РазноеПроверка дпдз осциллографом: Осциллограф в диагностике: датчики ⋆ CHIPTUNER.RU – Motorhelp.ru диагностика и ремонт двигателя

Проверка дпдз осциллографом: Осциллограф в диагностике: датчики ⋆ CHIPTUNER.RU – Motorhelp.ru диагностика и ремонт двигателя

Содержание

Осциллограф в диагностике: датчики ⋆ CHIPTUNER.RU

ОСЦИЛЛОГРАФ В ДИАГНОСТИКЕ

©Владимир Селиверстов

ЧАСТЬ I. ДАТЧИКИ ИНЖЕКТОРНЫХ И КАРБЮРАТОРНЫХ АВТОМОБИЛЕЙ

ДПДЗ (Датчик Положения Дроссельной Заслонки)

Датчик положения дроссельной заслонки(ДПДЗ) в СУД служит для определения степени и скорости открытия дроссельной заслонки. Выходное напряжение ДПДЗ изменяется в зависимости от нажатия педали акселератора и равно 0,3–4,8В. В состоянии покоя это напряжение составляет 0,3–0,6В, это соответствует 0% открытия дроссельной заслонки.

 

ДПКВ (Датчик Положения Коленчатого Вала)

 

ДМРВ (Датчик Массового Расхода Воздуха, MAF-Sensor)


ДМРВ является датчиком термоанемометрического типа. Устанавливается между воздушным фильтром и дроссельным патрубком. Сигнал ДМРВ представляет собой напряжение постоянного тока, изменяющееся в диапазоне от 1 до 5 В, величина которого зависит от количества воздуха, проходящего через датчик. 

 

Осциллограф в диагностике: датчики Осциллограф в диагностике: датчики Осциллограф в диагностике: датчики
Эталон. ОК Полуживой датчик Неисправный
датчик

 

У исправного нового датчика максимальное напряжение должно достигать 4,3–4,7В в момент резкого открытия дроссельной заслонки.

 

ДК (Датчик Кислорода, он же Lambda Zond)

Осциллограф в диагностике: датчики

Датчик кислорода служит для правильного определения соотношени

Motorhelp.ru диагностика и ремонт двигателя

Цифровой осциллограф позволяет эффективно отслеживать и находить неисправности в датчиках системы впрыска. В этой статье рассмотрим подробно осциллограммы с датчиков:
  1. Положения коленчатого вала
  2. Датчика массового расхода воздуха
  3. Датчика положения дроссельной заслонки
  4. Датчика положения распредвала
  5. Лямбда-зонда
  6. Датчика холла
  7. Датчика детонации
  8. Датчика абсолютного давления
  9. Датчика скорости автомобиля

ДПКВ

Датчик положения коленчатого вала (ДПКВ) самый главный в системе впрыска, по нему осуществляется синхронизация работы электронного блока управления двигателем. Сигнал вазовского дпкв представляет собой серию повторяющихся электрических импульсов напряжения, генерируемых датчиком при вращении коленчатого вала.

Проверка датчиков системы впрыска осциллографом.

Задающий диск представляет собой зубчатое колесо 60-2, т.е. 58 равноудаленных зубцов и два отсутствующих для синхронизации. При вращении задающего диска вместе с коленчатым валом впадины изменяют магнитный поток в магнитопроводе датчика, наводя импульсы напряжения переменного тока в его обмотке.
Осциллограмма индуктивного ДПКВ имеет следующий вид:
Проверка датчиков системы впрыска осциллографом.

Здесь стоит обратить внимание на амплитуду сигнала и форму импульсов. Если витки в обмотке датчика будут короткозамкнуты, то амплитуда сигнала будет снижена. Также по осциллограмме легко вычислить биение задающего диска и повреждение зубцов.
На некоторых иномарках в качестве ДПКВ используется датчик Холла, вырабатывающий прямоугольные импульсы.
Вот типичный пример осциллограммы такого датчика (Hyundai Sonata):
Проверка датчиков системы впрыска осциллографом.

А вот так синхронно работают датчики положения коленчатого и распределительного валов двигателей Nissan. По нарастающим фронтам сигналов можно определить смещение валов относительно друг друга.

Проверка датчиков системы впрыска осциллографом.

А это осциллограмма типичной неисправности датчика Холла (Audi 100). Нарастающий фронт «срезан», сигнал такого датчика блок управления не распознает.
Проверка датчиков системы впрыска осциллографом.

На старых Опелях и Daewoo Nexia в качестве датчика синхронизации используется индукционная катушка с задающим диском.
Осциллограмма такого датчика имеет такой вид:
Проверка датчиков системы впрыска осциллографом.

Датчик положения распредвала
Проверка датчиков системы впрыска осциллографом.

ДПРВ используется в системе управления двигателем для определения положения распределительного вала, что необходимо для синхронизации впрыска топлива. Датчик генерирует один импульс за полный цикл работы двигателя (720 градусов поворота коленчатого вала).
Проверка датчиков системы впрыска осциллографом.

Импульс датчика положения распредвала указывает на верхнюю мертвую точку первого цилиндра.

ДМРВ
Проверка датчиков системы впрыска осциллографом.

Датчик массового расхода воздуха (ДМРВ) применяются во многих системах управления двигателем (в частности ВАЗ) для измерения значения мгновенного расхода воздуха. Выходной сигнал ДМРВ Bosch HFM5 представляет собой напряжение постоянного тока, изменяющееся в диапазоне от 1 до 5 В, величина которого зависит от массы воздуха, проходящего через датчик. При нулевом расходе исправный датчик должен иметь выходное напряжение около 1В. Эталоном считается значение 0,996В.
По осциллограмме можно отследить 2 важных момента:
1. Скорость реакции ДМРВ можно оценить по времени переходного процесса выходного сигнала при подаче питания на датчик.
2. Выходное напряжение датчика при нулевом расходе воздуха (двигатель остановлен).
Осциллограмма исправного ДМРВ при подаче питания имеет следующий вид.
Проверка датчиков системы впрыска осциллографом.


Время переходного процесса равно 0,5 мс. Выходное напряжение при нулевой подаче воздуха равно 0,996 В.

А это осциллограмма выходного напряжения при включении питания неисправного ДМРВ.
Проверка датчиков системы впрыска осциллографом.

Время переходного процесса такого датчика в десятки раз больше, чем исправного, а значит время реакции самого датчика будет значительно снижено и автомобиль будет «вяло» набирать скорость. Выходное напряжение такого ДМРВ при остановленном двигателе равно 1,13 В., что говорит о значительном отклонении сигнала от нормы. Двигатель с неисправным датчиком в значительной степени потеряет «приемистость», будет затруднен пуск и возрастет расход топлива.

Важно: система самодиагностики блока управления двигателем не способна выявить снижение скорости реакции ДМРВ. Такую неисправность можно найти только путем диагностики с применением осциллографа.
Осциллограмма выходного напряжения изношенного ДМРВ при резком открытии дроссельной заслонки.
Проверка датчиков системы впрыска осциллографом.

При значительном загрязнении чувствительного элемента датчика, скорость реакции на изменение воздушного потока снижается и форма осциллограммы становится более «сглаженной».
Исправный датчик при быстром открытии дроссельной заслонки должен выдавать кратковременно в первом импульсе более 4 В.

ДМРВ Bosch

Лямбда-зонд
Проверка датчиков системы впрыска осциллографом.

По анализу осциллограммы выходного сигнала лямбда-зонда на различных режимах работы двигателя можно оценить как исправность самого датчика, так и исправность всей системы управления двигателем.
Осциллограмма напряжения исправного циркониевого лямбда имеет следующий вид:
Проверка датчиков системы впрыска осциллографом.

Здесь следует обратить внимание прежде всего на 3 момента:
1. Размах напряжения выходного сигнала должен быть от 0,05-0,1 В до 0,8-0,9 В. При условии, что двигатель прогрет до рабочей температуры и система управления работает по замкнутой петле обратной связи.

2. Время перехода выходного напряжения зонда от низкого к высокому уровню не должно превышать 120 мс.
3. Частота переключения выходного сигнала лямбда-зонда на установившихся режимах работы двигателя должна быть не реже 1-2 раз в секунду.

ДПДЗ
Проверка датчиков системы впрыска осциллографом.

Датчик положения дроссельной заслонки (ДПДЗ) служит для отслеживания угла открытия дроссельной заслонки и представляет собой потенциометр. Опорное напряжение датчика равно 5 В. Сигнал исправного ДПДЗ представляет собой напряжение постоянного тока в диапазоне от 0,5 до 4,5 В. При повороте дроссельной заслонки, сигнал должен меняться плавно, без скачков и провалов.
Пример осциллограммы двух датчиков положения дроссельной заслонки VW Passat с двигателем RP показана на рисунке ниже.

Проверка датчиков системы впрыска осциллографом.
Один из датчиков работает в диапазоне от 0 до 25% открытия дроссельной заслонки, а второй от 25 до 100%.

Датчик абсолютного давления (ДАД)
Проверка датчиков системы впрыска осциллографом.

На основании данных с этого датчика о разряжении и температуре во впускном коллекторе, блок управления рассчитывает количество воздуха, поступающего в цилиндры двигателя. Принцип действия основан на преобразовании значения давления в соответствующую величину выходного напряжения. Применяемые в современных системах управления двигателем датчики чрезвычайно надежны. Проверить работу датчика абсолютного давления можно осциллографом, подключившись к его сигнальному выходу.

Осциллограмма с датчика при открытии дроссельной заслонки имеет такой вид:
Проверка датчиков системы впрыска осциллографом.

Датчик детонации (ДД)
Проверка датчиков системы впрыска осциллографом.

Наиболее распространенный широкополосный датчик детонации пьезоэлектрического типа с генерирует сигнал напряжения переменного тока с частотой и амплитудой зависящей от степени «шума», который издает та часть двигателя, на которую он установлен. При возникновении детонации амплитуда вибраций повышается, что приводит к увеличению напряжения выходного сигнала ДД. При этом контроллер корректирует угол опережения зажигания для гашения детонации.
Проверить датчик детонации можно на столе, подключившись щупами осциллографа к его выводам. При легком постукивании металлическим предметом на осциллограмме отобразятся такие импульсы:
Проверка датчиков системы впрыска осциллографом.

Датчик скорости автомобиля
Как правило такие датчики имеют в своей основе элемент Холла. Однако встречаются и индуктивные датчики.
Типичный пример осциллограммы индуктивного датчика скорости автомобиля Ауди 100 имеет такой вид:
Проверка датчиков системы впрыска осциллографом.

Индуктивный датчик АБС
Хоть этот датчик не относится к системе впрыска, но раз уж попалась на глаза, выкладываю осциллограмму.
Такой вид имеет сигнал с индуктивного датчика системы АБС.
Проверка датчиков системы впрыска осциллографом.
Обратите внимание на амплитуду сигнала. В данном конкретном случае осциллограмма снята при простом прокручивании колеса рукой. Однако если датчик имеет короткозамкнутые витки, то его амплитуда будет значительно меньше. Сигнал такого датчика блок управления АБС не «увидит».скачать dle 10.6фильмы бесплатно

Автомобильный осциллограф для диагностики автомобиля

Найти неисправность стало гораздо проще. Не надо разбирать и подкидывать каждую запчасть, что удешевляет поиск неисправности и экономит время. Автомобильный осциллограф применяется для диагностики двигателя, датчиков электронной системы управления, генератора, стартера, аккумулятора. Нужен при комплексной автомобильной диагностике, дополняет проверку сканером. Позволяет делать дефектовку мотора без вскрытия.

Осциллограф – это прибор, который снимает параметры времени и амплитуды электрического сигнала. При неисправностях автомобиля, также нужны эти характеристики. То есть как изменяется сигналы датчика, катушки, форсунки по времени.

Какой выбрать осциллограф для диагностики авто

Рассмотрим наиболее удобные и информативные приборы.

USB Autoscope Постоловского

На первом месте в рейтинге практиков стоит осциллограф Постоловского USB Autoscope IV. Имеет обширные диагностические функции.

осциллограф Постоловского

осциллограф Постоловского

Преимущества
  • Профессиональные скрипты от Андрея Шульгина.
  • Удобный интерфейс.
  • Широкий диапазон измерения от 6 до 300 вольт.
  • Обработка скриптов в автоматическом режиме.
  • Информативный скрипт эффективности по цилиндрам CSS, показывающий работу форсунок, системы зажигания.
  • Тест аккумулятора, генератора, стартера. Показывает неисправности в автоматическом режиме. Легкий процесс съема характеристик: достаточно иметь доступ к плюсовой или минусовой клеммам АКБ.
  • Тест давления в цилиндре. Показывает метки системы газораспределения, правильно ли стоят фазы. Выявляет провернутый задающий диск.

Полная документация по работе с прибором. Подробно описаны скрипты, схемы подключения. Есть видео инструкция на сайте производителя. Отзывчивая поддержка.

Мотодок 3

Вторым в списке рейтинга осциллографов для диагностики автомобиля любой марки стоит Мотодок 3. Имеет схожие характеристики.

Преимущества и недостатки
  • Скрипт Андрея Шульгина эффективности цилиндров. Есть некоторые недостатки по синхронизации с некоторыми автомобилями, имеющими слабый сигнал с датчика коленчатого вала. Но это сглаживается удобством и быстрой работой.
  • Подключения на любое расстояние по кабелю RJ 45.
  • Качество картинки при диагностике, что не маловажно при работе.
  • Подробная документация на сайте производителя.

Для примера приведены только два осциллографа для диагностики авто. Существуют и другие приборы: отличаются ценой, производителем, но принцип измерения одинаков. Самое главное иметь опыт в чтении осциллограмм к каждой марке автомобиля.

Диагностика осциллографом автомобиля: как проводить

Пользоваться осциллографом не составляет особых трудностей у диагностов. Методика подробно описана в инструкциях к прибору. Главное знать места подключения к датчику положения коленчатого вала для проведения скрипта Шульгина по эффективности цилиндров. Для различных марок автомобилей ДПКВ может находится возле задающего диска или маховика.

Проверка датчиков осциллографом

ДПКВ

Датчик положения коленчатого вала. Нужен для синхронизации искры и форсунок по такту сжатия. Сигнал имеет синусоидальную форму с разрывом. Форма сигнала с одинаковой амплитудой. Если есть отклонения, значит задающий диск имеет не равномерность вращения или люфт.

сигнал датчика положения коленвалаИсправный ДПКВ

Методика измерения

  1. Подключаем измерительный щуп к сигнальному проводу осциллографа.
  2. Ставим диапазон измерения до 300-500 вольт.
  3. Нажимаем кнопку пуск и снимаем сигнал.
ДПРВ

Датчик положения распределительного вала. Имеет прямоугольную форму сигнала амплитудой 12,3 – 12,7 вольта. Полезно снимать одновременно сигналы ДПКВ и ДПРВ для определения фазы впрыска и смещения распределительных валов относительно друг друга. Но как правило этот параметр проверки ДВС есть на сканере.

 

сигнал датчиков положения коленвала и распредвалаНижний фронт сигнала ДПРВ совпадает с разрывом зубьев на задающем диске, что говорит о правильной фазе впрыска.
ДМРВ

Датчик массового расхода воздуха применяется на бензиновых двигателях для измерения объема прошедшего воздуха. Основной параметр для диагностики — это его АЦП равное 0,996 вольт при включенном зажигании. При углубленной диагностике ДМРВ, нужно померить время релаксации – период, за который, датчик выходит в нулевое положение.

сигнал исправного дмрвИсправный ДМРВ. Нулевое напряжения равно 0,996 вольт и скорость выхода на рабочий диапазон 0,5 мс.

Ниже представлена осциллограмма неисправного ДМРВ. Время перехода 20 мс, а напряжение при нулевом объеме воздуха 1,130 вольт. Авто с таким датчиком будет расходовать много топлива и терять мощность.

 

сигнал неисправного дмрвНеисправный дмрв

Немаловажно проверить пик выхода датчика на максимальный уровень напряжения. Для этого нужно снять сигнал с ДМРВ на заведенном ДВС, при резко нажатой педали газа. Чем больше показания к 5 вольтам, тем датчик имеет большую отдачу и авто будет эластичнее.

сигнал дмрв на заведенном мотореСигнал напряжения ДМРВ под нагрузкой

Работа с автомобильным осциллографом не страшна для начинающих диагностов.  Нужно тщательно изучить инструкцию по работе с прибором и применять на практике. Чем больше опыт подключения к конкретной марке, тем быстрее и точнее поиск неисправностей.

ДПДЗ

Датчик положения дроссельной заслонки. Проверить легче всего сканером. Но при плавающей неисправности, когда автомобиль едет рывками, нужно проверить сигнал осциллографом. Подключаем сигнальный провод щупа к выходу ДПДЗ и снимаем сигнал открывая дроссель. Не должно быть резких скачков.

сигнал исправного дпдзИсправный датчик положения дроссельной заслонкисигнал неисправного дпдзНеисправный датчик положения дроссельной заслонки

Проверка массы двигателя осциллографом

Плохую массу двигателя можно проверить измерительным щупом осциллографа. Минус щупа соединяется с минусовой клеммой АКБ, а сигнальный с двигателем или кузовом. Значительные помехи говорят о плохой массе.

проверка массы осциллографомХорошая масса

Диагностика катушек зажигания с помощью осциллографа  

Проверка системы зажигания возможна только по анализу сигнала вторичной или первичной цепи. Самодиагностика двигателя автомобиля способна только косвенно определить дефекты в высоковольтной части. Может выдать ошибку по пропускам зажигания. Коды неисправностей пропусков дают общую картину работы цилиндра. Они могут возникнуть как от неисправной катушки, свечи, высоковольтного провода, форсунки, низкой компрессии, подсоса воздуха. Для точного определения неисправной катушки зажигания нужна проверка осциллографом.

Ниже приведен пример типичного сигнала высоковольтного пробоя, по которому можно судить о работоспособности всей высоковольтной системы автомобиля. Любой дефектный элемент: катушка, провод, свеча проявится на этой осциллограмме.

сигнал высоковольтного пробоя

Типичные неисправности системы зажигания
неисправная катушка зажиганияМежвитковое замыкание в первичной цепи катушкипробой вв проводаПробой высоковольтного проводасигнал свечи в сажеСвеча в сажесигнал с большим временем накопленияСлишком большое время накопления катушки. Дефект в электронном блоке управления двигателем.
Проверка индивидуальных катушек зажигания

Для диагностики индивидуальных катушек зажигания очень удобно использовать осциллограф АВТОАС-ЭКСПРЕСС М. Удобство заключается в его компактности и легкости подключения. Достаточно загрузить программу и приложить индуктивный или емкостной датчик прибора к самой катушке. Получаем осциллограмму как показано выше.

Диагностика топливной форсунки осциллографом

Форсунка бензинового двигателя состоит из запорного клапана, электромагнитный катушки. Соответственно движение этого клапана возможно проверить осциллографом.

сигнал исправной форсункиИсправная форсункасигнал неисправной форсункиНеисправная форсунка

Диагностика форсунок с помощью осциллографа требуется в случае тщательного поиска неисправности. В большинстве случаев достаточно сделать тест Андрея Шульгина на эффективность работы цилиндров.

Проверка датчика кислорода с применением осциллографа

Лямбда зонд служит для точного дозирования топливо – воздушной смеси и снижения уровня токсичности отработавших газов. Работает по принципу гальванического элемента. Вырабатывает напряжение в зависимости от присутствия свободного кислорода во внутренней и внешней ячейке датчика. Напряжение варьируется от 0,1 – 0,9 вольт, что соответствует бедной и богатой смеси.

Проверить работу датчика можно

  • Сканером
  • Осциллографом

Первый вариант быстрый и достаточный для оценки общей работы. Второй же вариант диагностики датчика кислорода более точный и позволяет оценить скорость сработки лямбда зонда в режиме обратной связи.

осциллограмма датчика кислородаНеисправный датчик кислорода. Скорость реакции медленнаясигнал неработающего датчика кислородаДатчик кислорода полностью неисправен

Скрипт CSS Андрея Шульгина

Вот мы и добрались до самой сути диагностики автомобильных двигателей. Для диагностов любой марки это самый информативный скрипт. Он показывает работу форсунок, искры и компрессии за одну проверку. Для проведения этого теста достаточно снять сигнал с датчика положения коленвала и синхронизацию с искры первого цилиндра. Сложность может заключаться в подключении к ДПКВ некоторых марок, но это сглаживается информацией, которую дает скрипт.

Порядок записи сигнала применительно к осциллографу USB Autoscope:

  1. Подключиться параллельно сигнальным щупом осциллографа к выходу ДПКВ
  2. Если установлена система зажигания DIS поставить щуп синхронизации на первый цилиндр, индивидуальная катушка — воспользоваться индуктивным датчиком.
  3. Запустить двигатель и дать работать на холостом ходу.
  4. Активировать скрипт CSS
  5. Через 5-10 секунд плавно поднять обороты до 3000 и опустить.
  6. Спустя 5-10 секунд резко поднять обороты и выключить искру оставив педаль газа полностью нажатой.
  7. Остановить скрипт.

Анализ теста Андрея Шульгина

  1. Нажать кнопку «Выполнить скрипт»
  2. Задать входную информацию для анализа: количество и порядок работы цилиндров, угол опережения зажигания с погрешностью ±10°.
  3. Анализируем полученную картинку.
тест шульгинаГрафик скрипта CSS
  • Холостой ход — снижена эффективность 3 цилиндра.8.
  • Низкая компрессия в 3 цилиндре.

Таким образом, за 5 минут можно найти причину «троящего» двигателя, не откручивая свечи и не замеряя компрессию.

Порядок проведения теста эффективности на осциллографе Мотодок 3

Порядок снятия скрипта аналогичный USB Autoscope:

Анализ осциллограммы давления в цилиндре

Для снятия характеристики газодинамических процессов в цилиндре в комплекте с Мотортестером прилагается датчик давления на 16 атм. Двигатель должен быть прогрет до температуры 80-90 °C

Порядок проведения теста:

  1. Датчик давления вкрутить вместо свечи. Высоковольтный провод проверяемого цилиндра соединить с разрядником и подключить к нему датчик синхронизации первого цилиндра.
  2. Выключить форсунку в проверяемом цилиндре.
  3. Запустить прибор.
  4. Завезти двигатель и дать работать на холостых оборотах.
  5. Получить осциллограмму давления синхронизированную по ВМТ 0°C, как показано ниже.
осциллограмма давления в цилиндреВыпускной клапан открывается на 160° — метка смещена

Важно проанализировать две точки на осциллограмме:

  1. Момент открытия выпускного клапана. На моторах без фазовращателей значение 140-145°, с фазовращателями порядка 160°.
  2. Момент перекрытия, когда выпускной и впускной клапана открыты одновременно. Должен быть 360-360°.

При отклонениях от этих значений, можно говорить о смещении фаз газораспределения.

Все вышеприведенные методы работы с мотор тестером можно делать в различной последовательности. Все зависит от конкретного случая. Где-то достаточно провести тест Шульгина или снять характеристику давления в цилиндре. Главное найти неисправность меньшими потерями для владельца автомобиля.

 

 

 

 

 

 

 

 

исполнительные механизмы и электрооборудование ⋆ CHIPTUNER.RU

ОСЦИЛЛОГРАФ В ДИАГНОСТИКЕ 

©Владимир Селиверстов

ЧАСТЬ II. ИСПОЛНИТЕЛЬНЫЕ МЕХАНИЗМЫ И ЭЛЕКТРООБОРУДОВАНИЕ



Форсунки

Форсунка (каждая из четырех) установлена одним концом в топливной рампе, другим в отверстии впускной трубы, герметичность соединений обеспечивается с помощью уплотнительных колец. Форсунка представляет собой устройство с электромагнитным клапаном, которое при получении электрического импульса с ЭБУ впрыскивает топливо под давлением во впускной коллектор. По истечении электрического импульса форсунка перекрывает подачу топлива.

РХХ (Регулятор Холостого Хода) 

Осциллограф в диагностике: исполнительные механизмы и электрооборудование Осциллограф в диагностике: исполнительные механизмы и электрооборудование
Эталон Эталон на ХХ

Регулятор холостого хода установлен на корпусе дроссельного патрубка. Регулятор состоит из двухполюсного шагового двигателя с двумя обмотками и соединенного с ним конусного штока клапана. Конусная часть штока регулятора холостого хода располагается в канале подачи воздуха для обеспечения регулирования холостого хода двигателя. Шток регулятора выдвигается или втягивается в зависимости от управляющего сигнала контроллера. Регулятор холостого хода регулирует частоту вращения коленчатого вала на режиме холостого хода, управляя количеством воздуха, подаваемым в обход закрытой дроссельной заслонки. В полностью выдвинутом положении (выдвинутое до упора положение соответствует «О» шагов), конусная часть штока перекрывает подачу воздуха в обход дроссельной заслонки. При открывании клапан обеспечивает расход воздуха, пропорциональный перемещению штока (количеству шагов) от своего седла. Полностью открытое положение клапана соответствует перемещению штока на 255 шагов. 

На прогретом двигателе контроллер, управляя перемещением штока, поддерживает постоянную частоту вращения коленчатого вала на холостом ходу независимо от состояния двигателя и от изменения нагрузки (включение электровентилятора, компрессора кондиционера и т.д.).

На осциллограммах видно как обе обмотки РХХ работают с фазовым сдвигом относительно друг друга.

 

Бензонасос

Электробензонасос турбинного типа, погружной, устанавливается в топливном баке. Служит для подачи топлива в двигатель.  

Напряжение питания – 12 В подается на насос через реле электробензонасоса, управляемое контроллером.

На осциллограммах мы можем видеть изменение тока в цепи питания бензонасоса.

Осциллограф в диагностике: исполнительные механизмы и электрооборудование Осциллограф в диагностике: исполнительные механизмы и электрооборудование
Момент вкл. зажигания Работающий БН

Клапан адсорбера

При создании в топливном баке избыточного давления паров топлива, пары из топливного бака поступают по паропроводу в адсорбер, где удерживаются активированным углем до включения режима продувки адсорбера. Управление продувкой осуществляет контроллер при помощи электромагнитного клапана. Контроллер регулирует степень продувки адсорбера в зависимости от режима работы двигателя, подавая на клапан сигнал с изменяемым периодом следования импульса

Сборник осцилограмм датчиков автомобиля. Статьи компании «Диагностическое оборудование, автомобильная диагностика, дилерские сканеры, чип-тюнинг, OBDTOOL»

Цифровой осциллограф позволяет эффективно отслеживать и находить неисправности в датчиках системы впрыска. В этой статье рассмотрим подробно осциллограммы с датчиков:

 

  • Положения коленчатого вала
  • Датчика массового расхода воздуха
  • Датчика положения дроссельной заслонки
  • Датчика положения распредвала
  • Лямбда-зонда
  • Датчика холла
  • Датчика детонации
  • Датчика абсолютного давления
  • Датчика скорости автомобиля

 


ДПКВ

Датчик положения коленчатого вала (ДПКВ) самый главный в системе впрыска, по нему осуществляется синхронизация работы электронного блока управления двигателем. Сигнал вазовского дпкв представляет собой серию повторяющихся электрических импульсов напряжения, генерируемых датчиком при вращении коленчатого вала. 

Задающий диск представляет собой зубчатое колесо 60-2, т.е. 58 равноудаленных зубцов и два отсутствующих для синхронизации. При вращении задающего диска вместе с коленчатым валом впадины изменяют магнитный поток в магнитопроводе датчика, наводя импульсы напряжения переменного тока в его обмотке. 
Осциллограмма индуктивного ДПКВ имеет следующий вид:

Здесь стоит обратить внимание на амплитуду сигнала и форму импульсов. Если витки в обмотке датчика будут короткозамкнуты, то амплитуда сигнала будет снижена. Также по осциллограмме легко вычислить биение задающего диска и повреждение зубцов. 

На некоторых иномарках в качестве ДПКВ используется датчик Холла, вырабатывающий прямоугольные импульсы.
Вот типичный пример осциллограммы такого датчика (Hyundai Sonata):

А вот так синхронно работают датчики положения коленчатого и распределительного валов двигателей Nissan. По нарастающим фронтам сигналов можно определить смещение валов относительно друг друга. 

А это осциллограмма типичной неисправности датчика Холла (Audi 100). Нарастающий фронт «срезан», сигнал такого датчика блок управления не распознает. 

На старых Опелях и Daewoo Nexia в качестве датчика синхронизации используется индукционная катушка с задающим диском.
Осциллограмма такого датчика имеет такой вид:

 

 

Датчик положения распредвала

ДПРВ используется в системе управления двигателем для определения положения распределительного вала, что необходимо для синхронизации впрыска топлива. Датчик генерирует один импульс за полный цикл работы двигателя (720 градусов поворота коленчатого вала). 

Импульс датчика положения распредвала указывает на верхнюю мертвую точку первого цилиндра.

 

 

ДМРВ

Датчик массового расхода воздуха (ДМРВ) применяются во многих системах управления двигателем (в частности ВАЗ) для измерения значения мгновенного расхода воздуха. Выходной сигнал ДМРВ Bosch HFM5 представляет собой напряжение постоянного тока, изменяющееся в диапазоне от 1 до 5 В, величина которого зависит от массы воздуха, проходящего через датчик. При нулевом расходе исправный датчик должен иметь выходное напряжение около 1В. Эталоном считается значение 0,996В. 
По осциллограмме можно отследить 2 важных момента:
1. Скорость реакции ДМРВ можно оценить по времени переходного процесса выходного сигнала при подаче питания на датчик. 
2. Выходное напряжение датчика при нулевом расходе воздуха (двигатель остановлен).
Осциллограмма исправного ДМРВ при подаче питания имеет следующий вид.

Время переходного процесса равно 0,5 мс. Выходное напряжение при нулевой подаче воздуха равно 0,996 В.

А это осциллограмма выходного напряжения при включении питания неисправного ДМРВ.

Время переходного процесса такого датчика в десятки раз больше, чем исправного, а значит время реакции самого датчика будет значительно снижено и автомобиль будет «вяло» набирать скорость. Выходное напряжение такого ДМРВ при остановленном двигателе равно 1,13 В., что говорит о значительном отклонении сигнала от нормы. Двигатель с неисправным датчиком в значительной степени потеряет «приемистость», будет затруднен пуск и возрастет расход топлива.
Важно: система самодиагностики блока управления двигателем не способна выявить снижение скорости реакции ДМРВ. Такую неисправность можно найти только путем диагностики с применением осциллографа. 
Осциллограмма выходного напряжения изношенного ДМРВ при резком открытии дроссельной заслонки.

При значительном загрязнении чувствительного элемента датчика, скорость реакции на изменение воздушного потока снижается и форма осциллограммы становится более «сглаженной». 
Исправный датчик при быстром открытии дроссельной заслонки должен выдавать кратковременно в первом импульсе более 4 В.
ДМРВ Bosch 


 

 

Лямбда-зонд

По анализу осциллограммы выходного сигнала лямбда-зонда на различных режимах работы двигателя можно оценить как исправность самого датчика, так и исправность всей системы управления двигателем.
Осциллограмма напряжения исправного циркониевого лямбда имеет следующий вид:

Здесь следует обратить внимание прежде всего на 3 момента:
1. Размах напряжения выходного сигнала должен быть от 0,05-0,1 В до 0,8-0,9 В. При условии, что двигатель прогрет до рабочей температуры и система управления работает по замкнутой петле обратной связи. 
2. Время перехода выходного напряжения зонда от низкого к высокому уровню не должно превышать 120 мс. 
3. Частота переключения выходного сигнала лямбда-зонда на установившихся режимах работы двигателя должна быть не реже 1-2 раз в секунду.

 

 

ДПДЗ

Датчик положения дроссельной заслонки (ДПДЗ) служит для отслеживания угла открытия дроссельной заслонки и представляет собой потенциометр. Опорное напряжение датчика равно 5 В. Сигнал исправного ДПДЗ представляет собой напряжение постоянного тока в диапазоне от 0,5 до 4,5 В. При повороте дроссельной заслонки, сигнал должен меняться плавно, без скачков и провалов.
Пример осциллограммы двух датчиков положения дроссельной заслонки VW Passat с двигателем RP показана на рисунке ниже. 

Один из датчиков работает в диапазоне от 0 до 25% открытия дроссельной заслонки, а второй от 25 до 100%.

 

 

Датчик абсолютного давления (ДАД)

На основании данных с этого датчика о разряжении и температуре во впускном коллекторе, блок управления рассчитывает количество воздуха, поступающего в цилиндры двигателя. Принцип действия основан на преобразовании значения давления в соответствующую величину выходного напряжения. Применяемые в современных системах управления двигателем датчики чрезвычайно надежны. Проверить работу датчика абсолютного давления можно осциллографом, подключившись к его сигнальному выходу.
Осциллограмма с датчика при открытии дроссельной заслонки имеет такой вид:

 

 

Датчик детонации (ДД)

Наиболее распространенный широкополосный датчик детонации пьезоэлектрического типа с генерирует сигнал напряжения переменного тока с частотой и амплитудой зависящей от степени «шума», который издает та часть двигателя, на которую он установлен. При возникновении детонации амплитуда вибраций повышается, что приводит к увеличению напряжения выходного сигнала ДД. При этом контроллер корректирует угол опережения зажигания для гашения детонации.
Проверить датчик детонации можно на столе, подключившись щупами осциллографа к его выводам. При легком постукивании металлическим предметом на осциллограмме отобразятся такие импульсы:

 

 

Датчик скорости автомобиля

Как правило такие датчики имеют в своей основе элемент Холла. Однако встречаются и индуктивные датчики. 
Типичный пример осциллограммы индуктивного датчика скорости автомобиля Ауди 100 имеет такой вид:

 

 

Индуктивный датчик АБС

Хоть этот датчик не относится к системе впрыска, но раз уж попалась на глаза, выкладываю осциллограмму.
Такой вид имеет сигнал с индуктивного датчика системы АБС. 

Обратите внимание на амплитуду сигнала. В данном конкретном случае осциллограмма снята при простом прокручивании колеса рукой. Однако если датчик имеет короткозамкнутые витки, то его амплитуда будет значительно меньше. Сигнал такого датчика блок управления АБС не «увидит».

Применение мотортестера «MotoDoc II» в диагностике отечественных автомобилей ⋆ CHIPTUNER.RU

Применение мотортестера «MotoDoc II»
в диагностике отечественных автомобилей

©А. Пахомов 2007 (aka IS_18, Ижевск)

Внимание! Статья содержит большое количество графических файлов.


Этот материал адресован, прежде всего, начинающим диагностам, постигающим премудрости работы с мотортестером. Почему речь пойдет об автомобилях отечественного производства? На это есть две причины. Во-первых, эти машины более доступны основной массе ремонтников и хорошо изучены ими, а во-вторых, учиться на относительно редкой и дорогой иномарке – не самый лучший вариант. Я преследую цель не просто показать, как произвести то или иное измерение, а внушить мысль, что мотортестер – не что иное, как универсальный измерительный инструмент. Поняв на примере отечественных машин принципы его работы, можно использовать его при диагностике любых автомобилей.

Предполагается, что фирменную инструкцию к прибору Вы уже прочли. Прежде, чем начать разговор о методиках работы с прибором, позволю себе небольшое отступление. А именно для того, чтобы поговорить о весьма важном, на мой взгляд, аспекте работы – выборе типа синхронизации. 

Что такое синхронизация? 

Предположим, мы выбрали для измерений какой-либо канал. Для того чтобы «картинка» на экране монитора была стабильной, необходимо, чтобы частота развертки поля осциллограмм была кратна частоте сигнала. А для этого программе нужен какой-либо импульс привязки. Способов привязки, то есть синхронизации, в мотортестере MotoDoc II несколько. Рассмотрим их по порядку.

1. Внешняя синхронизация. В этом случае источником синхроимпульса является датчик первого цилиндра, надеваемый на высоковольтный провод. Привязка происходит по моменту искрообразования в первом цилиндре. Естественно, датчик можно установить на любой цилиндр, и привязка пойдет по нему, но тогда надо совершенно четко понимать, что отсчет начнется от момента искрообразования в этом цилиндре, и анализировать полученную осциллограмму соответствующим образом.

2. DIS. Тип синхронизации, очень похожий на предыдущий. Источник синхроимпульса – тот же самый датчик первого цилиндра. Но есть особенность. Как известно, в системах зажигания типа DIS искра в цилиндре за один рабочий цикл возникает дважды: на такте сжатия и на такте выпуска (так называемая холостая искра). Чтобы временная привязка происходила корректно, программа игнорирует каждый второй импульс с датчика. 
Два рассмотренных типа синхронизации я бы условно отнес к первой группе, вследствие их сходства и использования одного и того же датчика. Во вторую группу можно выделить два следующих типа.

3. Внутренняя синхронизация. При использовании этого типа никаких синхроимпульсов извне не поступает. Программа просто «рисует» в поле осциллограмм сигналы выбранных каналов. При этом кадры осциллограммы записываются в ОЗУ компьютера, и их возможное количество ограничено свободным объемом оперативной памяти. Так как время доступа к ОЗУ относительно мало, то в этом режиме программа позволяет записывать быстро изменяющиеся сигналы.

4. Самописец. Данный тип синхронизации аналогичен предыдущему, с той лишь разницей, что кадры записываются на жесткий диск компьютера. Время доступа к жесткому диску намного больше, чем к ОЗУ, вследствие чего достоверно фиксируются только медленно протекающие процессы. Зато количество записанных кадров ограничено только объемом жесткого диска и практически неисчерпаемо. Например, можно записывать интересующий нас сигнал несколько часов, что очень удобно при поиске «плавающего» дефекта.
Эти два типа я для простоты понимания называю «магнитофон». На самом деле, при включении внутренней синхронизации или самописца мотортестер работает как старый добрый магнитофон: просто записывает то, что нас интересует, а потом дает «послушать». 
«Симбиоз» первой и второй групп дают нам следующий тип синхронизации.

5. Автоматическая синхронизация. При выборе этого типа программа сочетает в себе внешнюю и внутреннюю синхронизацию. Когда поступает сигнал с датчика первого цилиндра, привязка осуществляется по нему. Если же сигнал отсутствует, то включается «магнитофон» – внутренняя синхронизация. Это бывает удобно в том случае, если, например, дефектные высоковольтные провода не позволяют нормально синхронизироваться по искре первого цилиндра.
Следующие три типа образуют последнюю группу, которую я бы условно назвал «синхронизация по каналу». 

6. Синхронизация по импульсу. Источником служит сигнал какого-либо измерительного канала. Например, можно подключить осциллографический щуп к датчику положения распредвала и привязаться к нему. Сигнал этого датчика представляет собой прямоугольные импульсы. Программа позволяет осуществлять временную привязку, как к переднему, так и к заднему фронту импульса. Это можно выбрать при настройке режима синхронизации. Также можно выбрать и уровень, на котором будет производиться захват импульса, с помощью полозка, расположенного справа от поля осциллограмм. Частным случаем синхронизации по импульсу является синхронизация по датчику положения коленчатого вала (ДПКВ).

7. Синхронизация по ДПКВ. Программа дает нам замечательную возможность осуществить временную привязку аналогично тому, как это делает ЭБУ. Для этого нужно подключить осциллографический щуп к ДПКВ. Причем по умолчанию выбран задающий диск типа 60–2, применяемый как на отечественных двигателях, так и на многих двигателях иномарок. 

8. И еще один тип синхронизации по каналу – ВМТ (верхняя мертвая точка). В качестве источника синхроимпульса используется датчик давления, который заворачивается вместо одной из свечей. Снимаемая с него осциллограмма имеет максимум, соответствующий ВМТ цилиндра. Строго говоря, этот максимум и ВМТ не совпадают, но расхождение не существенно при решении задач диагностики.

К выбору типа синхронизации нужно подходить с долей творчества. Следует также уяснить, что тот сигнал, который мы хотим посмотреть, одновременно может служить и сигналом синхронизации. Возвращаясь к примеру с датчиком положения распредвала. Мы можем наблюдать осциллограмму сигнала датчика, используя этот же сигнал как источник синхронизации. Обратите внимание на то, что

диагностика внешними датчиками ⋆ CHIPTUNER.RU

ОСЦИЛЛОГРАФ В ДИАГНОСТИКЕ

©Владимир Селиверстов

ЧАСТЬ III. Диагностика внешними датчиками из состава Мотор-Тестера.

Датчик давления

 

Датчик разрежения

Наполнение по цилиндрам можно отследить с помощью датчика разряжения. Любые отклонения будут говорить о неправильной установке фаз ГРМ, неисправности системы впуска, включая распредвал и клапана.

 

Осциллограф в диагностике: диагностика внешними датчиками Осциллограф в диагностике: диагностика внешними датчиками Осциллограф в диагностике: диагностика внешними датчиками Осциллограф в диагностике: диагностика внешними датчиками
Эталон Провернут шкив КВ
Низкое разрежение
Гистограмма ДР
Плохое наполнение
Плохое наполнение

 

Инфракрасный датчик температуры

Осциллограф в диагностике: диагностика внешними датчиками  

Инфракрасный датчик температуры позволяет измерить температуру в любой точке моторного отсека. Например,
можно быстро определить исправность термостата измерив его температуру в двух точках. 

На рисунке – эталонная осциллограмма.

 

Датчик FL (First Look)

 

Токовый датчик.

Определить ток отдачи генератора, утечки в электрооборудовании, исправность стартера можно с помощью токовых датчиков, входящих в комплект мотор-тестера.

Отправить ответ

avatar
  Подписаться  
Уведомление о