишком много электричества, которое и пережгло нить накаливания лампочки.

Так можно ли включить низковольтную лампочку в осветительную сеть? Можно! Только следует задержать все лишнее электричество реостатом с достаточно большим сопротивлением.

Часть 3. Включение лампы на 3,5 В вместе с лампой 60 Вт в сеть 220 В.

Мы взяли лампу мощностью 60 Вт, рассчитанную на напряжение 220 В, и лампочку от карманного фонарика на 3,5 В и силу тока 0,28 А.

Что произойдет, если включить эти лампочки в осветительную сеть напряжением 220 В? Понятно, что 60-ти ваттная лампочка будет гореть нормально (она на это и предназначена), а вот лампочка от карманного фонарика немедленно перегорит при включении ее в сеть (т.к. рассчитана работать от батареек только на 3,5 Вольта).

Но в опыте видно, как при подключении лампочек друг за другом (последовательно) и включении их в сеть 220 В обе лампы горят нормальным накалом и даже не думают перегорать. Даже когда ползунок реостата в крайнем положении (т.е. он не создает никакого сопротивления току) маленькая лампочка не перегорает.

Почему так? Почему даже при выключенном реостате (при его нулевом сопротивлении) лампа не перегорает? Что не дает ей перегореть при таком большом напряжении? И действительно ли напряжение на маленькой лампочке такое большое? Будет ли работать маленькая лампа если заменить лампу мощностью 60 Вт на стоваттную лампочку (100 Вт)?

Вы уже сможете ответить на большинство вопросов, если внимательно следили за ходом рассуждений в предыдущей части статьи. В этом опыте маленькой лампочке не дает перегорать большая лампочка. Она выступает в роли реостата с большим сопротивлением и берет на себя почти всю нагрузку.

Применение — пусковой реостат — Большая Энциклопедия Нефти и Газа, статья, страница 1

Применение — пусковой реостат

Cтраница 1

Применение пускового реостата обеспечивает необходимое ограничение пускового тока, увеличение пускового момента, плавность пуска, но усложняет и удорожает электроустановку и ее эксплуатацию.  [1]

Применение пускового реостата впервые было предложено М. О. До-ливо — Добровольским. В 1900 г. в журнале Электричество № 4 и 5 — 6 в статье Современное развитие техники трехфазного тока М. О. Доливо-Добровольский писал: Наиболее выгодное ( в смысле экономии тока) и плавное пускание в ход трехфазного двигателя производится введением сопротивлений ( реостатов) во вторичную якорную обмотку.  [2]

Применение пускового реостата имеет также целью увеличить пусковой момент, что особенно важно для крановых электродвигателей.  [4]

Применение пускового реостата, наличие контактных колец, щеток, фазного ротора, усложняет конструкцию асинхронного двигателя и увеличивает его стоимость.  [6]

Конечно, применение пускового реостата значительно улучшает пусковые условия асинхронного двигателя, повышая пусковой момент и уменьшая пусковой ток. Но, с другой стороны, применение ротора с фазной обмоткой удорожает двигатель, усложняет его обслуживание и, наконец, несколько ухудшает коэффициент мощности и КПД двигателя. У двигателей большой мощности эта разница в коэффициенте мощности незначительна, и недостатками фазного ротора остаются удорожание машины, длительность и сложность управления ступенями пускового реостата.  [7]

Следовательно, применение пускового реостата существенным образом влияет на снижение пускового тока, благодаря чему предотвращается возможность повреждения обмотки якоря.  [8]

Конечно, применение пускового реостата значительно улучшает пусковые условия асинхронного двигателя, повышая пусковой момент и уменьшая пусковой ток. Но, с другой стороны, применение ротора с фазной обмоткой удорожает двигатель, усложняет его обслуживание и, наконец, несколько ухудшает cos ф и КПД двигателя. У двигателей большой мощности эта разница в КПД и cos ф незначительна и недостатками фазного ротора остаются удорожание машины, длительность и сложность управления ступенями пускового реостата.  [9]

Конечно, применение пускового реостата значительно улучшает пусковые условия асинхронного двигателя, повышая пусковой момент и уменьшая пусковой ток. Но, с другой стороны, применение ротора с фазной обмоткой удорожает двигатель, усложняет его обспуживание и, наконец, несколько ухудшает коэффициент мощности и КПД двигателя. У двигателей большой мощности эта разница в коэффициенте мощности незначительна, и недостатками фазного ротора остаются удорожание машины, длительность и сложность управления ступенями пускового реостата.  [10]

Конечно, применение пускового реостата значительно улучшает пусковые условия асинхронного двигателя, повышая пусковой момент и уменьшая пусковой ток. Но, с другой стороны, применение ротора с фазной обмоткой удорожает двигатель, усложняет его обсауживание и, наконец, несколько ухудшает коэффициент мощности и КПД двигателя. У двигателей большой мощности эта разница в коэффициенте мощности незначительна, и недостатками фазного ротора остаются удорожание машины, длительность и сложность управления ступенями пускового реостата.  [11]

Однако эти двигатели дороже короткозамкнутых, а применение пускового реостата усложняет установку и его обслуживание.  [12]

Пуск асинхронных двигателей с фазным ротором производится с применением пусковых реостатов. Пусковой реостат состоит из нескольких ступеней добавочных сопротивлений, включаемых в каждую фазу обмотки ротора.  [14]

Если двигатель включается EI сеть с линейным напряжением 220 В, появляется возможность уменьшить пусковой ток без применения пусковых реостатов. Для этого в момент пуска обмотки двигателя соединяются звездой, а когда двигатель наберет скорость, переключаются на треугольник. Запуск двигателя производится при отключенной нагрузке.  [15]

Страницы:      1    2

Назначение реостата: обозначение на схеме, для чего нужны реостаты

Общие сведения

Электрическим током называется движение свободных заряженных частиц под воздействием электромагнитного поля. Любое вещество состоит из атомов, которые образуют кристаллическую решетку при помощи ковалентных связей. При протекании электрического тока по проводнику происходит взаимодействие его частиц с узлами кристаллической решетки. Носители заряда обладают кинетической энергией (Ek), которая зависит от массы частицы (m) и ее скорости (V3). Она определяется по формуле: Ek = m * sqr (V3) / 2.

При столкновении частиц с узлами кристаллической решетки происходит полная или частичная передача энергии атому.

Однако энергетический потенциал свободного носителя заряда восстанавливается, поскольку на него постоянно воздействует электромагнитное поле.

Процесс взаимодействия частиц с атомами повторяется определенное количество раз, пока не прекратится воздействие электромагнитного поля или частица не пройдет полностью через проводник.

Это физическое явление называется электрическим сопротивлением или проводимостью. Последняя величина является обратной сопротивлению. Сопротивление обозначается литерой «R», а проводимость — «G».

Единицей измерения сопротивления является Ом. Рассчитывается при помощи определенных формул или измеряется электронно-измерительным прибором, который называется омметром.

Физическая зависимость

Величина R зависит от количества свободных носителей заряда, число которых определяется исходя из электронной формулы вещества. Ее можно определить из периодической таблицы химических элементов Д. И. Менделеева. Вещества классифицируются по проводимости следующим образом: проводники, полупроводники и изоляторы (непроводники).

К проводникам относятся все металлы, электролиты и ионизированные газы.

В металлах носителями заряда являются свободные электроны, в электролитах — анионы и катионы, а в ионизированных газах — электроны и ионы.

Полупроводники способны проводить электрический ток при определенных условиях. В полупроводниках свободные электроны и дырки являются носителями заряда.

Изоляторы или диэлектрики не способны проводить электричество, поскольку в их структуре вообще отсутствуют свободные носители заряда.

Величина, определяющая тип материала и способность его к проводимости, называется удельным сопротивлением (p). Существует и обратная величина относительно удельного сопротивления.

Она называется удельной проводимостью (σ) и связана с p следующей формулой: p = 1 / σ.

При выполнении расчетов необходимо учитывать зависимость электрического сопротивления материала и от других физических величин или факторов, к которым относятся следующие:

  • геометрические составляющие;
  • электрические величины;
  • температурные показатели.

Эти три группы факторов необходимо учитывать при изготовлении реостатов, резисторов и других элементов резистивной нагрузки. Во время ремонта и проектирования устройств следует также рассматривать все факторы, поскольку неверные расчеты могут привести к выходу радиоаппаратуры из строя.

Геометрия материала

К геометрии проводника (полупроводника) относятся его длина (L) и площадь поперечного сечения (S). Величину S можно вычислить по абстрактному алгоритму, который подойдет для всех форм проводников и полупроводников. Он имеет следующий вид:

  1. Визуально определить форму фигуры поперечного сечения (окружность, прямоугольник или квадрат).
  2. Найти в справочной литературе или интернете формулу поиска площади поперечного сечения фигуры.
  3. Измерить необходимые геометрические параметры (например, диаметр) и подставить их в формулу.
  4. Произвести математические вычисления.

Если проводник является многожильным (состоит из множества проводников), то следует вычислить площадь сечения одного проводника, а затем произвести ее умножение на количество проводников. Исходя из всего, можно вывести зависимость величины сопротивления от типа вещества, длины и площади сечения проводника: R = p * L / S.

Физический смысл зависимости следующий: электрический ток движется по проводнику, тип которого определяется параметром р, и его частицы проходят через определенную длину L с сечением S (при малой площади сечения происходят более частые столкновения электронов с узлами кристаллической решетки).

Однако геометрические параметры — не единственные факторы, влияющие на значение проводимости материала.

Влияние параметров электричества

Для того чтобы учитывать влияние силы тока и напряжения на R, следует обратить внимание на закон Ома. У него существует две формулировки, применяемые для расчетов: для полной цепи или ее участка. Закон Ома для полной цепи показывает зависимость величины тока (i) от электродвижущей силы (e) и величины R, состоящей из суммы внутреннего (Rвнут) и внешнего (Rвнеш) сопротивлений.

Переменная Rвнут является внутренним сопротивлением источника питания (генератора, аккумулятора, трансформатора и т. д. ).

Rвнеш — сопротивление всех потребителей электрической энергии и соединительных проводов. Закон Ома для полной цепи связывает все эти величины таким соотношением: i = e / (Rвнеш + Rвнут).

Величина Rвнеш определяется по формуле: Rвнеш = (e / i) — Rвнут.

Для участка цепи соотношение для нахождения сопротивления упрощено, поскольку не учитывается ЭДС и Rвнут.

Этот закон показывает прямо пропорциональную зависимость силы тока (I) от напряжения (U), а также обратно пропорциональную от величины сопротивления R: I = U / R.

В некоторых случаях для точных вычислений этих факторов может быть недостаточно, поскольку существует еще одна зависимость — температурные показатели материала.

Влияние температуры на проводимость

Удельное сопротивление влияет на проводимость материала, однако оно зависит от температуры. Для доказательства этой гипотезы нужно собрать электрическую цепь, состоящую из следующих компонентов: лампы накаливания, источника питания (12 В), куска нихромовой проволоки и амперметра. Источник питания можно подобрать любой.

Амперметр нужен для мониторинга значений силы тока, которые будут изменяться с течением времени. Лампа является световым «сигнализатором», позволяющим визуально наблюдать за увеличением сопротивления.

Яркость ее свечения будет постепенно угасать. При протекании тока по цепи происходит визуальное подтверждение закона Ома для участка цепи. При увеличении R ток уменьшается.

Зависимость удельного сопротивления р зависит от следующих переменных величин:

  1. Табличного значения удельного сопротивления (р0), рассчитанного при температуре +20 градусов по шкале Цельсия.
  2. Температурного коэффициента «а», который для металлов считается больше 0 (а > 0), а для электролитов — меньше 0 (a

Табличное значение р0 можно выяснить из специальных электротехнических справочников или из интернета. Описывается зависимость р от температуры таким соотношением: p = p0 * [1 + a * (t — 20)]. Можно при необходимости произвести подстановку р в формулу зависимости R от длины и сечения: R = p0 * [1 + a * (t — 20)] * L / S.

Не имеет смысла выполнять точные расчеты сопротивления, но эти особенности следует учитывать при изготовлении и ремонте различных устройств.

Сопротивление нужно измерять омметром, однако радиолюбители-профессионалы рекомендуют использовать мультиметр. Он является комбинированным и позволяет измерять не только сопротивление, а также величину тока и напряжения. Существуют модели, которые могут измерять частоту, проверять полупроводниковые приборы и т. д.

Переменный резистор

Виды и устройство реостатов

Реостаты классифицируются по устройству и способу применения. По устройству реостаты делятся на 4 типа: проволочный, ползунковый, жидкостный и ламповый.

Первый тип переменного резистора состоит из проволоки (материала с высоким удельным сопротивлением) и корпуса-изолятора.

Проволочный проводник проходит через контакты, при соединении с которыми можно получить необходимую величину сопротивления.

Ползунковый реостат состоит тоже из проволоки с высоким удельным сопротивлением, корпуса-диэлектрика (на него она намотана) и ползунка. При передвижении ползунка происходит уменьшение или увеличение величины электросопротивления.

Устройство применяется в лабораториях при проектировании различных электрических приборов, а также для проведения опытов в области физики или химии. Кроме того, модернизированная версия применяется в различной радиоаппаратуре.

Не слишком распространенным типом является модель жидкостного переменного резистора. Она имеет следующее строение: бак с электролитическим раствором и подвижные электроды.

Если уменьшить расстояние между пластинами-электродами, то произойдет уменьшение электрического сопротивления.

Реостат бывает еще и ламповым. Он включает в свой состав набор ламп накаливания, которые соединены параллельно. Если изменить количество включенных ламп, то можно изменить его сопротивление.

Однако устройство имеет один существенный недостаток: зависимость величины электрической проводимости от температуры нитей накаливания.

По способу применения переменные резисторы следует классифицировать таким образом:

  • пусковые;
  • пускорегулирующие;
  • балластные;
  • для возбуждения;
  • потенциометры.

Первый тип предназначен для плавного запуска электродвигателей. Пускорегулирующие переменные резисторы позволяют плавно запускать электрические двигатели постоянного тока, а также поддерживают регулировку величины силы тока.

Балластные следует применять в электрических цепях для регулировки нагрузочной способности генератора электроэнергии. Они создают необходимую величину сопротивления в сети.

Реостаты возбуждения используют в электрических машинах для поглощения лишней энергии.

Потенциометр предназначен для регулировки величины напряжения. Реостат устроен следующим образом: три клеммы позволяют получить от источника питания с фиксированным значением напряжения разные значения его величины.

Например, понижающий трансформатор со значением напряжения на вторичной обмотке, равным 36 В. При использовании 2 транзисторов, диодного моста и реостата можно получить ряд напряжений от 0 до 34 В (2 В — потери при выпрямлении диодным мостом).

Эта особенность позволяет делать и выпускать универсальные делители напряжения.

Схема и принцип работы

Обозначение реостата на схеме осуществляется в виде обыкновенного резистора, но со стрелкой, показывающей непостоянное значения сопротивления радиокомпонента. Принцип работы реостата довольно простой и основан на зависимости величины силы тока от величины сопротивления. Проводник, который находится на корпусе-изоляторе, подключен в электрическую цепь.

Ползунок — часть реостата, которая соединена с одним его выводом. При перемещении ползунка происходит регулирование значений тока или напряжения.

Реостат может выглядеть, как корпус-изолятор, из которого выведен специальный регулятор величины сопротивления. Однако некоторые модели, которые применяются в лабораториях, могут быть открытого типа. Они предназначены для демонстрации принципа действия устройства.

Электроток протекает по пути наименьшего сопротивления. Следовательно, ползунком можно регулировать протекание тока.

Если проводник (материал с высоким удельным сопротивлением) задействован полностью, то, значит, и величина сопротивления будет максимальной.

В случае, когда ползунок находится посередине проводника, сопротивление реостата равно R / 2. Подключение в электрическую цепь потенциометра, как и любого типа реостата, осуществляется последовательно.

Таким образом, реостат широко применяется в электрических схемах и позволяет регулировать значения тока и напряжения.

Источник: https://rusenergetics.ru/ustroistvo/princip-raboty-polzunkovogo-reostata

Управление электрической цепью при помощи реостата

Устройство, с помощью которого происходит изменение сопротивления, называется реостатом. Он может состоять из набора резисторов, подключаемых ступенчато, либо иметь практически непрерывное изменение сопротивления.

Существуют приборы позволяющие производить плавную регулировку без разрыва сети.

Так как сила тока цепи зависит от напряжения источника и сопротивления, меняя количество подключенных секций реостата, можно косвенно влиять на все основные параметры электрического контура.

Назначение реостатов

По своему назначению реостаты делятся на следующие виды:

  • пусковые, служащие для снижения пускового тока при запуске электродвигателя;
  • пускорегулирующие, использующиеся преимущественно в двигателях постоянного тока, а также при переменном напряжении в случае асинхронного электродвигателя с фазным ротором;
  • нагрузочные, создающие сопротивление в электрической цепи;
  • балластные, необходимые для поглощения излишков энергии, возникающей например при торможении электродвигателя.

Реостаты применяются и для ограничения тока в обмотке возбуждения электрических машин постоянного тока. Благодаря этому получается добиться снижения скачков электрического тока и динамических перегрузок, способных повредить как сам привод, так и подключенный к нему механизм. Применение сопротивления при пуске продлевает срок службы щеток и коллектора.

Внешний вид ползункового реостата с защитным кожухом

Особым видом реостатов является потенциометр. Это делитель напряжения, в основании которого лежит переменный резистор. Благодаря ему в электронных схемах можно использовать различные напряжения, не используя дополнительные трансформаторы или блоки питания. Регулировка силы тока при помощи реостата широко используется в радиотехнике, например, для изменения громкости звучания динамика.

Принцип действия

Принцип действия всех реостатов схож. Наиболее простую конструкцию и визуально понятный принцип действия имеет ползунковый реостат. Подключение в цепь его происходит через нижнюю и верхнюю клеммы. Конструкция выполнена таким образом, что ток проходит не поперек витков, а через всю длину провода, выбранную ползунком. Это происходит благодаря надежной изоляции между проводниками.

В большинстве положений бегунка задействована лишь часть реостата. При этом изменение длины проводника приводит к регулированию силы тока в цепи. Для уменьшения износа витков ползунок имеет скользящий контакт, часто выполняемый из графитного стержня либо колесика.

Устройство ползункового реостата

Реостат имеет возможность работать в режиме потенциометра. Для этого, выполняя подключение, необходимо задействовать все три клеммы. Две нижние используются в качестве входа. Они подключаются к источнику напряжения. Верхняя и одна из нижних клемм являются выходом. При перемещении ползунка напряжение межу ними регулируется.

Реостат, используемый в качестве делителя напряжения

Помимо потенциометра возможен и балластный режим работы реостата, когда необходимо создать активную нагрузку для потребления энергии. При этом необходимо учитывать какие рассеивающие способности имеет аппарат.

Избыточное тепло может вывести прибор из строя, поэтому рекомендуется производить включение реостата в сеть, предварительно выполнив расчет по рассеиваемой мощности и в случае необходимости обеспечить достаточное охлаждение.

Виды реостатов

Популярным видом реостатов, применяемых в промышленности и электротранспорте, например, трамваях, является устройство, выполненное в виде тора. Регулирование происходит при вращении ползунка вокруг своей оси. При этом он скользит по обмоткам, расположенным тороидально.

Реостат в виде тора меняет сопротивления практически не создавая разрыва в цепи. В полную противоположность ему выступает рычажный вид. Резисторы расположены на специальной раме, и их выбор происходит при помощи рычага.

Любая коммутация сопровождается разрывом контура. Помимо этого в схемах с рычажным реостатом отсутствует возможность плавного регулирования сопротивления. Все переключения приводят к ступенчатым изменениям параметров сети.

Дискретность шагов зависит от количества резисторов на раме и диапазона регулирования.

Как и рычажные, штепсельные реостаты регулируют сопротивление ступенчато. Отличительной особенностью является изменение параметров сети без разрыва цепи. При нахождении штепселя в перемычке, большая часть тока идет вне сопротивления. Количество возможных вариантов включения зависит от размера магазина. Вытаскиванием штепселя происходит перенаправление тока в резистор.

К специфичным видам можно отнести ламповые устройства и жидкостные реостаты. В связи с рядом недостатков данные приборы не нашли широкого распространения.

Жидкостные реостаты можно встретить лишь в взрывоопасной среде, где они выполняют функции управления двигателем.

Ламповые можно встретить в лабораториях и на уроках физики, так как их надежность и точность недостаточны для повсеместного использования.

Конструктивные особенности

По материалу изготовления разделяют реостаты:

  • металлические, получившие наибольшее распространение;
  • керамические, наиболее часто используемые при небольших мощностях;
  • угольные, до сих пор используемые в промышленности;
  • жидкостные, обеспечивающие максимально плавное регулирование.

Отвод тепла может быть как воздушным, так и водяным или масляным. Жидкостное охлаждение применяется при невозможности рассеять тепло с поверхности резистора. Для повышения теплоотдачи может использоваться радиатор с вентилятором.

Датчики, основанные на реостатах

Между положением ползунка реостата, его сопротивлением, силой тока в цепи и напряжением существуют прямые зависимости. Эти особенности лежат в основе датчика угла поворота. Каждому положению ротора в таком устройстве соответствует определенная электрическая величина.

Постепенно такие датчики вытесняются магнитными и оптическими аппаратами. Связанно это с тем что характеристика зависимости угла и сопротивления, помехонеустойчива от влияния температурного воздействия. Также свою долю в вытеснение реостатных датчиков вносит переход к цифровым системам. Резистивные измерители можно встретить только в схемах, использующих аналоговые сигналы.

Реостат печки отопления салона

Понять о том, что неисправен реостат печки отопления салона можно по следующим признакам:

  • салон не прогревается, несмотря на то, что температура двигателя достигла номинала;
  • печка не включается в одном или нескольких режимах;
  • блок реостатов при прозвонке мультиметром показывает значения близкие к короткому замыканию либо обрыву.

Частой неисправностью реостата бывает выход из строя термопредохранителя. При этом печка может включаться только в одном из режимов. Менять полностью весь блок нет необходимости, достаточно перепаять новый предохранитель, с такими же номинальными параметрами.

Реостат печки с термопредохранителем

Электрические реостаты нашли широкое применение в промышленности, технике и автомобилях. Сопротивления используются и для пуска электродвигателей, и в радиотехнике, и в качестве активной нагрузки. Выход из строя резистора способен сделать неработоспособной всю схему в которую он входит.

Если у вас возникли вопросы — оставляйте их в х под статьей. Мы или наши посетители с радостью ответим на них

Источник: https://SwapMotor.ru/ustrojstvo-dvigatelya/reostat.html

Реостат – это управляющий прибор, способный изменять силу тока и напряжение

Содержание

  • 1. Устройство и принцип работы
  • 2. Как включается реостат в цепь

Электрические сети зациклены на передаче электроэнергии от источника к потребителю, которые являются основными элементами цепочки. Но кроме них в электрическую цепь вставляются и другие составляющие, к примеру, управляющие элементы, к которым относится реостат или любой другой прибор с таким же принципом действия.

Устройство реостата – это проводник определенного сечения и длины, через которые можно узнать сопротивление проводника. Конечно, обговаривается и его материал. Изменяя сопротивление прибора, а, точнее, проводника, можно регулировать величину силы тока и напряжения в сети.

Итак, реостат – это прибор, регулирующий напряжение и ток.

Устройство и принцип работы

Если рассматривать реостатную конструкцию, то необходимо отметить несколько основных его частей:

  • это трубка из керамики;
  • на нее намотана металлическая проволока, концы которой выведены на контакты, расположенные на противоположных концах керамической трубки;
  • выше трубки установлена металлическая штанга, на одной стороне которой установлен контакт;
  • на штанге закреплен движущийся контакт, который электрики называют ползун.

Теперь, как все это работает. Обратите внимание на рисунок ниже.

Первая позиция (а) – контакт (движущийся) посередине. Это говорит о том, что ток будет проходить только через половину прибора. Вторая позиция (б) говорит о том, что задействован проводник полностью.

То есть, его длина максимальная, значит, и сопротивление максимальное, при этом сила тока уменьшилась. Понятно, что чем больше сопротивление, тем меньше сила тока.

Третья позиция (в) – здесь все наоборот: снижается сопротивление, увеличивается сила тока.

Хотелось бы обратить ваше внимание на то, что керамическая трубка, используемая в реостатной конструкции, полая. Это необходимая составляющая, которая позволяет прибору охлаждаться при прохождении через проводник электроэнергии. Добавим: считается, что самые безопасные реостаты – это те, которые закрыты кожухом.

Как включается реостат в цепь

Во-первых, этот прибор в электрическую цепь включается только последовательно. Во-вторых, один из контактов подключается к ползуну, с помощью которого и регулируется величина тока в цепи.

Но необходимо отметить, что этот управляющий элемент можно использовать и для регулировки напряжения в электрической цепочке. Здесь может быть использовано несколько схем с одним сопротивлением или двумя.

Понятно, что чем меньше элементов в электрической цепочке, тем проще она.

  Как сделать ионистр своими руками

Реостаты – это универсальные приборы. Их сегодня используют не только для управления силой тока и напряжением. К примеру, в телевизорах они установлены для увеличения или уменьшения звука. Да и переключение каналов косвенно связано с ними же.

  • И еще один момент. В электрических схемах обозначение этих приборов вот такое:
  • или такое

На первом рисунке более подробно расписана схема подключения, где красный прямоугольник – это и есть проводник, накрученный на керамическую основу.

Синяя линия – это контакт, через который подводится питающий провод. Зеленная стрелка – это ползун. Она направлена влево, что говорит о том, что перемещая ползунок влево, мы уменьшаем сопротивление проводника.

И, наоборот, перемещаем контакт вправо, увеличиваем сопротивление.

Рисунок второй более упрощенный. На нем всего лишь прямоугольник, показывающий наличие сопротивления, и стрелка, которая показывает, что этот показатель можно изменять.

Конечно, вся эта информация касается простейших элементов. Но необходимо отметить, что реостаты могут быть разными, все зависит от того места, куда они должны быть установлены.

Есть различия и по токопроводящему материалу, который лежит в основе. К примеру, это может быть уголь, металлы, жидкости и керамика.

К тому же процесс охлаждения производится воздушным путем или при помощи жидкостей, и это может быть не только вода.

Источник: https://onlineelektrik.ru/eoborudovanie/kondensatori/chto-takoe-reostat.html

Реостат – что это такое?

Главная > Теория > Реостат – что это такое?

Обычно редко кто задумывается, каким образом в различных приборах регулируется уровень звука. Во многих электрических приборах регулировка громкости звука осуществляется за счет изменения силы тока. Для этого чаще всего применяется специальный аппарат, разработанный Иоганном Христианом Поггендорфом, который регулирует силу тока и напряжение электрической сети, он получил название – реостат.

Итак, реостат представляет собой прибор, основная задача которого заключается в регулировке напряжения и силы тока. Этот элемент электрической сети весьма распространен, его применяют в физике, радиотехнике, электронике.

Устройство реостата

Устройство реостата для опытного физика не вызывает трудностей и представляет собой керамический полый цилиндр с металлической обмоткой, концы которой выведены на специальные контакты, получившие название клеммы, расположенные с обеих сторон керамического цилиндра.

В качестве обмотки применяется материал, обладающий большим удельным сопротивлением, за счет этого даже небольшое изменение длины отражает изменение и сопротивления.

Вдоль цилиндра расположен металлический шланг, на котором закреплен движущийся контакт, который получил название ползунок.

Керамический цилиндр внутри пуст для того, чтобы происходило охлаждение прибора при прохождении через него электроэнергии. Для безопасности ряд приборов имеют специальный кожух, скрывающий все внутренности механизма.

Устройство реостата на схеме

Принцип работы

Вне зависимости от типа реостата, принцип работы у всех примерно аналогичен. Например, ползунковый реостат работает следующим образом:

  • Подключение к сети происходит через клеммы, расположенные с обеих сторон цилиндра;
  • Ток проходит по всей длине, в зависимости от места расположения ползунка. Так, если ползунок находится в центре прибора, то ток проходит только до середины; если ползунок находится в конце прибора, тогда ток проходит целиком, соответственно напряжение максимальное.

Чаще всего задействована в работе только часть прибора, т.е. ползунок не доходит до края реостата. Изменение места расположения бегунка прямо пропорционально изменению силы тока. Подключение реостата к электрической сети осуществляется последовательно.

Виды реостатов

Разновидность реостатов зависит от их основного назначения:

  • Пусковые реостаты предназначены для запуска электродвигателей с постоянным или переменным током;
  • Пускорегулирующие реостаты не только предназначены для запуска двигателей с постоянным током, но и для регулировки силы тока;
  • Балластные реостаты, еще получили название нагрузочные, поглощают энергию, которая необходима для регулирования нагрузки на электрогенераторах, т.е. создают нужное сопротивление в электрической сети;
  • Реостаты возбуждения применяются в электрических машинах для регулировки постоянного и переменного тока, они поглощают лишнюю энергию;
  • В особорую группу выделяют реостаты, предназначенные для деления напряжения, их называют потенциометрами. Они позволяют применять в одном приборе различные напряжения, не используя дополнительные приспособления, такие как трансформаторы и блоки питания. В этом случае реостат имеет 3 клеммы, где нижние клеммы используются для входа тока, а верхняя и одна нижняя – в качестве выхода. Регулировка напряжения осуществляется при движении ползунка.

Благодаря применению в электрических приборах и машинах реостатов, происходит уменьшение снижения скачков электрического тока и перегрузок двигателя, это, в свою очередь, увеличивает срок службы электрических приборов.

Реостат на электрической схеме имеет свое особое обозначение.

Схематическое обозначение реостата

Виды реостатов по материалу их изготовления

Главным элементом, определяющим принцип работы реостата, является материал, из которого он изготовлен. Кроме того, при прохождении через прибор тока должно происходить его охлаждение: воздушное или жидкостное.

Воздушное охлаждение происходит благодаря полому цилиндру и применимо во всех приборах. Жидкостное охлаждение используется только для реостатов, изготовленных из металла. Охлаждение происходит за счет полного погружения в жидкость или отдельных частей прибора.

Жидкостные реостаты могут быть водными или масляными.

Можно выделить следующие реостаты по материалу изготовления:

  • Металлические реостаты с воздушным типом охлаждения наиболее распространены, поскольку применимы в различных сферах и для различных приборов, сопротивление в них может быть постоянным или ступенчатым. Достоинством подобных конструкций являются компактные размеры, достаточно простая конструкция, доступная ценовая стоимость. Металлические жидкостные реостаты представляют собой сосуд, наполненный жидкостью. В качестве материала изготовления могут быть использованы сталь, чугун, хром, никель, железо и др.;
  • Жидкостные реостаты применимы для регулировки силы тока;
  • Керамические – применимы при относительно небольших нагрузках;
  • Угольные на сегодняшний день применяются только в промышленной сфере и представляют собой ряд шайб из угля, сжатых друг с другом при помощи пружин. Изменение сопротивления данного типа реостата происходит при помощи изменения силы сжатия пружин.

Задаваясь вопросом, зачем в повседневной жизни нужен данный прибор, можно получить банальный ответ: ни один современный телевизор не обходится без реостата. Благодаря этому прибору, происходит регулировка уровня громкости, также он связан с возможностью переключения каналов.

Как видно, это действительно универсальный и незаменимый компонент. Стоит подчеркнуть, что разновидностей реостатов весьма много, в зависимости от их основного предназначения.

На сегодняшний день реостат применяется в промышленной сфере, в автомобилестроении, в современной электронной технике. Он широко применим в радиотехнике и различных типах электродвигателей.

Выход из строя реостата способен вывести из строя всю систему электросети.

Видео

Источник: https://jelectro.ru/teoriya/reostat-chto-ehto-takoe.html

Реостаты. Виды и устройство. Работа и особенности

Во многих электронных устройствах для регулирования громкости звука необходимо изменять силу тока. Рассмотрим устройство (реостаты), с помощью которого можно изменять силу тока и напряжение.

Сила тока зависит от напряжения на концах участка цепи и от сопротивления проводника: I=U/R. Если изменять сопротивление проводника R, тогда будет меняться сила тока.

Сопротивление зависит от длины L, от площади поперечного сечения S и от материала проводника – удельного сопротивления. Для того чтобы изменять сопротивление проводника, нужно менять длину, толщину или материал. Весьма удобно изменять длину проводника.

Разберем цепь, состоящую из источника тока, ключа, амперметра и проводника в виде резистора АС из проволоки с большим удельным сопротивлением.

Перемещая контакт С по этой проволоке, можно менять длину проводника, которая задействована в цепи, тем самым изменять сопротивление, а значит, и силу тока. Следовательно, можно создать устройство с переменным сопротивлением, с помощью которого можно изменять силу тока. Такие устройства имеют название реостатами.

Реостат – это устройство с изменяемым сопротивлением, которое служит для регулировки силы тока и напряжения.

Устройство реостата

На цилиндр, выполненный из керамики, намотан металлический проводник, который сделан из материала с большим удельным сопротивлением. Сделано это для того, чтобы при небольшом изменении длины существенно менялось сопротивление. Этот металлический провод называется обмоткой. Он так называется, потому что намотан на керамический цилиндр.

Концы обмотки выведены к зажимам, которые называются клеммами. В верхней части реостата есть металлический стержень, который тоже заканчивается клеммами. Вдоль металлического стержня и вдоль обмотки может перемещаться скользящий контакт, который называется ползунком. Так как скользящий контакт имеет такое название, то подобный реостат называется ползунковым реостатом.

Принцип действия

Ползунковый реостат подсоединен в цепь через две клеммы: нижнюю с обмотки и верхнюю клемму, там, где металлический стержень. При подключении его в цепь, таким образом, ток через нижнюю клемму проходит по виткам обмотки, а не поперек витков. Далее ток проходит через скользящий контакт, потом по металлическому стержню, и опять в цепь.

Таким образом, в цепи задействована только часть обмотки реостата. Когда ползунок перемещается, то меняется сопротивление той части обмотки реостата, которая находится в цепи. Изменяется длина обмотки, сопротивление и сила тока в цепи.

Необходимо обратить внимание, что ток в той части реостата, по которой он проходит, идет по каждому витку обмотки, а не поперек них. Это достигается тем, что витки обмотки изолированы между собой тонким слоем изоляционного материала. Разберемся, как осуществляется контакт между витками обмотки и ползунком.

При движении по обмотке ползунок движется по ее верхнему слою, который имеет зачищенный участок изоляции на пути ползунка. Так осуществляется контакт между ползунком и витком обмотки. Между собой витки изолированы.

На схеме изображена цепь с источником тока, выключателем, амперметром и ползунковым реостатом. При перемещении ползунка реостата меняется его сопротивление и сила тока в цепи.

Ползунковый реостат можно подключать к цепи при помощи двух клемм: верхней и нижней. Но реостаты подключаются и по-другому.

Реостат можно подключить через три клеммы. Две нижние клеммы соединяются с концами обмотки, и один провод с верхней клеммы. Напряжение подается на всю обмотку, а снимается напряжение только с части обмотки. Ползунок делит реостат на два резистора, которые соединены последовательно.

Общее напряжение равно сумме напряжений каждого резистора. Поэтому выходное напряжение меньше входного значения. Выходное напряжение меньше, чем входное во столько раз, во сколько сопротивление части обмотки меньше, чем сопротивление всей обмотки. То есть, реостат делит напряжение, и называется делителем напряжения или потенциометром.

Виды и особенности реостатов

Реостат в виде тора

Два крайних зажима – это концы обмотки, а средний зажим соединен с ползунком. Вращая ползунок по обмотке, можно изменить сопротивление и сила тока в цепи.

Рычажные реостаты

Они получили такое название, потому что в его нижней части находится переключатель – рычаг. С помощью него можно включать разные части спирали резисторов. На рисунке показан принцип работы рычажного реостата.

Рычажный реостат изменяет силу тока скачкообразно, в то время как ползунковый реостат меняет силу тока плавно. Если в цепи будет присутствовать резистор, то при перемещении ползунка на ползунковом реостате или при переключении рычага рычажного реостата будет меняться сила тока и напряжение на концах резистора.

Штепсельные

Такие устройства состоят из магазина сопротивлений.

Это набор различных сопротивлений. Они называются спирали-резисторы. При помощи штепселя можно включать или выключать разные спирали-резисторы. Когда штепсель находится в перемычке, то больший ток идет через перемычку, а не через резистор. Таким образом, резистор отключается. Используя штепсель, можно получать разные сопротивления.

Материалы и охлаждение

Основным элементом в устройстве реостата является материал изготовления, по виду которого реостаты делятся на несколько видов:

  • Угольные.
  • Металлические.
  • Жидкостные.
  • Керамические.

Электрический ток в сопротивлениях преобразуется в тепловую энергию, которая должна каким-то образом отводиться от них. Поэтому реостаты также делятся по типу охлаждения:

Жидкостные реостаты разделяются на водяные и масляные. Воздушный вид используется в любых конструкциях приборов. Жидкостное охлаждение применяется только для металлических реостатов, их сопротивления омываются жидкостью, либо полностью в нее погружены. Нельзя забывать, что охлаждающая жидкость также должна охлаждаться.

Металлические реостаты

Это конструкция реостата с воздушным охлаждением. Такие модели приобрели популярность, так как легко подходят для различных условий работы своими электрическими, тепловыми характеристиками, а также формой конструкции. Они бывают с непрерывным или ступенчатым типом регулировки сопротивления.

В устройстве имеется подвижный контакт, скользящий по неподвижным контактам, расположенным в этой же плоскости. Неподвижные контакты выполнены в виде винтов с плоскими головками, пластин или шин. Подвижный контакт называется щеткой. Он бывает мостиковым или рычажным.

Такие виды реостатов делят на самоустанавливающиеся и несамоустанавливающиеся. Последний вид имеет простую конструкцию, но ненадежен в применении, так как контакт часто нарушается.

Масляные

Устройства с масляным охлаждением повышают теплоемкость и время нагревания вследствие хорошей теплопроводности масла. Это делает возможным повышение нагрузки на небольшое время, снижает расход материала изготовления сопротивления и габариты корпуса реостата.

Детали, погружаемые в масло, должны иметь значительную поверхность для хорошей отдачи тепла. В масле увеличиваются возможности контактов на отключение. Это является преимуществом такого вида реостатов. Благодаря смазке на контакты можно прилагать повышенные усилия. К недостаткам можно отнести риск возникновения пожара и загрязнение места установки.

Похожие темы:

Источник: https://electrosam.ru/glavnaja/slabotochnye-seti/oborudovanie/reostaty/

Реостат: регулятор тока, принцип работы, слайдер реостат

В предыдущей статье мы подробно рассмотрели что такое потенциометр. Данная статья является продолжением этой темы и здесь мы рассмотрим что такое реостат, реостат как регулятор тока и рассмотрим тип реостат — слайдер.

Описание и принцип работы

До сих пор мы видели, что переменный резистор может быть сконфигурирован для работы в качестве цепи делителя напряжения, которому присваивается название потенциометра . Но мы также можем настроить переменный резистор для регулирования тока, и этот тип конфигурации широко известен как реостат.

Реостаты — это двухполюсные переменные резисторы, которые настроены на использование только одного концевого контакта и только контакта стеклоочистителя. Неиспользуемая концевая клемма может быть либо оставлена ​​неподключенной, либо подключена напрямую к стеклоочистителю.

 Это устройства с проволочной обмоткой, которые содержат плотные витки эмалированной проволоки для тяжелых условий эксплуатации, которые изменяют сопротивление ступенчато. Изменяя положение стеклоочистителя на резистивном элементе, величина сопротивления может быть увеличена или уменьшена, тем самым управляя величиной тока.

Большой выбор реостатов вы найдете на Алиэкспресс, переходите и покупайте любой.

Затем реостат используется для управления током путем изменения значения его сопротивления, превращая его в настоящий переменный резистор.

 Классический пример использования реостата — это управление скоростью модельного набора поездов или Scalextric, где величина тока, проходящего через реостат, регулируется законом Ома.

 Тогда реостаты определяются не только их резистивными значениями, но также и их возможностями по управлению мощностью как P = I 2 * R.

Реостат как регулятор тока

На приведенной выше схеме эффективное сопротивление реостата находится между контактом 3 концевого зажима и контактом стеклоочистителя на контакте 2. Если контакт 1 не подключен, сопротивление цепи между контактом 1 и контактом 2 разомкнуто и не оказывает влияния на величину тока нагрузки. И наоборот, если контакт 1 и контакт 2 соединены вместе, то эта часть резистивной дорожки замкнута накоротко и снова не влияет на значение тока нагрузки.

Поскольку реостаты контролируют ток, то по определению они должны быть соответствующим образом рассчитаны на то, чтобы выдерживать этот постоянный ток нагрузки.

 Потенциометр с тремя контактами можно настроить как реостат с двумя контактами, но резистивная дорожка на основе углерода может не выдержать ток нагрузки.

 Также контакт стеклоочистителя потенциометра обычно является самой слабой точкой, поэтому лучше всего проводить через стеклоочиститель как можно меньше тока.

Однако обратите внимание, что реостат не подходит для управления током нагрузки, если сопротивление нагрузки, R L , намного выше, чем полное значение сопротивления реостата. Это R L  >> R RHEO . Резистивное значение сопротивления нагрузки должно быть намного ниже, чем у реостата, чтобы ток нагрузки мог протекать.

Обычно реостаты представляют собой высокомощные электромеханические переменные резисторы, используемые для силовых применений, и резистивный элемент которые обычно изготавливается из толстого резистивного провода, подходящего для обеспечения максимального тока I, когда его сопротивление R минимально.

Проволочные реостаты в основном используются в приложениях управления мощностью, таких как схемы управления лампами, нагревателями или двигателями, для регулирования полевых токов для управления скоростью или пусковым током двигателей постоянного тока и т.д. Существует много типов реостатов, но наиболее распространенными являются вращающиеся тороидальные типы, которые используют открытую конструкцию для охлаждения, но также доступны закрытые типы.

Слайдер реостат

Имеются также реостаты с трубчатыми слайдерами, которые можно найти в физических лабораториях и лабораториях в школах и колледжах. Эти линейные или скользящие типы используют резистивный провод, намотанный на изолирующий трубчатый формирователь или цилиндр. Скользящий контакт (штифт 2), установленный выше, регулируется вручную влево или вправо для увеличения или уменьшения эффективного сопротивления реостата, как показано на рисунке.

Как и в случае с вращающимися потенциометрами, также доступны ползунковые реостаты многоканального типа. В некоторых типах постоянные электрические соединения сделаны с резистивным проводом, чтобы дать фиксированное значение сопротивления между любыми двумя терминалами. Такие промежуточные соединения обычно известны как «ответвления», то же имя, что и используемые на трансформаторах.

Линейные или логарифмические потенциометры

Наиболее популярным типом переменного резистора и потенциометра является линейный тип или линейный конус, значение сопротивления которого на выводе 2 изменяется линейно при регулировке, создавая характеристическую кривую, которая представляет собой прямую линию. То есть резистивная дорожка имеет одинаковое изменение сопротивления на угол поворота по всей длине дорожки.

Таким образом, если стеклоочиститель вращается на 20% от его общего хода, то его сопротивление составляет 20% от максимального или минимального. Это происходит главным образом потому, что их резистивные дорожки выполнены из углеродных композитов, металлокерамических сплавов или материалов типа проводящих пластиков, которые имеют линейную характеристику по всей длине.

Но резистивный элемент потенциометра не всегда может давать прямолинейную характеристику или иметь линейное изменение сопротивления во всем диапазоне хода при регулировке стеклоочистителя, но вместо этого может вызывать то, что называется логарифмическим изменением сопротивления.

Логарифмические потенциометры являются в основном очень популярными нелинейными или непропорциональными типами потенциометров, сопротивление которых изменяется логарифмически.

Логарифмические потенциометры обычно используются в качестве регуляторов громкости и усиления в аудиоприложениях, где затухание изменяется как логарифмическое отношение в децибелах.

Это связано с тем, что чувствительность к уровню звука человеческого уха имеет логарифмический отклик и, следовательно, является нелинейной.

Если бы мы использовали линейный потенциометр для управления громкостью, у ухо бы создалось впечатление, что большая часть регулировки громкости ограничена одним концом дорожки горшка. Тем не менее, логарифмический потенциометр создает впечатление более равномерной и сбалансированной регулировки громкости при полном вращении регулятора громкости.

Таким образом, работа логарифмических потенциометров при настройке заключается в создании выходного сигнала, который близко соответствует нелинейной чувствительности человеческого уха, при которой уровень громкости звучит так, как будто он линейно увеличивается.

 Однако некоторые более дешевые логарифмические потенциометры являются скорее экспоненциальными в изменениях сопротивления, чем логарифмическими, но все еще называют логарифмическими, потому что их резистивный отклик является линейным в логарифмическом масштабе.

 Наряду с логарифмическими потенциометрами существуют также антилогарифмические потенциометры, в которых их сопротивление сначала быстро увеличивается, но затем выравнивается.

Все потенциометры и реостаты доступны в виде различных резистивных дорожек или схем, известных как законы, линейные, логарифмические или антилогарифмические. Эти термины более сокращенно обозначаются как lin , log и anti-log соответственно.

Лучший способ определить тип или закон конкретного потенциометра — установить ось вала в центр его перемещения, то есть примерно на половину, а затем измерить сопротивление на каждой половине от стеклоочистителя до концевой клеммы.

 Если каждая половина имеет более или менее равное сопротивление, то это линейный потенциометр.

 Если сопротивление, кажется, разделено примерно на 90% в одну сторону и 10% в другую, то есть вероятность, что это логарифмический потенциометр.

Источник: https://meanders.ru/chto-takoe-reostat-princip-raboty.shtml

Балластный реостат | Сварка и сварщик

Служит для формирования крутопадающей характеристики источника питания, ступенчатого регулирования сварочного тока и компенсации постоянной составляющей сварочного тока при работе от трансформатора. Состоит из набора нихромовых лент или проволок, соединенных параллельно в электрическую схему. Каждая секция подключается к работе рубильником. Балластные реостаты позволяют дискретно, подбором нужного числа работающих секций, выбрать оптимальный режим сварки и регулировать его через 5-10 А. Эти устройства подключают в сварочную цепь последовательно источнику.

1. Корпус;
2. Тумблеры диапазонов;
3. Рубильники секций сопротивления;
4. Клеммы для сварочного кабеля.

Некоторые балластные реостаты при токе 225 А могут перегреваться, поэтому необходимо включать в цепь дуги два или более реостатов последовательно. Если ток меньше, сопротивление балластных реостатов следует увеличить. При сварке на переменном токе алюминия регулировать режим балластным реостатом допустимо лишь в незначительных пределах (до 20%), так как полностью компенсировать постоянную составляющую тока не удается. Полная же компенсация достигается в специальных устройствах типа УДАР, УДГ, УДГУ, где постоянную составляющую гасят специальные батареи конденсаторов.

Технические характеристики балластных реостатов

Марка

Сварочный ток, А

Габариты,мм

Масса, кг

номинальный

пределы регулирования

РБ-201

200

10-200

550x355x635

30

РБ-300

300

10-300

550x370x700

38

РБ-301

300

10-300

580x410x635

35

РБ-302

315

10-315

560x490x370

27

РБ-306

315

6-315

625x370x494

26

РБ-501

500

10-500

580x465x635

40

ПУСКОВОЙ РЕОСТАТ — это… Что такое ПУСКОВОЙ РЕОСТАТ?

ПУСКОВОЙ РЕОСТАТ

резистор с перем. электрич. сопротивлением, включённый в цепь якоря двигателя для уменьшения броска тока при пуске. П. р. бывают металлич. (из проволоки с высоким омич. сопротивлением или литые чугунные) либо жидкостные (сопротивление регулируется изменением площади погружения плоского электрода в 8 — 10 %-ный водный р-р поваренной соли). Применяются для пуска крупных асинхронных двигателей с фазным ротором.

Большой энциклопедический политехнический словарь. 2004.

  • ПУСКОВОЙ МОМЕНТ
  • ПУСКОВОЙ ТОК

Смотреть что такое «ПУСКОВОЙ РЕОСТАТ» в других словарях:

  • пусковой реостат — Коммутационный электрический аппарат, предназначенный для пуска электродвигателей путем изменения величины вводимого в цепь сопротивления резисторов, являющихся частью этого аппарата. [ГОСТ 17703 72] Тематики аппарат, изделие, устройство …   Справочник технического переводчика

  • пусковой реостат — paleidimo reostatas statusas T sritis automatika atitikmenys: angl. starter rheostat; starting rheostat vok. Anlaßwiderstand, m; Widerstandsanlasser, m rus. пусковой реостат, m pranc. rhéostat de démarrage, m …   Automatikos terminų žodynas

  • пусковой реостат — paleidimo reostatas statusas T sritis fizika atitikmenys: angl. starting rheostat vok. Anlaßwiderstand, m rus. пусковой реостат, m pranc. rhéostat de démarrage, m; rhéostat de mise en marche, m; rhéostat démarreur, m …   Fizikos terminų žodynas

  • Пусковой реостат — 31. Пусковой реостат Коммутационный электрический аппарат, предназначенный для пуска электродвигателей путем изменения величины вводимого в цепь сопротивления резисторов, являющихся частью этого аппарата Источник: ГОСТ 17703 72: Аппараты… …   Словарь-справочник терминов нормативно-технической документации

  • Пусковой реостат — English: Starting rheostat Коммутационный электрический аппарат, предназначенный для пуска электродвигателей путем изменения величины вводимого в цепь сопротивления резисторов, являющихся частью этого аппарата (по ГОСТ 17703 72) Источник: Термины …   Строительный словарь

  • пусковой реостат в цепи статора (электродвигателя) — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN stator starter …   Справочник технического переводчика

  • пусковой реостат для дуговых ламп — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN lamp resistance starter …   Справочник технического переводчика

  • пусковой реостат с двигательным приводом — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN motor driven startermotor operated starter …   Справочник технического переводчика

  • пусковой реостат с масляным охлаждением — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN oil cooled starter …   Справочник технического переводчика

  • жидкостный пусковой реостат — — [Я.Н.Лугинский, М.С.Фези Жилинская, Ю.С.Кабиров. Англо русский словарь по электротехнике и электроэнергетике, Москва, 1999 г.] Тематики электротехника, основные понятия EN liquid starter …   Справочник технического переводчика

Описание, конструкция, символы и применение реостата

Реостат определение

Реостат — переменный резистор, который используется для управления потоком электрического тока вручную увеличение или уменьшение сопротивления. Английский ученый Сэр Чарльз Уитстон придумал слово реостат, оно происходит от от греческих слов «реос» и «-статис», что означает ручей. управляющее устройство или текущее управляющее устройство.

Что такое реостат?

Электрический ток, протекающий через электрическая схема определяется двумя факторами: величиной напряжения приложенное и общее сопротивление электрического схема. Если уменьшить сопротивление цепи, поток электрический ток в цепи будет увеличиваться. На с другой стороны, если мы увеличим сопротивление цепи, поток электрический ток через цепь будет уменьшен.

Поместив реостат в электрическую цепи, мы можем контролировать (увеличивать или уменьшать) поток электрический ток в цепи. Реостат снижает электрическую текущий поток до определенного уровня. Однако это не совсем блокирует прохождение электрического тока. Чтобы полностью заблокировать электрический ток, нам нужно бесконечное сопротивление. Практически невозможно полностью заблокировать электрический ток.

Строительство реостата

Строительство реостата почти завершено. аналогично потенциометру. Как и потенциометр, реостат также состоит из трех терминалы: терминал A, терминал B и терминал C. Однако мы используйте только две клеммы: либо A и B, либо B и C. и клемма C — это две фиксированные клеммы, подключенные к обоим концы резистивного элемента, называемые дорожкой, а клемма B — это регулируемый терминал, подключенный к скользящему дворнику или ползунку.

Стеклоочиститель, движущийся по резистивному элемент изменяет сопротивление реостата. Сопротивление реостат меняется при перемещении ползунка или дворника резистивный путь. Резистивный элемент реостата из мотка проволоки или тонкой углеродной пленки.

Реостаты в основном намотаны проволокой. Следовательно, реостаты также иногда называют переменными проволочными обмотками. резисторы.Обычно реостаты изготавливаются путем наматывания нихрома. проволока вокруг изолирующего керамического сердечника. Керамическое ядро реостат действует как теплоизолирующий материал. Следовательно керамический сердечник не пропускает тепло.

Сопротивление реостата зависит от длины резистивной дорожки

Сопротивление реостата зависит от длина резистивной дорожки, по которой электрический ток течет.

Если мы используем клеммы A и B в реостата минимальное сопротивление достигается при перемещении ползунок или стеклоочиститель рядом с выводом A, потому что длина резистивный путь уменьшается. В результате только небольшая сумма электрического тока блокируется и большое количество электрического ток разрешен.

Аналогично максимальное сопротивление достигается, когда мы перемещаем ползунок ближе к клемме C, потому что длина резистивного пути увеличивается.В результате большой количество электрического тока заблокировано, и только небольшое количество электрический ток допускается.

Если использовать клеммы B и C, минимальный сопротивление достигается, когда мы перемещаем ползунок или стеклоочиститель близко к клемма C, потому что длина резистивного пути уменьшается. В результате только небольшое количество электрического тока блокируется и допускается большое количество электрического тока.

Аналогично максимальное сопротивление достигается, когда мы перемещаем ползунок ближе к клемме A, потому что длина резистивного пути увеличивается. В результате большой количество электрического тока заблокировано, и только небольшое количество электрический ток допускается.

Помните, что мы не уменьшаем сопротивление провода или резистивного пути; вместо этого мы просто сокращаем длина резистивного пути для уменьшения сопротивления.Когда мы Поверните внешнюю ручку руками, дворник или бегунок двигается по резистивному пути.

Символ реостата

Американский стандарт и международный Стандартный символ реостата показан на рисунке ниже.

Зигзагообразные линии с тремя выводами представляют собой американский стандартный символ реостата и прямоугольная коробка с тремя выводами представляет собой международный стандартный символ реостата.

Типы реостатов

Реостаты бывают двух типов:

  • Реостаты поворотные
  • Линейные реостаты

Поворотный реостаты

Роторный реостат также иногда называют круговой реостат, потому что его резистивный элемент выглядит как круг. Резистивный элемент поворотного реостата круглый. или под углом.В этих типах резисторов стеклоочиститель или ползунок движется вращательно. Роторные реостаты используются в большинстве приложений, чем линейные реостаты, потому что их размер меньше линейных реостатов.

линейный реостаты

Линейный реостат также иногда называют цилиндрический реостат, поскольку его резистивный элемент выглядит как цилиндр.В этих типах резисторов стеклоочиститель или ползунок перемещается линейным образом. Линейные реостаты используются в лабораториях проводить исследования и преподавать.

Разница между потенциометром и реостатом

Конструкция обоих потенциометров и реостат такой же. Основное отличие в том, как мы его использовали для работы. В потенциометрах мы используем все три клеммы для выполнения операции, тогда как в реостатах мы используем только два терминала для выполнения операции.

Приложения реостата

  • Реостат обычно используется в приложениях с высокими требуется напряжение или ток.
  • Реостаты используются при тусклом свете для изменения интенсивности свет. Если увеличить сопротивление реостата, поток электрического тока через лампочку уменьшается. Как в результате яркость света уменьшается.Аналогично, если уменьшаем сопротивление реостата, поток электрический ток через лампочку увеличивается. Как в результате яркость света увеличивается.
  • Реостаты используются для увеличения или уменьшения громкости радио и увеличить или уменьшить скорость электрического мотор.


Работа, строительство, типы и использование

Реостат — Рабочий

Один из самых распространенных электрических компонентов — резистор.В приложениях, где требуется переменное сопротивление, в основном предпочтительны потенциометры и реостат. Примерно так же мы уже обсуждали потенциометры в нашей предыдущей статье.

Здесь мы поговорим о реостате более подробно.

Что такое реостат?

Реостат — это тип переменного резистора, сопротивление которого можно изменять, чтобы изменить величину тока, протекающего через цепь.

Это устройство было названо «Реостат» английским ученым сэром Чарльзом с использованием двух греческих слов «rheos» и «statis» (что означает текущее управляющее устройство).

Имеет два терминала, один из которых фиксированный, а другой — подвижный. Некоторые реостаты имеют три вывода, как и потенциометр, хотя используются только два вывода (используются только один из двух фиксированных выводов и подвижный вывод).

Некоторые практические реостаты показаны ниже.

Практические реостаты

В отличие от потенциометров, эти устройства должны пропускать значительный ток. Следовательно, резисторы с проволочной обмоткой в ​​основном используются для создания реостатов.

На принципиальной схеме реостат часто представлен так, как показано ниже.

Символ реостата Схема реостата

Так на каком основании работает реостат? Давайте узнаем об этом в следующем разделе.

Принцип работы реостата

Чтобы понять значение реостата и принцип его работы, давайте освежим основы электрических схем.

Три основных параметра электрической цепи: напряжение, приложенное к цепи, ток в цепи и сопротивление цепи.

Теперь мы знаем, что эти параметры взаимозависимы. То есть, чтобы изменить ток, мы можем либо изменить приложенное напряжение, либо изменить сопротивление цепи.

Когда мы используем реостат в цепи, то, что мы в основном делаем, — это изменяем сопротивление цепи, чтобы изменить ток. Поскольку ток и сопротивление обратно пропорциональны, если требуется уменьшение тока, мы увеличим сопротивление реостата. Точно так же, если требуется увеличение тока, мы просто уменьшим сопротивление реостата.

Теперь вы можете задаться вопросом, существует ли максимальный предел, до которого сопротивление может быть уменьшено или увеличено в реостате. Ответ — да, есть. Для каждого реостата есть рейтинг сопротивления, например, если реостат имеет рейтинг 50 кОм, минимальное сопротивление, которое он может предложить, равно 0, а максимальное — 50 кОм.

Так как же изменить сопротивление реостата?

Для этого пересмотрите свои основы сопротивления. В нашей предыдущей статье «Сопротивление и электропроводность — Полное руководство » мы обсудили параметры, от которых зависит сопротивление материала.Три основных фактора, от которых зависит сопротивление материала, — это его длина, площадь поперечного сечения и тип.

Здесь, в этом устройстве, эффективная длина изменяется с помощью скользящего контакта. Реостат, как уже упоминалось, имеет фиксированный и подвижный вывод. Эффективная длина — это длина между фиксированным выводом и положением скользящего вывода на резистивном пути. По мере движения ползунка эффективная длина изменяется, тем самым изменяя сопротивление реостата.

Поскольку сопротивление прямо пропорционально длине, по мере увеличения эффективной длины сопротивление увеличивается. Точно так же, когда эффективная длина уменьшается, сопротивление реостата уменьшается.

Теперь, когда принцип работы достаточно ясен, давайте посмотрим на конструкцию и типы реостатов.

Строительство реостата:

Конструкция реостата такая же, как и у потенциометра, о чем подробно говорилось в нашей статье о потенциометрах.Подобно потенциометру, реостат имеет три контакта, два фиксированных и один подвижный. Кроме того, этот подвижный терминал скользит по резистивной дорожке. Этот резистивный путь может быть из любого типа резистивного материала, такого как резистор из углеродного состава, резистор с проволочной обмоткой, резистор из проводящего пластика и керамический резистор. Выбор типа резистивного материала полностью зависит от типа применения. Однако в большинстве приложений эти реостаты имеют тенденцию пропускать значительный ток, и поэтому в этих случаях выбирается резистивный путь с проволочной обмоткой.

Также геометрия резистивного пути может быть вращательной или линейной.

Исходя из геометрии резистивного пути, у нас есть два основных типа реостатов, а именно роторные реостаты и линейные реостаты. Помимо этих двух существует еще один тип реостата, называемый триммером.

Вам также может понравиться — Как сделать реостат

Рабочий реостат

Остановимся вкратце о каждом из них

Типы реостатов:
1.Линейный реостат:

Эти реостаты имеют линейный резистивный путь. Скользящий терминал скользит по этому пути. Есть два фиксированных терминала, однако используется только один из двух. Другой терминал подключен к слайдеру.

В основном они используются в лабораторных условиях. В основном используется проволочный резистивный путь вдоль материала линейной цилиндрической формы.

На следующем рисунке показан типичный линейный реостат.

Линейный реостат
2.Поворотный реостат:

В полном соответствии со своим названием поворотный реостат имеет поворотный резистивный путь. Они в основном используются в энергетических приложениях. Эти реостаты имеют вал, на котором установлен грязесъемник. Стеклоочиститель — это не что иное, как скользящий контакт для поворотного реостата, который может вращаться на ¾ круга.

Функция и принцип работы одинаковы для обоих типов реостатов.

На рисунке ниже показан роторный реостат.

Поворотный реостат

3.Предустановленный реостат:

Когда реостаты используются в печатной плате, они используются в качестве подстроечных или предварительно настроенных реостатов. Триммеры — это не что иное, как небольшой реостат, в основном используемый в схемах калибровки. Доступны два подстроечных резистора, хотя в большинстве случаев подстроечный резистор с трехполюсным потенциометром используется в качестве двухполюсного реостата.

На рисунке ниже показан триммер.

Предустановка

Мы видим, что реостат и потенциометр имеют одинаковую конструкцию.Вы можете задаться вопросом, можно ли использовать потенциометр в качестве реостата.

Да, можно подключить как реостат. Посмотрим, как это сделать.

Потенциометр, подключенный как реостат:

Вам также может понравиться — Разница между потенциометром и реостатом

Мы видим, что потенциометр имеет три вывода, два фиксированных вывода и подвижный вывод. Реостат также имеет то же самое, хотя использует только один из двух фиксированных выводов.Так что подключить потенциометр как реостат довольно просто.

Все, что вам нужно сделать, это соединить неподвижный терминал и подвижный терминал вместе так, чтобы он действовал как единый движущийся терминал. Таким образом, теперь у вас есть фиксированный терминал и подвижный терминал.

Вместо регулятора напряжения, потенциометр будет работать как регулятор тока или реостат.

Таким образом, вы можете использовать потенциометр в качестве реостата. Следовательно, обычная практика заключается в подключении кастрюли в качестве реостата.

На рисунке ниже показано схематическое изображение потенциометра, подключенного как реостат.

Потенциометр, подключенный как переменное сопротивление

Реостат — применение и применение

Самым распространенным применением реостатов, как уже обсуждалось, является управление током. Все другие приложения в основном основаны на этом текущем управляющем свойстве реостата. Эти реостаты используются для ограничения тока и предотвращения сильноточных повреждений.В соответствии с текущими требованиями выбирается размер используемого реостата. Например, для сильноточных цепей используются большие реостаты. Они также используются в цепях регулятора освещенности, цепях регулирования скорости
для двигателей, нагревателей и духовок. Поскольку они рассеивают тепло, они имеют низкий КПД и, следовательно, в настоящее время заменяются переключающими устройствами с регулируемой шириной импульса. Предустановленные реостаты или подстроечные резисторы используются во время калибровки или настройки схемы. В случае отсутствия подстроечных резисторов с двумя выводами, подстроечный потенциометр с тремя выводами подключается как реостат подстроечного резистора.

На этом мы подходим к заключению статьи. Давайте быстро рассмотрим реостаты.

Реостаты: быстрый взгляд назад.

Реостаты — это разновидность переменных резисторов. В основном это три оконечных устройства, но используются только два из этих трех терминалов. Три клеммы включают две фиксированные клеммы и подвижную клемму (называемую ползунком или дворником). Из двух фиксированных терминалов используется только один. Когда ползунок перемещается по резистивному пути, они изменяют сопротивление в цепи и, следовательно, контролируют ток в цепи.Они похожи на потенциометр, хотя оба используются для разных целей. Потенциометр используется для управления напряжением в цепи, а реостат используется для управления током в цепи. Конструкция реостата такая же, как и у потенциометра. Он имеет резистивную липкость, которая может быть линейной или вращающейся. Типы реостатов включают линейные, поворотные и подстроечные реостаты.

Вам также может понравиться — Переменный резистор — Рабочий

Подстроечный реостат используется, когда эти устройства должны быть включены в печатные платы.Поворотные и линейные реостаты используются в силовых и токоограничивающих приложениях. Потенциометр можно подключить как реостат, просто подключив его фиксированные клеммы к скользящей клемме. Таким образом, в областях, где реостат недоступен, потенциометр можно подключить таким образом и использовать в качестве реостата.

Что такое реостат? — Определение и использование

Определение

Представьте себе звуки и свет вашего окружения — задумывались ли вы когда-нибудь о том, как приглушается свет и уменьшается громкость? Если электростанции не перестанут подавать меньше электроэнергии, что тогда может происходить? Одно слово: сопротивление.

Все электронные устройства работают в электрических цепях — путях, по которым может течь электричество / электрический ток, при этом любая цепь имеет определенный уровень электрического сопротивления. Электрическое сопротивление — это не что иное, как внутреннее свойство электрической цепи сопротивляться прохождению электрического тока. Реостат — переменный резистор или регулируемое сопротивление; размещение его в любой цепи позволяет вам контролировать сопротивление — и, в более широком смысле, сам ток! Иногда переменный резистор или реостат называют потенциометром и в повседневной жизни используют взаимозаменяемо.

Изображение реостата

Чарльзу Уитстону , британскому изобретателю / ученому, часто приписывают разработку реостата в 19 веке. В простейшем варианте он представляет собой длинную трубку с витыми спиралями вокруг нее и регулируемым слайдером. При включении в электрическую цепь он должен принимать и пропускать ток — обычно через две клеммы, одна клемма находится в ползунке / регулируемом контакте, а другая подключена к главной цепи.

Теперь, если вы правильно это представили, это означает, что ток должен течь через спиральные провода реостата, если он вообще будет течь! Итак, как регулируется сопротивление, спросите вы? Поскольку один конец реостата прикреплен к главной цепи, другой конец (ползунок) может регулировать длину витого провода, через который должен проходить ток. Чем больше витых проводов должен пройти ток, тем с большим сопротивлением он столкнется, поскольку сопротивление существует в спиральном проводе помимо существующей цепи.

Если это звучит сбивающе с толку, представьте себе поездку по подземному туннелю со скоростью ветра 200 миль в час. Стал бы вы столкнуться с большим сопротивлением в общем пути, если бы начали у входа или если бы начали ближе к концу туннеля? Уменьшая расстояние, которое вы путешествуете (электрический ток), вы можете столкнуться с меньшими помехами ветра (электрическим сопротивлением). Это основная концепция реостата.

Что такое Реостат? Типы реостатов (полное руководство)

Если вы один из тех, кто пытается узнать, что такое реостат, вы попали в нужное место.В этой статье Linquip мы хотим поговорить о реостатах, о том, как они работают, их типах и функциях и так далее. Если вам интересно, как они помогают в повседневной жизни, продолжайте читать эту статью.

Что такое Реостат?

Это вопрос, на который мы хотим ответить в этой статье. Если вы хотите понять диаграмму реостата, вам нужно знать, что имеется в виду под реостатом и его определение.

  • Что подразумевается под реостатом?

Реостат Википедия определяет его как «двухконтактный переменный резистор».Этот резистор был разработан для управления протеканием тока по цепи. Реостат может изменять сопротивление цепи без каких-либо нарушений. Многие думают, что эти регулируемые резисторы аналогичны потенциометрам. Хотя они очень похожи, разница в том, что они используют только два терминала.

Символ реостата тоже довольно прост. Хотя разные стандарты имеют разные символы для реостатов, чаще всего используется прямоугольник, который помещается между двумя линейными линиями, а наклонная стрелка пересекает прямоугольник.Вы можете увидеть этот символ на изображении ниже:

Подробнее о функции реостата Linquip

: полное руководство по работе реостатов и их применению

Типы реостатов

А теперь окунемся в мир различных типов реостатов. На рынке представлены различные типы реостатов, но три из них более популярны, чем другие. Эти типы: линейный, поворотный и предустановленный. Самый популярный тип реостата — роторный.

  1. Реостат поворотный

Этот тип, как упоминалось выше, является наиболее часто используемым.Роторный реостат обычно используется в энергетических приложениях. Как следует из названия, его резистивный путь вращается. Есть вал, который установлен поверх дворника реостата, и его движение изменит длину, влияющую на сопротивление.

  1. Линейный реостат

Принцип работы линейных реостатов такой же, как и у роторных. Но разница между ними заключается в движении, которое влияет на сопротивление. Линейный, в отличие от поворотного реостата, имеет линейное движение для изменения длины.Этот тип реостата обычно используется в лабораторных условиях. Скользящий вывод линейного реостата перемещается по линейной траектории для изменения сопротивления. Для использования реостата только один из его фиксированных выводов будет подключен к слайдеру.

  1. Предустановленный реостат

Третий пункт в самом популярном типе реостата — это реостат с предварительной настройкой. Этот тип обычно используется в печатной плате (также известной как PCB). Если в печатных платах используются реостаты, они являются предварительно настроенными реостатами; если они используются где-то еще, они считаются триммером.Предустановленные реостаты были разработаны для целей калибровки внутри таких схем.

Этот небольшой реостат также имеет два вывода (а иногда и три), но используется только один фиксированный вывод. Имейте в виду, что даже в трехконтактных реостатах используются только две клеммы. Вы также можете подключить потенциометры для работы в качестве реостата для различных целей.

Работа реостата

До этого момента вы только узнали, «что такое реостат» и его различные типы. Но знание того, как он работает и его использование, также важно, чтобы точно знать, «для чего используется реостат» и как он может помочь улучшить качество вашей жизни.

  • Как реостат регулирует ток в цепи?

Чтобы изменить ток в цепи, необходимо изменить приложенное напряжение или сопротивление. Функция реостата для изменения тока цепи происходит за счет изменения сопротивления цепи. Увеличение сопротивления приводит к уменьшению тока цепи. А если вам нужно увеличить ток, вы должны уменьшить сопротивление.

На сопротивление и, следовательно, ток влияют разные факторы: длина, тип и площадь поперечного сечения.Для реостата этим фактором является длина. Вышеупомянутый контакт, который перемещается в реостате, является элементом, который используется для изменения длины, что приводит к изменению сопротивления и, следовательно, тока.

  • Снижает ли реостат напряжение?

Основная функция реостата — изменение силы тока. Таким образом, когда он помещен напротив источника напряжения, на реостате будет фиксированное напряжение. С увеличением сопротивления ток уменьшается.Помните, что V = IR в базовой электротехнике (V означает напряжение, I — ток, а R — сопротивление), поскольку источник напряжения фиксирован, два других фактора должны измениться, чтобы повлиять на напряжение.

Поскольку для изменения тока используются реостаты, а напряжение фиксировано, он должен изменять сопротивление, чтобы влиять на ток, и этот процесс также влияет на напряжение. Итак, вы можете сказать, что напряжение также можно контролировать с помощью реостата, поскольку два элемента, которые влияют на напряжение, изменяются через реостат.

  • Как использовать реостат?

Реостаты используются по-разному, но в основном реостат используется при необходимости управления током в цепи. Вы можете использовать их как делитель напряжения или даже как переменную резистивную нагрузку. Реостаты также используются в испытательных лабораториях и электрических мастерских для испытаний.

Вы можете тестировать разные цепи с различными токами, которые изменяются с помощью реостата. Кроме того, в этих лабораториях вы можете указать различные параметры напряжения для цепей.Другое распространенное использование реостатов — в схемах освещения. Вы можете использовать их в качестве диммирующих устройств в этих схемах.

Итак, это был ответ на вопрос «что такое реостат?» Теперь вы можете легко описать, что такое реостат, как он работает и его функции. Кроме того, вы узнали, насколько они полезны для изменения тока и даже их применения в цепях освещения. Если у вас есть какие-либо вопросы о реостатах, вы можете зарегистрироваться на Linquip и задать их нашим специалистам. Прокомментируйте ниже и дайте нам знать, что вы думаете об этом регулируемом резисторе.

Что такое Реостат

ГЛАВНАЯ> РЕСУРСЫ> Реостаты

Что такое реостат?

Реостат — регулируемый или переменный резистор. Он используется для контроля электрического сопротивления цепи, не прерывая прохождения тока. Реостат имеет 3 клеммы и обычно состоит из резистивного провода, намотанного в виде тороидальной катушки со скребком, который скользит по поверхности катушки.Чаще всего он имеет керамический сердечник. Реостаты используются в приложениях, требующих высокого напряжения и тока .

В результате уменьшения размеров и энергопотребления многих современных электрических устройств реостаты, которые когда-то были очень распространены в коммерческих и промышленных изделиях, были заменены потенциометрами . Однако по-прежнему существует множество приложений, для которых требуется устройство, которое может использоваться для обработки значительной мощности, и для этих приложений реостат является очень хорошим выбором.Сегодня реостаты наиболее часто используются в качестве регуляторов света и регуляторов скорости двигателя. Они часто используются в дуговых лампах, насосах, вентиляторах и воздуходувках, респираторах, стоматологическом и медицинском оборудовании и моделях поездов.

При выборе реостата.

При выборе реостата для конкретного применения ток обычно является более важным фактором, чем номинальная мощность. Если вы используете реостат для управления двигателем, важно знать, что все типы двигателей постоянного тока могут регулироваться по скорости, однако можно управлять только несколькими видами двигателей переменного тока, поэтому важно получить правильный тип двигателя. Двигатель переменного тока, когда требуется регулирование скорости.Большинство реостатов имеют либо круглый, либо плоский вал, который позволяет прикрепить ручку к реостату. Некоторые из меньших размеров имеют прорези для отверток, которые позволяют регулировать реостат. Переключатели могут быть присоединены к реостату для размыкания цепи реостата или для доступа к независимой цепи. Реостаты могут поставляться с фиксированным или регулируемым упором, ограничивающим угол поворота до любой желаемой части от общего возможного поворота.Обычно этот тип реостата используется в приложениях, где желательно постоянно оставлять определенное сопротивление в цепи.

Щелкните здесь, чтобы просмотреть реостаты в нашем инвентаре.

Реостат | Все, что вам нужно знать

Изображение: Пауло Барселлос-младший, Нью-Йорк ночью HDR, CC BY-SA 2.0

Содержание

Что такое реостат? || Определение реостата

Чтобы определить реостат, нам нужно знать, что такое резистор или сопротивление.Резисторы — это электрические устройства, управляющие током. Формальное определение реостата будет:

«Реостат — это элемент электрической цепи, значение сопротивления которого может быть изменено при необходимости, то есть переменный резистор».

Это трехконтактное устройство, два из которых можно использовать. В качестве подвижного терминала есть слайдер, из двух фиксированных терминалов можно использовать только один. Типичный реостат также состоит из резистивного материала и ползунка.

Что делает реостат?

Основной принцип работы этого устройства прост. В электрических цепях, когда нам нужно изменить значение сопротивления, срабатывает реостат. Если нам нужно увеличить протекание тока — мы увеличим сопротивление устройства. Когда нам нужно уменьшить ток в цепи, мы увеличим значение сопротивления.

Как работает реостат?

Реостат работает на свойстве сопротивления.Сопротивление материала (например, проволоки) зависит линейно от длины и обратно пропорционально площади поперечного сечения.

R∝L / A

R = L / A,

𝝆 — удельное сопротивление материала.

Таким образом, если площадь поперечного сечения останется постоянной, увеличение длины приведет к увеличению сопротивления. Как показано на рисунке, ползунок перемещается через резистивный элемент для линейных реостатов. Он перемещается либо от ввода к выводу, либо наоборот. Соответственно изменяется и эффективная длина.При перемещении стеклоочистителя к выходному порту эффективная длина уменьшается, вызывая падение сопротивления, увеличивая ток.

Работа реостата

Что такое символ реостата?

Институт инженеров по электротехнике и радиоэлектронике (IEEE) и Международная электротехническая комиссия (IEC) определили два разных символа реостата.

Обозначение реостата стандарта IEEE Обозначение реостата стандарта МЭК

Переключатель реостата

Реостаты управляют током цепи, контролируя ее сопротивление.Таким образом, реостат можно использовать в качестве переключателя для изменения сопротивления, а также тока цепи. Поэтому в качестве переключателя используется реостат.

Какой реостат используется? || Применение реостатов

Реостат находит свое применение в электрической цепи. Когда есть необходимость контролировать течение тока с изменением времени. Основываясь на свойстве управления током, ниже приведены некоторые из целей реостата.

  • Цепи диммера: Цепи диммера изменяют интенсивность света.Этой цели будет служить использование реостата. Для этой цели он также нашел применение в микроскопах. При изучении образца с помощью светового микроскопа необходимо наблюдать за любым образцом, используя различную интенсивность света, чтобы получить улучшенное и иное изображение. Для этого микроскопа используется реостат микроскопа.
  • Управление скоростью: Переключатель реостата — переключатель реостата на 12 В, используется для управления скоростью двигателя постоянного тока, работающего на определенной мощности и значении тока. В дополнительном примечании, мы не можем увеличить скорость двигателя постоянного тока так сильно, как нам хотелось бы.Для двигателя постоянного тока существуют определенные ограничения.
  • Нагреватели и печи: Реостаты выделяют чрезмерное количество тепла, обеспечивая при этом сопротивление. Это основная идея обогревателей. Иногда они используются для обеспечения дополнительного тепла, которое требуется рептилии, когда они подавлены, вне нормальных условий. Они также известны как реостаты рептилий.
  • Для высоковольтной цепи обычно требуется реостат. Он также — используется для аудиоконтроля и многих других приложений.

Почему реостат подключается последовательно?

Чтобы подключить реостат в схему, мы должны разместить его последовательно, а не параллельно. Ток протекает по пути с меньшим сопротивлением. Таким образом, когда он находит вариант между менее резистивным путем и более резистивным путем, он всегда выбирает меньший.

Итак, реостат — это устройство с некоторым переменным значением сопротивления. Если мы подключим его к параллельному пути, этот путь получит большее сопротивление, чем другой доступный путь.Когда в цепи течет ток, электроны никогда не выберут параллельный путь вместо этого — они будут течь прямо через последовательный путь. Значит, реостат вообще не будет работать. Ему нужен ток, чтобы работать как реостат. Соединение серии

Тип реостата

Хотя существует несколько типов реостатов, три основных типа:

A. Линейные реостаты

B. Роторные реостаты

C.Предустановленные реостаты

A. Линейные реостаты: Этот тип реостата состоит из цилиндрического резистивного элемента. Ползунок перемещается линейно по резистивному элементу. Имеет два фиксированных терминала; один — используется, а другой подключает ползунок. Чаще всего реостаты этого типа используются — в лабораторных и экспериментальных целях.

B. Роторные реостаты: Реостат этого типа имеет резистивный элемент, имеющий форму круга. Для его использования нужно вращать ползунок.Они находят применение в силовой электронике, а также широко используются из-за своего меньшего размера, чем линейные типы. Поскольку дворник должен вращаться, чтобы изменить значение, поэтому он называется поворотным реостатом.

C. Предустановленные реостаты: Когда необходимо реализовать реостат в печатной плате, следует использовать предустановленные реостаты или подстроечные резисторы. Обеспечивает тонкую настройку, поэтому они нашли применение в схемах калибровки. Реостаты этого типа подходят для промышленного использования.

Напишите некоторые различия между реостатом и потенциометром?

Существует заблуждение, что реостаты и потенциометр — это одно и то же, но есть некоторые отличия. Обсудим некоторые из них —

902 Количество оборотов
Предмет сравнения Реостаты Потенциометры
Количество клемм в дюймах Два оконечных устройства Три оконечных устройства Цепь Последовательное соединение Параллельное соединение
Контролируемое количество Управляющее напряжение Управляющее напряжение
Приложение Высокомощное приложение Маломощное приложение
Количество оборотов Однооборотные и многооборотные
Резистивный материал Углеродный диск, константан, платина и т. Д. Материалы, такие как графит
Symbol

Узнать больше о потенциометре Кликните сюда!

Некоторые часто задаваемые вопросы о реостатах

1.Как оцениваются реостаты?

Реостаты номинальные — в амперах и ваттах. Также есть значение сопротивления. Например — 50Вт — 0,15 А, 100кОм. Это означает, что максимальное значение тока, которое можно измерить, составляет 0,15 А. Сопротивление реостата будет в диапазоне от 0 до 100 кОм.

2. Как выбрать реостат по номиналу?

При выборе реостата номинальный ток более важен, чем номинальная мощность.

Это ток, который ограничивает мощность, которую устройство будет генерировать, при любом значении сопротивления. Следует выбирать реостаты с номинальным током больше или равным фактической потребности в токе в цепи.

3. Чем отличаются резисторы от реостатов?

Резистор — это пассивный электронный компонент, который уменьшает ток, обеспечивая сопротивление. С другой стороны, реостаты — это переменные резисторы, которые при необходимости дают разные значения сопротивлений.

4. Какую функцию выполняет реостат в схеме?
  • A. Уменьшает ток
  • B. Увеличивает ток
  • C. Он ограничивает ток
  • D. Делает ток в цепи постоянным
  • E Все вышеперечисленное

Правильным вариантом будет E. Все вышеперечисленное. Используя закон Ома, мы можем найти ответ на вопрос.Согласно закону Ома, V = IR, где V — приложенное напряжение, I — ток, а R — сопротивление. Реостат обеспечивает значение переменных сопротивлений; таким образом, он может увеличивать, уменьшать и ограничивать ток. Сохранение значения сопротивления постоянным будет поддерживать постоянный ток. Итак, все варианты верны.

5. Можно ли использовать реостаты в качестве потенциометра?

Ответ — нет, но есть способ сделать это. Реостат — это устройство с двумя выводами, а потенциометр — с тремя выводами, поэтому это кажется невозможным.Но если в реостат встроены три клеммы, неиспользуемую клемму можно подключить к цепи, чтобы использовать ее в качестве потенциометра.

6. Можно ли использовать потенциометры в качестве реостата?

Да, потенциометр можно использовать как реостат. Потенциометр контролирует напряжение в цепи. Потенциометр имеет три клеммы. Один терминал должен подключать стеклоочиститель, а другой должен оставаться неподключенным.

7. Каковы недостатки использования реостата?

Недостатков у этого устройства несколько.Некоторые из них —

A. Основным недостатком этого устройства является то, что оно выделяет чрезмерное тепло, вызывающее потерю мощности.

B. Он больше по размеру и не подходит для современных устройств. Поэтому реостаты не используются — в современных технологиях. Хотя в роторах и различных лабораторных экспериментах они незаменимы. Некоторые из замен реостатов — симисторы, SRC и т. Д.

8. Какой тип конуса имеет реостат?

Реостат имеет линейный тип конуса.Конусность — это соотношение между сопротивлением и положением скольжения. Это одна из самых важных частей устройства.

9. Какая польза от реостата в мосте Уитстона?

Мост Уитстона используется в лабораториях для измерения среднего значения сопротивления. Реостаты находят свое применение в мостах Уитстона для определения значения неизвестного сопротивления в несбалансированных условиях. Максимальное сопротивление, которое может предложить реостат, — это максимальное сопротивление, которое может измерить смонтированный мост Уитстона.

10. Почему дроссель катушки предпочтительнее реостата в цепях переменного тока?

Реостат — резистивный элемент. Он обеспечивает сопротивление и выделяет чрезмерное количество тепла. Таким образом, это вызывает потерю электричества. С другой стороны, дроссельная катушка по своей природе является индуктивным элементом. Он поддерживает ту же мощность, но изменяет напряжение в соответствии с законом Фарадея. Вот почему дроссельная катушка предпочтительнее.

11. Изменяет ли реостат напряжение?

Нет, реостат не изменяет напряжение в цепи.Одним из условий работы реостата является поддержание постоянного напряжения. Согласно закону Ома: V = IR, где V — напряжение, I — ток, R — сопротивление. С помощью реостата меняем ток. Одним из условий работы реостата является поддержание постоянного напряжения. Только тогда он может изменить ток в цепи.

12. Имеет ли клемма реостата полярность?

Реостат — это устройство с тремя выводами, два из которых являются фиксированными, а один — подвижным.Клеммы не имеют полярности. Итак, любой терминал можно подключить.

Фотография на обложке Автор: Pinterest

О Sudipta Roy

Я энтузиаст электроники и в настоящее время занимаюсь электроникой и коммуникациями.
Я очень заинтересован в изучении современных технологий, таких как искусственный интеллект и машинное обучение.
Мои работы посвящены предоставлению точных и обновленных данных всем учащимся.
Мне доставляет огромное удовольствие помогать кому-то в получении знаний.

Давайте подключимся через LinkedIn — https://www.linkedin.com/in/sr-sudipta/

Что такое реостат? (с иллюстрациями)

Реостат — это устройство, которое используется для изменения сопротивления в электрической цепи, не прерывая ее. Люди могут быть наиболее знакомы с реостатом в форме диммера или ползунка, который используется для изменения интенсивности света. Реостаты используются для установки уровней освещения для комфорта или настроения, позволяя людям изменять уровни освещения без необходимости менять освещение.Реостаты также используются в ряде электрических приложений и в различных отраслях промышленности. Многие компании производят эти устройства, и люди также могут изготавливать свои собственные, как это иногда делается на уроках естествознания, чтобы познакомить студентов с темой электрического сопротивления.

Это устройство основано на том факте, что ток, протекающий по цепи, будет варьироваться в зависимости от величины сопротивления, с которым оно сталкивается.Низкое сопротивление означает высокий ток, потому что ничто не препятствует прохождению тока, а высокое сопротивление означает низкий ток. Эту характеристику электрических цепей можно использовать для изменения характеристик цепи в соответствии с конкретными потребностями.

Иногда приписывают разработку реостата Чарльзу Уитстону, британскому изобретателю 19 века, который, помимо прочего, внес в науку ряд открытий, связанных с электричеством.Уитстон определенно работал с электрическими цепями и многое узнал о сопротивлении и способах, которыми им можно управлять в процессе. Основные конструкции реостатов, разработанные в этот период, используются и сегодня.

В простейшем реостате используется катушка или проволочный стержень.Ползунок можно перемещать по проводу, чтобы создать большее или меньшее сопротивление в цепи. По мере того, как ползунок перемещается по проводу, он либо увеличивает длину провода, через который должен пройти ток, чтобы замкнуть цепь, либо уменьшает ее. Увеличение создает большее сопротивление, в результате чего через цепь протекает меньший ток, тогда как уменьшение работает в обратном направлении.

Реостаты — это своего рода потенциометр.Эти устройства могут использоваться в различных условиях и, как правило, должны быть герметичными, чтобы факторы окружающей среды не влияли на работу цепи. Уплотнение не пропускает пыль, влагу и подобные материалы, поэтому контур остается чистым. Реостаты иногда выходят из строя, как и другие компоненты схем, и во многих магазинах оборудования или электротехники есть запасные реостаты для различных устройств, чтобы люди могли ремонтировать схемы вместо их замены. Важно использовать замену, рассчитанную на рассматриваемую цепь, чтобы снизить риск поражения электрическим током или других опасностей.

.
Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *