РазноеРазрядка и зарядка ni mh аккумуляторов: как заряжать, зарядное устройство и параметры – 403 — Доступ запрещён

Разрядка и зарядка ni mh аккумуляторов: как заряжать, зарядное устройство и параметры – 403 — Доступ запрещён

Содержание

характеристики, плюсы и минусы, зарядка

Современные устройства постепенно вытесняют устаревшие модели, однако Ni-MH-аккумуляторы продолжают применяться до сих пор. Это объясняется доступной ценой и наличием некоторых преимуществ. Такие источники питания часто устанавливаются в роботы-пылесосы. При правильном обслуживании они могут проработать дольше, чем литийионные (Li-ion) батареи.

Аккумуляторная батарея Ni-MH типа.

Что представляет собой Ni-MH-аккумулятор

Этот элемент питания пришел на смену кадмиевым батареям, разработанным в XX в. Конструкция и принцип работы почти не отличаются от характеристик предшественника.

Конструкция никель-металл-гидридной аккумуляторной батареи

Понимание строения и технических характеристик помогает узнать, как работает никелевый элемент питания.

Схема батареи включает такие детали:

  • отрицательный электрод, состоящий из металлогидрида;
  • положительный электрод, выполненный из оксида никеля;
  • электролит – калия гидроксид.
Ni-MH аккумуляторы – конструкция: батарейки и аккумуляторной батареи.

При производстве металлогидридного анода используют фольговую технологию. Пастообразный сплав и связующий компонент наносят на пористый материал. Конструкцию просушивают и прессуют. При производстве катода применяют никелевый порошок, наносимый на решетку из того же металла. При прогревании сетки вещество спекается.

В состав батареек входят также церий, празеодим. Технические характеристики аккумулятора зависят от типа впитывающего водород сплава.

Схема, иллюстрирующая работу Ni-MH аккумулятора.

Основные параметры и характеристика

Все NiMH-батареи являются перезаряжаемыми. Существуют элементы питания разных размеров. Некоторые модели сейчас применяются редко, например батарейка “Крона”. Этот источник питания выдавал напряжение 9 В.

Сейчас применяются такие аккумуляторы:

  1. Пальчиковые (АА). Емкость достигает 2900 мА/ч.
  2. Мизинчиковые (AAA). Помечаются надписью MN2400 или MX2400. Мощность источников питания достигает 1000 мА/ч.
  3. Средние (С). От пальчиковых батареек отличаются большими размерами. Емкость достигает 6000 мА/ч.
  4. Большие (D). Имеют самую большую мощность – до 11500 мА/ч.

Металлогидридные источники выдают напряжение 1,5 или 1,2 В. При последовательном соединении 10 батареек можно добиться напряжения 15 В.

Сравнение характеристик никелевых аккумуляторов.

Как хранить Ni-MH-аккумуляторы

При отправке на хранение аккумуляторы полностью заряжают. После длительного пребывания батареи в нерабочем состоянии нужно проверить ее напряжение. При снижении этого параметра до 1 В элемент разряжают. Пользоваться им можно будет только после восстановления заряда.

Если отказаться от проведения такой процедуры, изделие выйдет из строя.

Некоторые специалисты советуют хранить аккумуляторы в холодильнике. Считается, что это продлевает срок эксплуатации. Температура корпуса батареи не должна принимать отрицательные значения. Учитывают и рекомендуемое время хранения.

Достоинства и недостатки

Пользователи отмечают такие преимущества никель-металлогидридных аккумуляторов:

  1. Отсутствие эффекта памяти. Их не нужно полностью разряжать и заряжать, как источники питания старого образца. Однако кадмиевые батарейки не нагреваются при зарядке, поэтому от их применения пока не отказываются. Отсутствие эффекта памяти у никелевых элементов объясняется наличием особого вещества в отрицательном электроде.
  2. Безопасность для окружающей среды. В состав батарейки входит меньше вредных веществ, кроме того, они не содержат кадмия.
  3. Увеличенная емкость. При тех же размерах никель-металлогидридные аккумуляторы дольше держат заряд.

К отрицательным качествам относят следующие:

  1. Небольшой срок службы. Емкость начинает постепенно снижаться после 300 циклов зарядки.
  2. Способность к возгоранию. Если устройство, снабженное аккумулятором, постоянно находится подключенным к электросети, батарея может взорваться или воспламениться.
  3. Быстрый саморазряд. Применение никелевого сплава позволило снизить этот показатель до значений, свойственных кадмиевым батареям.

Аккумуляторы такого типа заряжают стандартными или быстрыми способами.

Характеристики и рекомендации по методам заряда Ni-MH аккумуляторов.

Капельный тип

Этот способ зарядки не изменяет технические характеристики элемента питания. Процесс не прекращается даже после восстановления мощности. При этом выбирается наименьшая сила тока, это препятствует перегреву и возгоранию. Зарядное устройство для NiMH-аккумуляторов должно выдавать силу, равную 0,05С (С – емкость батареи).

Время зарядки рассчитывается на основании начальной мощности и номинальной емкости.

Быстрая подзарядка

Процесс быстрой зарядки включает такие этапы:

Временная характеристика Ni-MH аккумуляторов при быстрой зарядке.
  1. Подготовка. На этой стадии подается ток минимальной силы, определяется напряжение на контактах. Если показатель составляет более 1,8 В, зарядка не начинается. Проверка наличия батарейки осуществляется на всех стадиях, если изделие извлекается из ЗУ.
  2. Классификация элемента питания. На этом этапе определяют уровень заряда. При напряжении менее 0,8 В подзарядку не начинают. В таком случае запускается процесс предзарядки. Этот режим предназначен для восстановления мощности критически разряженного аккумулятора.
  3. Предзарядка. На этой стадии подается ток силой 0,1-0,3С. Предзарядка длится полчаса. Если напряжение аккумулятора не определяется, процесс прекращается, батарейка считается непригодной к дальнейшей эксплуатации.
  4. Переходный этап. Сила тока медленно растет в течение 2-5 минут. При этом отслеживают температуру. При критических показателях зарядное устройство отключают.
  5. Быстрая зарядка. Подается ток силой 0,5-1С. Важным является своевременное прекращение процесса, поэтому состояние батареи контролируют по нескольким параметрам.

 

Ускоренная зарядка

На первых стадиях зарядки подают ток силой 10С. Показатель снижают до 1С после достижения уровня заряда в 70%. Длительность первого этапа зависит от степени разряда.

При длительной подаче тока высокой силы батарея легко выходит из строя, поэтому применять ускоренную зарядку можно только при наличии навыков.

Рекомендации по разрядке и зарядке АКБ

Чтобы предотвратить перегрев или перезаряд батареи, выполняют такие рекомендации:

  1. Процесс восстановления прекращают при минимальном нагреве корпуса. Температуру контролируют постоянно.
  2. Использование метода максимального времени. Время набора заряда высчитывается заранее.
  3. Оценка напряжения во время заряда. Изменение этого показателя подскажет, когда нужно прекращать зарядку.
  4. Использование автоматических ЗУ. Такой прибор самостоятельно оценивает все параметры и отключается при необходимости.
  5. Контроль силы тока. Показатель не должен превышать 1С – это приводит к срабатыванию контроллера, аварийному снижению давления и выходу заряжаемого аккумулятора из строя.

Для восстановления емкости батарею разряжают до 1В, после чего полностью заряжают. Тренировку проводят 1 раз в месяц. Для зарядки новых АКБ используют ЗУ с функцией разрядки. Подключение потребителей энергии приводит к критической потере заряда.

Автоматическое ЗУ не сможет распознать элемент, подающий напряжение менее 0,9 В – устройство сигнализирует о том, что батарея в гнезде отсутствует.

Правила использования аккумуляторных батарей

При эксплуатации никель-металлогидридных аккумуляторов соблюдают такие рекомендации:

  1. При отправке на хранение батарею заряжают до 50% емкости.
  2. Не используют зарядные устройства, предназначенные для кадмиевых элементов питания. NiMH-аккумуляторы более чувствительны к повышению температуры и перезаряду.
  3. Тренировочные разряды-заряды проводить необязательно. Использование качественного зарядного устройства помогает батарее восстановить емкость за несколько циклов зарядки.
  4. После зарядки источник питания оставляют на несколько минут. Нельзя заряжать АКБ при температуре ниже -5 °С и выше +50 °С. Это снижает срок службы изделия.

При частом выполнении дозарядки аккумулятор нужно периодически разряжать и полностью заряжать.

 

РЕКОМЕНДАЦИИ ПО ЗАРЯДКЕ/РАЗРЯДКЕ NI-MH АККУМУЛЯТОРОВ — Все об аккумуляторах — Каталог файлов

  1. Не перегревать!
  2. Не перезаряжать!
  3. Не переразряжать!

Для вычисления времени зарядки никель-металл-гидридного аккумулятора или батареи из нескольких элементов можно использовать следующую формулу:

Время зарядки (ч) = Емкость аккумулятора (мАч) / Сила тока зарядного устройства (мА)

 

Пример:
Мы имеем аккумулятор с ёмкостью 2000mAh. Ток заряда в нашем зарядном устройстве  — 500mA. Делим ёмкость аккумулятора на ток заряда и получаем 2000/500=4. Это означает, что при токе в 500 миллиампер наш аккумулятор с ёмкостью 2000 миллиамперчасов будет заряжаться до полной ёмкости 4 часа!

емкость 2100 mAh — ток 200 миллиампер =10,5 часов

А теперь более подробно про правила, которые нужно стараться соблюдать, для нормальной работы никель-металл-гидридного (Ni-MH) аккумулятора:

  1. Храните Ni-MH аккумуляторы с небольшим количеством заряда (30 — 50% от его номинальной ёмкости).
  2. Никель-металлогидридные аккумуляторы более чувствительны к нагреву, чем никель-кадмиевые (Ni-Cd), поэтому не перегружайте их. Перегрузка может отрицательно сказаться на токоотдаче  аккумулятора (способности аккумулятора держать и выдавать накопленный заряд). Если у вас есть интелектуальное зарядное устройство с технологией «Delta Peak» (прерывание заряда аккумулятора по достижению пика напряжения), то вы можете заряжать аккумуляторы практически без риска перезарядки и разрушения оных.
  3. Ni-MH (никель-металл-гидридные) аккумуляторы после покупки можно (но не обязательно!) подвергать «тренировке». 4-6 циклов заряда/разряда для аккумуляторов в качественном зарядном устройстве позволяет достичь придела ёмкости, которая была растеряна в процессе перевозки и хранения аккумуляторов в сомнительных условиях после выхода с конвейера завода-производителя. Количество подобных циклов может быть совершенно разным для аккумуляторов от разных производителей. Качественные аккумуляторы достигают предела ёмкости уже после 1-2 циклов, а аккумуляторы сомнительного качества с искусственно завышенной ёмкостью не могут достигнуть своего предела и после 50-100 циклов заряда/разряда.
  4. После разряда или заряда старайтесь дать остыть аккумулятору до комнатной температуры (~20o C). Заряд аккумуляторов при температурах ниже 5
    o
    C или выше 50oC может значительно отразиться на сроке службы батареи.
  5. Если хотите разрядить Ni-MH аккумулятор, то не разряжайте его менее, чем до 0.9В для каждого элемента. Когда напряжение никелевых аккумуляторов падает ниже 0.9В на элемент, большинство зарядных устройств, обладающих «минимальным интеллектом», не могут активировать режим заряда. Если Ваше зарядное устройство не может опознать глубоко разряженный элемент (разряженный менее 0.9В), то стоит прибегнуть к помощи более «тупого» зарядника или подключить аккумулятор на короткое время к источнику питания с током 100-150мА до достижения напряжения на аккумуляторе 0.9В.
  6. Если вы постоянно используете одну и ту же сборку из аккумуляторов в электронном устройстве в режиме дозаряда, то иногда стоит разряжать каждый аккумулятор из сборки до напряжения 0,9В и производить его полный заряд во внешнем зарядном устройстве. Подобную процедуру полного циклирования стоит производить один раз на 5-10 циклов дозаряда аккумуляторов.

ТАБЛИЦА ЗАРЯДА ТИПОВЫХ NI-MH АККУМУЛЯТОРОВ

Емкость элементовТипоразмерСтандартный режим зарядкиПиковый ток заряда
Максимальный ток разряда
2000 мА/чAA200 мА ~ 10 часов2000 мА10.0А
2100 мА/чAA200 мА ~ 10-11 часов2000 мА15.0А
2500 мА/чAA250 мА ~ 10-11 часов2500 мА20.0А
2750 мА/чAA250 мА ~ 10-12 часов2000 мА10.0А
800 мА/чAAA100 мА ~ 8-9 часов800 мА5.0 A
1000 мА/чAAA100 мА ~ 10-12 часов1000 мА5.0 A
160 мА/ч1/3 AAA16 мА ~ 14-16 часов160 мА480 мА
400 мА/ч2/3 AAA50 мА ~ 7-8 часов400 мА1200 мА
250 мА/ч
1/3 AA25 мА ~ 14-16 часов250 мА750 мА
700 мА/ч2/3 AA100 мА ~ 7-8 часов500 мА1.0 A
850 мА/чFLAT100 мА ~ 10-11 часов500 мА3.0 A
1100 мА/ч2/3 A100 мА ~ 12-13 часов500 мА3.0 A
1200 мА/ч2/3 A100 мА ~ 13-14 часов500 мА3.0 A
1300 мА/ч
2/3 A
100 мА ~ 13-14 часов500 мА3.0 A
1500 мА/ч2/3 A100 мА ~ 16-17 часов1.0 A30.0 A
2150 мА/ч4/5 A150 мА ~ 14-16 часов1.5 A10.0 A
2700 мА/чA100 мА ~ 26-27 часов1.5 A10.0 A
4200 мА/чSub C420 мА ~ 11-13 часов3.0 A35.0 A
4500 мА/чSub C450 мА ~ 11-13 часов3.0 A
35.0 A
4000 мА/ч4/3 A500 мА ~ 9-10 часов2.0 A10.0 A
5000 мА/чC500 мА ~ 11-12 часов3.0 A20.0 A
10000 мА/чD600 мА ~ 14-16 часов3.0 A20.0 A

 

Данные в таблице актуальны для полностью разряженных аккумуляторов

Немного о зарядке NiMH и NiCd аккумуляторов

 Портативный мир

В настоящее время для питания портативной аппаратуры используется несколько видов аккумуляторов : никель — кадмиевые (NiCd), никель — металл — гидридные (NiMH), литий — ионные (Li+), литий — полимерные (Li-Polymer). В последнее время все большее распространение получают Li+ аккумуляторы . Причин этому несколько : они имеют большую удельную емкость , низкий саморазряд , способны отдавать большие токи при разряде . Li-Polymer аккумуляторы обладают еще одним преимуществом : технологически их можно изготовить любой формы , аккумулятор может быть сверхплоским , толщиной всего несколько миллиметров , и даже иметь сложную форму , заполняя собой все свободное пространство внутри устройства . К сожалению , Li+ аккумуляторы , производимые разными фирмами ( и даже одной фирмой , но для разных моделей устройства ) имеют разные размеры и несовместимы между собой . Теряется такое важное качество , как взаимозаменяемость . С одной стороны , это позволяет создавать более компактные устройства , разрабатывая оптимальный аккумулятор для каждого случая . Но в то же время это вызывает ряд неудобств . Если , например , требуется второй аккумулятор для того или иного устройства , возникают определенные проблемы : нужно найти точно такой же аккумулятор той же фирмы , причем стоимость его будет довольно высокой , поскольку нет предложений от конкурентов . То же касается и зарядных устройств : для каждого типа аккумулятора нужно иметь свое « фирменное » зарядное устройство . Потребители хотят иметь выбор и часто голосуют кошельком против такого подхода , покупая устройства , работающие на стандартных аккумуляторах размера AA или AAA. Такие аккумуляторы намного дешевле , широко представлены на рынке , а в экстренных случаях могут быть заменены щелочными батарейками , которые имеют такой же форм — фактор . Как недостаток можно назвать их несколько меньшую удельную емкость и несколько меньшую компактность устройств , использующих такие аккумуляторы . Но есть и важное преимущество : если во всех устройствах используются аккумуляторы форм — фактора AA или AAA, достаточно одного зарядного устройства .

Стандартные аккумуляторы

Если вести речь об аккумуляторах форм — фактора AA или AAA, то есть смысл говорить только о NiMH аккумуляторах . Применявшиеся ранее NiCd аккумуляторы встречаются все реже , тем более , зарядное устройство , спроектированное для работы с NiMH аккумуляторами , будет нормально работать и с NiCd аккумуляторами ( но обратное не верно ). По сравнению с NiCd аккумуляторами NiMH аккумуляторы имеют на 30…40% большую удельную емкость , меньше страдают эффектом « памяти », не содержат опасного для окружающей среды кадмия . Однако у NiMH аккумуляторов есть и недостатки : они дороже ( хотя разница в стоимости постепенно стирается ), имеют меньшее количество циклов заряд — разряда ( характеристики начинают ухудшаться уже после 200…300 циклов ), имеют более высокое внутреннее сопротивление , больший примерно в полтора раза саморазряд . Даже несмотря на то , что при разряде они могут отдавать значительные токи , разряд током сверх допустимого ведет к уменьшению количества циклов , поэтому желательно при разряде не превышать ток 0.5C. Там , где требуются большие разрядные токи , до сих пор используются NiCd акумуляторы . Однако технология NiMH аккумуляторов постоянно совершенствуется и уже сегодня ведущие производители этих аккумуляторов заявляют , что современные модели NiMH аккумуляторов полностью свободны от эффекта « памяти » и допускают 500…1000 циклов заряд — разряда .

Способы зарядки аккумуляторов

В процессе зарядки аккумулятора в нем происходят химические преобразования . Только часть поступающей энергии тратится на эти преобразования , другая часть превращается в тепло . Можно ввести понятие « КПД процесса зарядки аккумулятора ». Это та часть энергии , поступающей от зарядного устройства , которая запасается в аккумуляторе . Значение КПД никогда не бывает 100%, при одних условиях зарядки КПД выше , при других – ниже . Тем не менее , КПД может быть довольно высоким , что позволяет производить зарядку большими токами не опасаясь перегрева аккумулятора . Химические реакции , которые протекают в NiMH аккумуляторе при его зарядке , являются экзотермическими , в отличие от NiCd аккумуляторов , где они эндотермические . Это означает , что КПД зарядки NiMH аккумуляторов ниже , и они более горячие в процессе зарядки . Это требует более тщательного контроля процесса зарядки . Скорость зарядки аккумулятора зависит от величины зарядного тока . Ток зарядки обычно измеряют в единицах C, где C – численное значение емкости аккумулятора . Это не совсем корректно с точки зрения размерностей физических величин , но принято считать , что ток 1C для аккумулятора емкостью 2500 мА / ч равен 2500 мА . По скорости различают несколько видов зарядки : капельная зарядка (trickle charge), быстрая зарядка (quick charge) и ускоренная зарядка (fast charge). Капельная зарядка обычно определяется как зарядка током 0.1C, быстрая зарядка – током порядка 0.3C, ускоренная зарядка – током 0.5…1.0C. На самом деле принципиальных отличий между быстрой и ускоренной зарядкой нет , они отличаются лишь предпочтительными методами определения конца зарядки . Поэтому есть смысл разделять только два вида зарядки : капельная и быстрая . К быстрой зарядке можно отнести любую зарядку током , большим 0.1C. Принципиальным отличием капельной и быстрой зарядки является то , что при быстрой зарядке зарядное устройство должно автоматически заканчивать процесс , пользуясь какими — то критериями . При капельной зарядке окончание процесса можно не детектировать , а аккумулятор может находится в состоянии капельной зарядки сколь угодно долго .

Капельная зарядка

Вопреки существующему мнению , капельная зарядка не способствует долгой жизни аккумуляторов . Дело в том , что при капельной зарядке зарядный ток не отключают даже после того , как аккумулятор полностью зарядился . Именно поэтому ток выбирается малым . Считается , что даже если вся энергия , сообщаемая аккумулятору , будет превращаться в тепло , при столь малом токе он не сможет существенно нагреться . Для NiMH аккумуляторов , которые значительно хуже реагируют на перезарядку , чем NiCd, ток капельного заряда рекомендуется не более 0.05C. Для аккумуляторов большей емкости значение тока капельной зарядки больше . Это означает , что в зарядном устройстве , предназначенном для зарядки аккумуляторов большой емкости , аккумуляторы малой емкости будут сильно нагреваться , что сокращает срок их службы . Снижение тока капельной зарядки ведет к увеличению длительности зарядки сверх разумного . Аккумулятор большой емкости , установленный в зарядное устройство , предназначенное для зарядки аккумуляторов малой емкости , может вообще никогда не достичь своего полного заряда , так как с процессом заряда будет конкурировать саморазряд . Долго находясь в таких условиях , аккумуляторы начинают деградировать , теряя емкость . При всем желании , надежно детектировать конец капельной зарядки невозможно . На низких зарядных токах профиль напряжения плоский , практически нет характерного максимума в конце зарядки . Температура также растет плавно . Единственным методом является ограничение процесса зарядки по времени . Однако при этом нужно знать не только точную емкость аккумулятора ( которая зависит от возраста и состояния аккумулятора ), но и величину его начального заряда . Исключить влияние начального заряда можно только одним способом – полностью разрядить аккумулятор перед зарядкой . А это еще больше удлиняет процесс зарядки и укорачивает жизнь аккумулятора , которая определяется количеством циклов заряд — разряда . Еще одной помехой при вычислении длительности капельной зарядки является низкий КПД этого процесса . Для капельной зарядки КПД не превышает 75%, более того , КПД зависит от многих факторов , в том числе от температуры и состояния аккумулятора . Единственным преимуществом капельной зарядки является простота реализации ( без контроля конца зарядки ). В то же время производители NiMH аккумуляторов не рекомендуют пользоваться капельной зарядкой . И только в самое последнее время производители аккумуляторов специально отмечают , что современные NiMH аккумуляторы не деградируют под воздействием длительной капельной зарядки .

Быстрая зарядка

Большинство производителей NiMH аккумуляторов приводят характеристики своих аккумуляторов для случая быстрой зарядки током 1C. Хотя иногда можно встретить рекомендации не превышать ток 0.75C. Эти рекомендации связаны с опасностью открывания вентиляционных отверстий аккумулятора при быстрой зарядке в условиях повышенной температуры окружающей среды . « Умное » зарядное устройство должно оценить условия и принять решение о допустимости быстрого заряда . Считается , что быстрый заряд можно использовать только в диапазоне температур 0…+40°C и при напряжении на аккумуляторе 0.8…1.8 В . КПД процесса быстрой зарядки очень высок ( порядка 90%), поэтому аккумулятор нагревается слабо . Однако в конце зарядки КПД этого процесса резко падает и практически вся подводимая к аккумулятору энергия начинает превращаться в тепло . Это вызывает резкий рост температуры и давления внутри аккумулятора , что может вызвать его повреждение . И хотя для современных аккумуляторов взрыва , скорее всего , не последует , просто откроются вентиляционные отверстия и часть содержимого аккумулятора будет безвозвратно утрачена . Это точно не пойдет на пользу аккумулятору , не говоря уже об изменении внутренней структуры электродов под воздействием высокой температуры . Поэтому при быстрой зарядке аккумулятора очень важно зарядку вовремя прекратить . К счастью , в режиме быстрой зарядки есть довольно надежные критерии , по которым зарядное устройство может это сделать . Алгоритм работы быстрого зарядного устройства состоит из нескольких фаз :

1. Определение наличия аккумулятора .

2. Квалификация аккумулятора (qualification).

3. Пред — зарядка (pre-charge).

4. Переход к быстрой зарядке (ramp).

5. Быстрая зарядка (fast charge).

6. Дозарядка (top-off charge).

7. Поддерживающая зарядка (maintenance charge).

Фаза определения наличия аккумулятора

В этой фазе обычно проверяется напряжение на выводах аккумулятора при включенном генераторе зарядного тока примерно 0.1C. Если при этом напряжение оказывается выше 1.8 В , это значит , что аккумулятор отсутствует или поврежден . В любом случае зарядка начинаться не должна . Как только будет обнаружено меньшее напряжение , делается вывод , что аккумулятор подключен и можно начинать зарядку .

Во всех других фазах зарядки на фоне основных действий должна производится проверка наличия аккумулятора . Эта необходимость связана с тем , что аккумулятор в любой момент может быть вынут из зарядного устройства . При этом из любой фазы зарядное устройство должно перейти на первую фазу – определение наличия аккумулятора .

Фаза квалификации аккумулятора

Зарядка начинается с фазы квалификации аккумулятора . Эта фаза нужна для грубой оценки начального заряда аккумулятора . Если напряжение на аккумуляторе меньше 0.8 В , то быструю зарядку производить нельзя . В этом случае требуется дополнительная фаза пред — зарядки . Если же напряжение больше этой величины , то фаза пред — зарядки пропускается . На практике аккумуляторы никогда не разряжают ниже 1.0 В . Поэтому фаза пред — зарядки реально никогда не используется , разве что при зарядке глубоко разряженных или долго не бывших в употреблении аккумуляторов .

Фаза пред — зарядки

Эта фаза предназначена для начальной зарядки глубоко разряженных аккумуляторов . Значение тока пред — зарядки выбирается в пределах 0.1…0.3C. Фаза пред — зарядки должна быть ограничена во времени ( например , 30 мин ). Более длительная пред — зарядка смысла не имеет , так как у исправного аккумулятора напряжение должно довольно быстро достигнуть порогового значения 0.8 В . Если же напряжение не растет , значит аккумулятор поврежден и процесс зарядки нужно прервать с индикацией ошибки . Во всех длительных фазах зарядки необходимо контролировать температуру и прекращать зарядку при достижении критического значения . Для NiMH аккумуляторов максимально допустимой во время зарядки считают температуру 50°C. Как и во всех других фазах , необходимо контролировать наличие аккумулятора .

Фаза перехода к быстрой зарядке

Если напряжение на аккумуляторе выше 0.8 В , то можно начинать быструю зарядку . Сразу включать большой зарядный ток не рекомендуется . Ток нужно плавно повышать в течение 2…4 мин , пока он не достигнет заданного тока быстрой зарядки . В этой фазе необходимо контролировать температуру и прекращать зарядку при достижении критического значения . Как и во всех других фазах , необходимо контролировать наличие аккумулятора .

Фаза быстрой зарядки

В этой фазе ток зарядки устанавливают в пределах 0.5…1.0C. Основной проблемой при быстрой зарядке является точное определение момента окончания зарядки . Если фазу быстрой зарядки вовремя не прекратить , аккумулятор будет разрушен . Поэтому весьма желательно , чтобы для определения окончания быстрой зарядки использовалось сразу несколько независимых критериев . Для NiCd аккумуляторов обычно применялся так называемый –dV метод . В процессе зарядки напряжение на аккумуляторе растет , но в самом конце зарядки оно начинает падать . Для NiCd аккумуляторов критерием окончания зарядки являлось снижение напряжения примерно на 30 мВ ( на каждый аккумулятор ). –dV – это самый быстрый метод , он хорошо работает даже с частично заряженными аккумуляторами . Если , например , установить на зарядку полностью заряженный аккумулятор , то напряжение на нем начнет быстро расти , затем довольно резко падать . Это вызовет окончание зарядки . Для NiMH аккумуляторов этот метод работает не столь хорошо , потому что падение напряжения для них менее выражено . При токах зарядки менее 0.5C максимум напряжения вообще может отсутствовать , поэтому зарядное устройство , предназначенное для зарядки аккумуляторов малой емкости , не всегда может определить конец зарядки аккумуляторов большой емкости . При повышенных температурах максимум напряжения также несколько смазывается . Слабое падение напряжения в конце зарядки вынуждает повышать чувствительность , что может привести к досрочному завершению быстрой зарядки из — за помех . Помехи генерируются как самим зарядным устройством , так и проникают из питающей сети . По этой причине не рекомендуется заряжать аккумуляторы в автомобиле , так как бортовая сеть обычно имеет очень высокий уровень помех . Сам аккумулятор тоже является источником шумов . Поэтому при измерении напряжения нужно применять фильтрацию . Надежность метода –dV уменьшается при зарядке батарей последовательно соединенных аккумуляторов , если отдельные аккумуляторы в батарее различаются по степени заряда . При этом пик напряжения для разных аккумуляторов батареи наступает в разные моменты времени , и профиль напряжения смазывается . Иногда для NiMH аккумуляторов вместо метода –dV используют метод dV=0, когда вместо падения напряжения детектируют плато на профиле напряжения . Критерием конца зарядки в этом случае служит постоянство напряжения на аккумуляторе в течение , например , 10 минут . Метод dV=0 можно рассматривать как вариант метода –dV с установленным нулевым порогом изменения напряжения . Несмотря на все трудности определения конца зарядки методом –dV, именно этот метод большинством производителей NiMH аккумуляторов называется как основной при быстрой зарядке . Типичным значением для изменения напряжения в конце зарядки током 1C является –2.5…–12 мВ на один аккумулятор . Сразу после включения большого зарядного тока напряжение на аккумуляторе может испытывать флуктуации , которые могут быть неверно восприняты как падение напряжения в конце зарядки . Для предотвращения ложного прекращения быстрой зарядки первые 3…10 мин (hold off time) после включения зарядного тока контроль –dV должен быть выключен . Одновременно с падением напряжения в конце зарядки начинает расти температура и давление внутри аккумулятора . Поэтому конец зарядки можно определить по возрастанию температуры . Устанавливать абсолютный порог температуры для определения момента окончания зарядки не рекомендуется , так как сильное влияние на точность будет оказывать температура окружающей среды . Поэтому чаще используют не саму температуру , а скорость ее изменения dT/dt. Считается , что при зарядном токе 1C процесс зарядки нужно завершать , когда скорость роста температуры dT/dt достигнет 1°C/ мин . Нужно отметить , что при токах зарядки менее 0.5C скорость роста температуры почти не меняется и этот критерий использовать нельзя . Ввиду тепловой инерции метод dT/dt склонен вызывать некоторый перезаряд аккумулятора . Как метод dT/dt, так и метод –dV вызывают некоторый перезаряд аккумулятора , что ведет к снижению срок его службы . Для того , чтобы обеспечить полный заряд аккумулятора , завершение заряда лучше проводить малым током при низкой температуре аккумулятора , так как при повышенных температурах способность принимать заряд у аккумуляторов заметно падает . Поэтому фазу быстрой зарядки желательно завершать чуть раньше . Существует так называемый inflexion метод определения окончания быстрой зарядки [3]. Суть этого метода заключается в том , что анализируется не максимум напряжения на аккумуляторе , а максимум производной напряжения по времени . Т . е . быстрая зарядка прекратится в тот момент , когда скорость роста напряжения будет максимальной . Это позволяет завершить фазу быстрой зарядке раньше , когда температура аккумулятора еще не успела значительно подняться . Однако этот метод требует измерения напряжения с большей точностью и некоторых математических вычислений ( вычисления производной и цифровой фильтрации полученного значения ). Некоторые зарядные устройства используют не постоянный зарядный ток , а импульсный [4]. Импульсы тока имеют длительность порядка 1 сек , промежуток между импульсами – порядка 20…30 мс . Как преимущество такого метода называют лучшее выравнивание концентрации активных веществ по всему объему , меньшую вероятность образования крупных кристаллических образований на электродах и их пассивации . Точных данных по эффективности такого метода нет , во всяком случае , вреда он не приносит . С другой стороны , такой способ имеет другие преимущества . В процессе детектирования окончания быстрого заряда необходимо точно измерять напряжение на аккумуляторе . Если измерение проводить под током , то дополнительную погрешность будет вносить сопротивление контактов , которое может быть нестабильным . Поэтому на время измерения зарядный ток желательно отключать . После выключения зарядного тока необходимо сделать паузу 5…10 мс , пока напряжение на аккумуляторе установится . Затем можно производить измерение . Для эффективной фильтрации помех сетевой частоты можно произвести ряд последовательных выборок на интервале 20 мс ( один период сетевой частоты ) с последующей цифровой фильтрацией . Идея заряда импульсным током получила дальнейшее развитие . Был разработан метод , который называют FLEX negative pulse charging или Reflex Charging. Этот метод отличается от простого импульсного заряда наличием в промежутках между импульсами тока зарядки импульсов разрядного тока . При длительности импульсов тока зарядки порядка 1 сек длительность импульсов разрядного тока выбирается порядка 5 мс . Величина разрядного тока больше тока зарядки в 1.0…2.5 раз . Как преимущество такого метода называют более низкую температуру аккумулятора в процессе зарядки и способность устранять крупные кристаллические образования на электродах ( вызывающих эффект « памяти »). Но есть результаты независимой проверки это метода фирмой General Electric, которые говорят о том , что пользы такой метод не приносит , как , впрочем , и вреда . Поскольку правильное определения окончания быстрого заряда является очень важным , хорошее зарядное устройство должно использовать несколько методов определения сразу . Кроме того , должны проверяться некоторые дополнительные условия для аварийного прекращения быстрой зарядки . Так , в фазе быстрой зарядки необходимо контролировать температуру аккумулятора и прекращать быструю зарядку в случае достижения критического значения . Для быстрой зарядки ограничение по температуре более жесткое , чем для зарядки вообще . Поэтому при достижении температуры +45°C необходимо аварийно прекратить быструю зарядку и перейти на фазу дозарядки меньшим током . Очень желательно пред продолжением зарядки дождаться остывания аккумулятора , так как при повышенных температурах способность принимать заряд у аккумуляторов падает . Еще одним дополнительным условием является ограничение времени быстрой зарядки . Зная ток зарядки , емкость аккумулятора и КПД процесса зарядки можно вычислить время , необходимое для полной зарядки . Таймер быстрой зарядки должен быть установлен на время , больше расчетного на 5…10%. Если это время истекло , а ни один из способов детектирования окончания быстрой зарядки не сработал , она аварийно прекращается . Такая ситуация , скорее всего , говорит о неисправности каналов измерения напряжения и температуры . Кроме того , как и во всех других фазах , необходимо контролировать наличие аккумулятора .

Фаза дозарядки

В этой фазе ток зарядки устанавливают в пределах 0.1…0.3C. При токе дозарядки 0.1C производители рекомендуют длительность дозарядки 30 мин . Более длительная дозарядка приводит к перезаряду , что увеличивает емкость аккумулятора на 5…6%, но сокращает количество циклов заряд — разряда на 10…20%. Еще одним положительным эффектом дозарядки является выравнивание заряда аккумуляторов в батарее . Те аккумуляторы , которые полностью заряжены , будут рассеивать подводимую энергию в виде тепла , в то время как другие будут заряжаться . Если фаза дозарядки идет непосредственно после фазы быстрой зарядки , полезно в течение нескольких минут остудить аккумуляторы . С повышением температуры способность аккумулятора принимать заряд существенно падает . Например , при температуре 45°C аккумулятор способен принять только 75% заряда . Поэтому дозарядка , проведенная при комнатной температуре , позволяет получить более полный заряд аккумулятора .

Фаза поддерживающей зарядки

Зарядные устройства , предназначенные для зарядки NiCd аккумуляторов по окончанию процесса зарядки обычно переходят в режим капельного заряда , чтобы поддерживать аккумулятор в полностью заряженном состоянии . Это приводит к тому , что температура аккумулятора всегда остается повышенной , что уменьшает срок службы аккумулятора . Для NiMH аккумуляторов долго находится в состоянии капельной зарядки нежелательно , так как эти аккумуляторы плохо переносят перезаряд . По крайней мере , ток поддерживающей зарядки должен быть очень низким , чтобы только компенсировать саморазряд . Для NiMH аккумуляторов саморазряд составляет до 15% емкости в первые 24 часа , затем саморазряд снижается и составляет 10…15% в месяц . Для того , чтобы скомпенсировать саморазряд , достаточен средний ток менее 0.005C. Некоторые зарядные устройства включают ток поддерживающей зарядки раз в несколько часов , остальное время аккумулятор отключен . Величина саморазряда сильно зависит от температуры , поэтому еще лучше сделать поддерживающий заряд адаптивным : небольшой ток зарядки включается лишь тогда , когда обнаруживается заданное уменьшение напряжения на аккумуляторе . В принципе , от фазы поддерживающей зарядки можно вообще отказаться , но если между зарядкой и использованием аккумуляторов проходит время , то непосредственно перед использованием аккумуляторы нужно подзарядить для компенсации саморазряда . Хотя более удобно , если зарядное устройство постоянно поддерживает аккумуляторы в состоянии полной зарядки .

Сверхбыстрый заряд

При заряде до 70% своей емкости КПД зарядки близок к 100%. Это является хорошей предпосылкой для создания сверхбыстрого зарядного устройства . Конечно , увеличивать зарядный ток до бесконечности нельзя . Есть предел , обусловленный скоростью протекания химических реакций . На практике возможно использовать токи до 10C. Для того , чтобы аккумулятор не перегрелся , после достижения 70% заряда ток нужно снизить до уровня обычной быстрой зарядки и контролировать окончание зарядки обычным образом . Задача состоит в том , чтобы надежно контролировать достижение 70% отметки . Надежных методов для этого нет , повышение температуры инерционно , а перегрев укоротит жизнь аккумулятора . Особенно проблематично определение степени заряда в батарее , где могут быть аккумуляторы по — разному разряженные . Еще одной проблемой является подвод к аккумуляторам зарядного тока . При столь высоких токах плохой контакт может вызвать дополнительный нагрев и даже разрушение аккумулятора . И вообще , это весьма рискованное мероприятие , так как при ошибках зарядного устройства возможен взрыв . Нужно ли так спешить ?

Универсальное зарядное устройство

Аккумуляторы даже одного форм — фактора могут иметь разную емкость . Например , для NiMH аккумуляторов размера AA в настоящее время характерными являются емкости 1000…2500 ма / ч , а для аккумуляторов размера AAA – 500…800 ма / ч . Значения же токов зарядки пропорционально емкости аккумулятора . Если заряжать менее емкий аккумулятор большим током , будет происходить нагрев . Если заряжать аккумулятор меньшим током – возникают неудобства , связанные с увеличением времени зарядки . К тому же , в таких условиях может не работать один из методов определения окончания быстрой зарядки . В идеале универсальное зарядное устройство должно иметь возможность выбора зарядного тока в зависимости от используемых аккумуляторов . Однако на практике чаще всего токи устанавливают для типовых аккумуляторов . В настоящее время для аккумуляторов размера AA можно считать средней емкость примерно 1800 ма / ч , а для аккумуляторов AAA – примерно 650 ма / ч . Нужно отметить , что для аккумуляторов одного форм — фактора с ростом емкости внутреннее сопротивление уменьшается незначительно , как и связанные с ним потери . Поэтому , если ток зарядки устанавливать равным 1 С , температура аккумуляторов большей емкости будет выше . Как указывалось ранее , повышенная температура является причиной неполной зарядки . Поэтому для аккумуляторов размера AA можно рекомендовать не превышать ток зарядки 1.3…1.5 А независимо от их емкости . Иначе нужно применять принудительное охлаждение аккумуляторов во время быстрой зарядки с помощью вентилятора . Поскольку для аккумуляторов разных размеров используются разные посадочные места с раздельными контактами , для изменения зарядного тока между AA и AAA аккумуляторами никаких дополнительных переключателей обычно не требуется .

Проблема выключения питания зарядного устройства

Если во время зарядки питание зарядного устройства было выключено , при включении должен происходить переход на фазу определения наличия аккумулятора . При этом процесс зарядки начнется сначала , но в силу того , что для определения момента окончания быстрой зарядки используются независимые от общего времени зарядки критерии , быстрый заряд продлится необходимое для полной зарядки время . А вот дозарядка будет повторена полностью , несмотря на то , что она , возможно , уже была частично выполнена . Но это практически не создает проблем , так как аккумуляторы , находящиеся в стадии дозарядки , считаются готовыми к использованию , и их можно вынуть в любой момент . Единственным минусом является перезаряд , который испытывают аккумуляторы при многократной дозарядке . Даже если периодически запоминать в энергонезависимой памяти текущее состояние процесса зарядки , это не решит проблем . Невозможно учесть саморазряд , так как неизвестна продолжительность пребывания зарядного устройства в обесточенном состоянии . К тому же , в обесточенном состоянии аккумуляторы могли быть вынуты или заменены . Полностью эта проблема решена в « умных » Li+ аккумуляторных сборках , которые внутри содержат контроллер , измеряющий величину заряда , сообщаемого аккумулятору или полученного от него . Это позволяет в любой момент точно определять степень заряда аккумулятора . Тем не менее , одним из требований , предъявляемых к зарядному устройству , является низкий разряд установленных аккумуляторов при отсутствии питания устройства . Ток разряда через цепи обесточенного зарядного устройства не должен превышать примерно 1 мА .

Определение первичных источников тока

Кроме аккумуляторов , в форм — факторе AA и AAA выпускаются первичные источники тока ( их называют батарейки , хотя это и не совсем правильно ). Основное распространение получили первичные источники двух типов : щелочные (alkaline) и марганцево — цинковые . Щелочные источники имеют емкость в 5-7 раз выше , но они и более дорогие . При установке первичных источников тока в зарядное устройство с режимом быстрой зарядки возможен взрыв , так как вентиляционные отверстия конструкцией первичных источников тока обычно не предусмотрены . Для устранения такой опасности весьма желательно , чтобы зарядное устройство могло отличать первичные источники тока от аккумуляторов и не включать режим быстрой зарядки в случае установки первых . Отличий между аккумуляторами и первичными источниками тока относительно немного . Напряжение тех и других может быть одинаковым , в процессе разряда оно находится примерно в одном и том же диапазоне . Единственным отличием является более высокое внутреннее сопротивление у первичных источников тока . Именно по этому признаку отличают первичные источники тока от аккумуляторов контроллеры DS2711/12 фирма «MAXIM» [1, 2]. Полностью заряженные NiMH аккумуляторы размера AA имеют внутреннее сопротивление порядка 25…50 мОм , размера AAA – 50…100 мОм . В то же время полностью заряженные щелочные батарейки размера AA имеют внутреннее сопротивление порядка 150…250 мОм , размера AAA – 200…300 мОм . Как видно , отличить аккумуляторы от первичных источников тока можно установив предельное значение внутреннего сопротивления порядка 150 мОм . Однако это справедливо только для полностью заряженных аккумуляторов и батареек . При разрядке у тех и других внутреннее сопротивление растет и различия в общем случае исчезают . Для определения первичных источников тока контроллеры DS2711/12 в процессе быстрой зарядки каждые 31 сек выключают зарядный ток и измеряют напряжение на аккумуляторе без тока . По этому и другому значению , измеренному уже с зарядным током , вычисляется внутреннее сопротивление аккумулятора . Если оно оказывается больше установленного предела , то процесс зарядки прерывается с индикацией ошибки . Из — за того , что у разряженных батареек и аккумуляторов внутреннее сопротивление может быть одинаковым , алгоритм не всегда будет работать . Однако есть несколько эффектов , которые делают работу зарядного устройства с таким алгоритмом вполне приемлемым . Если пытаться заряжать батарейку , разряженную до напряжения ниже 0.8 В , то зарядное устройство не включит режим быстрой зарядки , пока в режиме пред — зарядки не будет достигнуто напряжение 0.8 В . Поскольку пред — зарядка ведется относительно малым током , такой режим не может привести к существенному нагреву и разрушению батарейки . Когда напряжение достигнет 0.8 В , то включится режим быстрой зарядки . Если ток быстрой зарядки 1 А и более , то высока вероятность того , что из — за высокого внутреннего сопротивления батарейки напряжение поднимется выше 1.8 В и зарядка сразу будет прервана . Если же этого не произойдет , то зарядку прервет первое измерение внутреннего сопротивления . В режиме быстрой зарядки ( током 1 А и более ) для разряженного аккумулятора времени 31 сек окажется достаточно для того , чтобы его внутреннее сопротивление уменьшилось и проверка ошибки не показала . Если же внутреннее сопротивление окажется выше нормы , процесс зарядки прервется . Поэтому для глубоко разряженного аккумулятора может потребоваться несколько попыток старта процесса зарядки , после чего внутреннее сопротивление аккумулятора станет меньше установленного порога и процесс зарядки пройдет нормально . Таким образом , введение в алгоритм зарядки процедуры определения первичных источников тока может вызвать некоторые побочные эффекты , такие как необходимость перезапуска процесса зарядки глубоко разряженного аккумулятора . Можно , конечно , усовершенствовать алгоритм определения первичных источников тока . Например , сделать порог внутреннего сопротивления зависимым от напряжения на аккумуляторе . Но никто не может гарантировать полной достоверности определения . К тому же , новые разработки первичных источников тока имеют все более близкие параметры к параметрам аккумуляторов . Включать определение первичных источников тока в алгоритм работы зарядного устройства или оставить это на совести пользователя – решать нужно в каждом конкретном случае .

Эффект памяти и восстановление аккумуляторов

Эффект памяти сильнее всего проявляется в NiCd аккумуляторах как снижение емкости аккумулятора при повторяющихся циклах неполной разрядки — зарядки . Суть эффекта состоит в том , что на электродах образуются крупные кристаллические образования , в результате часть объема активного вещества аккумулятора перестает использоваться . Для устранения эффекта памяти рекомендуется полная разрядка аккумулятора ( до напряжения 0.8…1.0 В ) с последующей зарядкой . В особо тяжелых случаях может потребоваться несколько таких циклов . NiMH аккумуляторы практически свободны от эффекта памяти . По заявлением производителей , максимальная потеря емкости , связанная с этим эффектом , не превышает 5%, что заметить крайне сложно . Тем не менее , примерно раз в месяц рекомендуется перед зарядкой NiMH аккумуляторов их полностью разрядить . Желательно , чтобы зарядное устройство имело возможность разрядки аккумулятора с контролем минимального напряжения , по достижению которого разрядка прекращается . Режим разрядки аккумулятора в зарядном устройстве полезен не только с точки зрения восстановления аккумуляторов . Он оказывается очень кстати , когда возникает необходимость зарядить аккумуляторы с разной или неизвестной степенью начального заряда . Перед зарядкой степень заряда всех аккумуляторов желательно выровнять , что проще всего сделать их полной разрядкой . Особенно актуально это для зарядных устройств , заряжающих батарею последовательно соединенных аккумуляторов . Зарядное устройство с функцией разряда может обладать возможностью измерения емкости аккумуляторов , что также очень полезно на практике .

Взаимодействие аккумуляторов в батарее

Отдельные аккумуляторы в батарее могут иметь несколько отличающиеся характеристики . Причиной этого является разброс параметров при производстве аккумуляторов , неравномерное распредление температуры внутри батареи при эксплуатации и разные темпы старения отдельных аккумуляторов . В итоге при зарядке батареи аккумуляторы с меньшей емкостью будут подвергаться перезарядке . Это вызывает дальнейшую деградацию таких акумуляторов и выход их из строя . С другой стороны , если один из аккумуляторв в батарее имеет высокий саморазряд или вовсе закорочен , то при попытке полной зарядки такой батареи перезаряд будут испытывать исправные аккумуляторы . Аккумуляторы с меньшей емкостью будут разрушаться и в процессе разрядки батареи . Эти аккумуляторы окажутся разряженными раньше , дальнейшая разрядка батареи может вызвать очень глубокий разряд таких аккумуляторов и даже их переполюсовку . При этом температура и давление внутри аккумуляторов будет повышаться , что может привести к их разрушению . В результате даже небольшое начальное различие емкости акумуляторов в батарее будет возрастать в процессе эксплуатации , и это может закончиться разрушением одного из аккумуляторов . Поэтому нужно стремится к тому , чтобы степень зарядки отдельных аккумуляторов была по возможности одинаковой . В идеальном случае каждый аккумулятор батареи должен заряжаться отдельно . Однако готовые батареи аккумуляторов часто имеют всего два вывода , поэтому заряжать можно только всю батарею сразу . В таком случае может оказаться полезным выравнивание (balancing) степени зарядки аккумуляторов . Выравнивание обязательно нужно производить для новой или глубоко разряженной батареи . Перед началом выравнивания контролируют напряжение на батарее . Если напряжение батареи менее 0.8 В / акк . ( т . е . в пересчете на каждый аккумулятор ), то производят зарядку до 0.8 В / акк . током примерно 0.1 С . Затем нужно произвести выравнивание , для чего следует полностью зарядить батарею током 0.3 С , ограничив процесс заряда временем 4.0…4.5 часов . Если батарея аккумуляторов долго не находилась в эксплуатации , то рекомендуется дополнительно произвести несколько циклов заряд — разряда стандартными методами .

Ссылки : [1] – http://pdfserv.maxim-ic.com/en/ds/DS2711-DS2712.pdf

[2] – http://pdfserv.maxim-ic.com/en/an/AN3388.pdf

[3] – http://www.st.com/stonline/pr oducts/literature/an/2074.pdf [4] – ICS1700A.pdf

Ридико Леонид Иванович [email protected]

Статьи :: Справочная :: Рекомендации по зарядке/разрядке Ni-Mh аккумуляторной батареи

Для вычисления времени зарядки необходимо использовать следующую формулу:
Время зарядки = (Емкость батарей, мАч + 10%) / Сила тока ЗУ, мА

Для нормальной работы Ni-Mh батареи необходимо соблюдать следующие правила:

  1. Храните Ni-Mh батареи с небольшим количеством заряда (30 — 50%).
  2. Никель-металгидридные батареи более чуствительны к нагреву чем никель-кадмиевые, поэтому не перегружайте их. Перегрузка может отрицательно сказаться на способности батареи держать и выдавать заряд. Если у вас есть интелектуальное зарядное устройство с технологией «Delta Peak» (определение пика напряжения зарядки) , то вы можете заряжать аккумуляторы без риска перезарядки и разрушения оных.
  3. Никелевые батареи, когда выходят из завода, необходимо подвергать «тренировке». Использование 4-6 циклов (количество циклов, необходимое для достижения полной емкости, разное у разных производителей) ЗУ заряда/разряда при нормальном использовании выводит их в рабочий режим. Батареи, собранные из высококачественных элементов японских производителей, достигают показателей после 4-6 циклов. Другие батареи могут потребовать 50-100 циклов для достижения приемлемых уровней емкости. Процесс тренировки требуется только для новых батарей.
  4. Всегда давайте остыть батарее до комнатной температуры (~20o C) перед зарядом. Заряд батарей при температурах ниже 5o C или выше 50o C значительно снижает срок службы батарей.
  5. Если хотите разрядить Ni-Mh батарею, то не разряжайте её менее чем до 0,9 В для каждого элемента. Когда напряжение никелевых батарей падает ниже 0,9 В на элемент, обычное электронное зарядное устройство (быстрое или медленное (trickle)) может не смочь активировать батарею и завершить успешный заряд. Такие батареи нужно зарядить до напряжения 0,9 В/элемент током 100-150 mA, затем зарядить до полной емкости током 300 mA (для балансировки элементов).
  6. Необходимо периодически полностью разряжать аккумуляторную сборку (один раз в месяц) приблизительно до 0,9 В на элемент (например при 10,8-вольтовой сборке, состоящей из 9 элементов по 1,2 В, разрядить её до ~ 9 В, но не ниже!).

Таблица для «медленного» (trickle) заряда типовых элементов
Емкость элементов Форм-фактор Стандартный режим зарядки Пиковый ток зарядки Максимальный ток разрядки
160 мА/ч 1/3 AAA 16 мА ~ 14-16 часов 160 мА 480 мА
400 мА/ч 2/3 AAA 50 мА ~ 7-8 часов 400 мА 1200 мА
730 мА/ч AAA 100 мА ~ 8-9 часов 500 мА 1.0 A
1000 мА/ч AAA 100 мА ~ 11-12 часов 500 мА 1.0 A
250 мА/ч 1/3 AA 25 мА ~ 14-16 часов 250 мА 750 мА
700 мА/ч 2/3 AA 100 мА ~ 7-8 часов 500 мА 1.0 A
850 мА/ч FLAT 100 мА ~ 10-11 часов 500 мА 3.0 A
1100 мА/ч 2/3 A 100 мА ~ 12-13 часов 500 мА 3.0 A
1200 мА/ч 2/3 A 100 мА ~ 13-14 часов 500 мА 3.0 A
1300 мА/ч 2/3 A 100 мА ~ 13-14 часов 500 мА 3.0 A
1500 мА/ч 2/3 A 100 мА ~ 16-17 часов 1.0 A 30.0 A
1400 мА/ч AA 100 мА ~ 15-16 часов 1.0 A 15.0 A
1700 мА/ч AA 100 мА ~ 18-19 часов 1.0 A 20.0 A
2000 мА/ч 4/5 A 150 мА ~ 13-15 часов 1.5 A 30.0 A
2150 мА/ч 4/5 A 150 мА ~ 14-16 часов 1.5 A 10.0 A
2600 мА/ч AA 100 мА ~ 28-29 часов 500 мА 5.0 A
2700 мА/ч A 100 мА ~ 26-27 часов 1.5 A 10.0 A
4200 мА/ч Sub C 420 мА ~ 11-13 часов 3.0 A 35.0 A
4500 мА/ч Sub C 450 мА ~ 11-13 часов 3.0 A 35.0 A
4000 мА/ч 4/3 A 500 мА ~ 9-10 часов 2.0 A 10.0 A
5000 мА/ч C 500 мА ~ 11-12 часов 3.0 A 20.0 A
10000 мА/ч D 600 мА ~ 14-16 часов 3.0 A 20.0 A

Данные в таблице актуальны для полностью разряженных аккумуляторов

Сколько циклов зарядки — разрядки у аккумуляторов: Li-Ion, Ni-Cd и Ni-Mh

Наличие возможности многократной зарядки делает различного рода аккумуляторы более привлекательными в плане улучшения эксплуатационных свойств электроаппаратуры, в сравнении с обычными гальваническими элементами.

Количество таких периодов у батарей, изготовленных по различным технологиям, существенно отличается. В этой статье будет рассказано о том, сколько раз можно зарядить литиевые, кадмиевые и металлогидридные аккумуляторы.

Li-Ion

Литий-ионные батареи являются одними из самых распространённых перезаряжаемых элементов питания. Такие изделия используются в различных бытовых устройствах и гаджетах, а также могут выпускаться в форме батарей стандартных типоразмеров.

В каких устройствах используется

Li-Ion аккумуляторы можно обнаружить в следующих устройствах:

  • Ноутбуки.
  • Фотоаппараты.
  • Электромобили.
  • Детские игрушки.
  • Macbook Air и Pro.
  • Телефоны Android.
  • Смартфоны Iphone.
  • Электрические велосипеды и самокаты.
  • Такие изделия имеют оригинальную форму либо могут быть выпущены в виде обычных батареек.

Количество циклов заряда-разряда

Стандартное количество циклов заряда аккумуляторной батарейки, изготовленной по литиевой технологии, например элемента , составляет около восьмисот.

Высококачественные изделия способны перезаряжаться более 1000 раз, но в конце эксплуатационного периода может наблюдаться заметное снижение ёмкости.

18650

Как достичь максимального количества циклов

Чтобы не «убить» батарею полностью запрещается глубокий разряд элемента питания этого типа. Для максимального продления жизни такой батарейки, её необходимо эксплуатировать в надлежащих температурных условиях (от -20 до +50˚С).

Использование зарядных устройств, в которых превышен номинальный ток также недопустимо. В этом случае батарея сильно перегревается и начинает деградировать.

Li-Pol

Литий-полимерные АКБ являются усовершенствованными литиевыми батареями, поэтому отличий между этими двумя типами элементов не так много.

В каких устройствах используется

Li-Pol аккумуляторы могут использоваться в различных телефонах с операционной системой Android, а также в других устройствах связи. Подходит такой элемент питания для радиоуправляемых игрушек, особенно для летающих моделей.

В этом случае низкий вес и способность отдавать высокий ток являются неоспоримыми преимуществами использования АКБ этого типа.

Li Pol

Количество циклов заряда-разряда

Как правило, способны выдержать до 900 циклов перезарядки. Конечно, максимальное количество зависит от качества батареи, но негативные эксплуатационные условия способны существенно снизить ресурс элемента питания.

Как достичь максимального количества циклов

Глубокий разряд однозначно приведёт к выходу элемента питания из строя, поэтому в различных гаджетах батареи оснащаются специальным контроллером, который прекращает подачу тока на контакты при определённом уровне разряда.

Значительный износ литий-полимерных изделий возможен и при неподходящей температуре хранения или эксплуатации (оптимальное значение этого параметра составляет +20, но эксплуатация возможна от -20 до +40 градусов Цельсия). Батарею необходимо также правильно расконсервировать. Для этой цели новое изделие подвергается нескольким циклам заряд-разряда.

Ni-Mh

Никель-металлогидридные батареи также выдерживают большое количество циклов заряда-разряда.

В каких устройствах используется

Ni-Mh аккумуляторы могут успешно применяться в следующих областях:

  • Космическая промышленность.
  • Радиоаппаратура.
  • Источники бесперебойного питания.
  • Техника с электрическим приводом.

Большое распространение   получили в типоразмерах (АА, ААА, Крона и т. д.)

ni-mh

Количество циклов заряда-разряда

Реальная периодичность заряда-разряда за весь срок службы составляет не менее пятисот. Многие производители указывают продолжительность работы до 1000 циклов, но на практике этот показатель не всегда соответствует действительности.

Добиться хороших результатов можно, если тщательно придерживаться основных правил хранения и эксплуатации таких изделий.

Как достичь максимального количества циклов

Чтобы добиться максимальной продолжительности работы никель-металлогидридных аккумуляторов, необходимо периодически выполнять процедуру тренировки источника тока.

Для этой цели достаточно не реже одного раза в месяц полностью разрядить АКБ и затем установить на зарядку до достижения 100% уровня.

Ni-Cd

Никель-кадмиевые аккумуляторы являются уже устаревшими изделиями, но благодаря своей дешевизне по сей день активно используются в различной электротехнике.

В каких устройствах используется

Небольшие источники питания этого типа могут быть выполнены в форме обычных пальчиковых батареек. Также в различных электроинструментах такой аккумулятор может использоваться в составе батареи, регулирование поступление электрического тока в которой, осуществляется платой контроллера.

ni-cd

Наиболее часто такую схему можно встретить в шуруповёртах и других малогабаритных электроинструментах.

Количество циклов заряда-разряда

Никель-кадмиевый аккумулятор рассчитан на 100 – 900 циклов заряда разряда. При ежедневном использовании современных изделий, запаса работоспособности хватает, примерно, на 1 год.

Конечно, от условий эксплуатации также будет зависеть продолжительность работы устройства.

Как достичь максимального количества циклов

Старение никель-кадмиевых батарей происходит, главным образом, из-за эффекта памяти. По этой причине рекомендуется определить уровень заряженности элементов перед подключением ЗУ.

Если эта процедура будет осуществлена до неполного расходования электроэнергии, то следующая разрядка батареи будет осуществлять до этого значения ёмкости.

Если используется неоригинальное зарядное устройство, то рекомендуется с помощью мультиметра проверить уровень тока и напряжения. Отклонение этих параметров также способны привести к преждевременному выходу из строя элемента питания.

Остались вопросы или есть что добавить? Тогда напишите нам об этом в комментариях, это позволит сделает материал более полным и точным.

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *