РазноеФорсунка инжектора как устроена: принцип работы и устройство инжекторных систем

Форсунка инжектора как устроена: принцип работы и устройство инжекторных систем

Содержание

УСТРОЙСТВО ФОРСУНКИ

 

Форсунка (инжектор), является основным элементом системы впрыска.

Назначение форсунки

Дозированная подача топлива, распыление его в камере сгорания (впускном коллекторе) и образования топливно-воздушной смеси. Форсунки нашли свое применение в системах впрыска бензиновых и дизельных двигателей. На современных автомобилях устанавливаются форсунки с электронным управлением впрыска.

Виды форсунок

Форсунки различаются в зависимости от способа осуществления впрыска топлива. Давайте рассмотрим основные виды форсунок:

  • Электромагнитные форсунки;
  • Электрогидравлические форсунки;
  • Пьезоэлектрические форсунки.

Устройство электромагнитной форсунки

1 — сетчатый фильтр; 2 — электрический разъем; 3 – пружина; 4 — обмотка возбуждения; 5 — якорь электромагнита; 6 — корпус форсунки; 7 — игла форсунки; 8 – уплотнение; 9 — сопло форсунки.

Электромагнитная форсунка нашла свое применение на бензиновых двигателях, в том числе оборудованных системой непосредственного впрыска. Электромагнитной форсунка имеет простую конструкцию, которая включает электромагнитный клапан с иглой и соплом.

Как работает электромагнитная форсунка

Работа электромагнитной форсунки осуществляется в соответствии с заложенным алгоритмом в электронный блок управления. Электронный блок в определенный момент подает напряжение на обмотку возбуждения клапана. Вследствие этого создается электромагнитное поле, которое преодолевая усилие пружины, втягивает якорь с иглой и освобождает сопло форсунки, после чего производится впрыск топлива. Когда напряжение исчезает, пружина возвращает иглу форсунки обратно на седло.

Устройство электрогидравлической форсунки

1 — сопло форсунки; 2 – пружина; 3 — камера управления; 4 — сливной дроссель; 5 — якорь электромагнита; 6 — сливной канал; 7 — электрический разъем; 8 — обмотка возбуждения; 9 — штуцер подвода топлива; 10 — впускной дроссель; 11 – поршень; 12 — игла форсунки.

Электрогидравлическая форсунка применяется на дизельных двигателях. Электрогидравлическая форсунка включает электромагнитный клапан, камеру управления, впускной и сливной дроссели.

Как работает электрогидравлическая форсунка

Работа электрогидравлической форсунки основана на использовании давления топлива при впрыске. В обычном положении электромагнитный клапан закрыт и игла форсунки прижата к седлу силой давления топлива на поршень в камере управления. Давление топлива на иглу меньше давления на поршень, благодаря этому впрыск топлива не происходит.

Когда электронный блок управления дает команду на электромагнитный клапан, открывается сливной дроссель. Топливо вытекает из камеры управления через сливной дроссель в сливную магистраль. Впускной дроссель препятствует выравниванию давлений в камере управления и впускной магистрали, вследствие чего давление на поршень снижается, а давление топлива на иглу форсунки не изменяется.

Игла форсунки поднимается и происходит впрыск топлива.

Устройство пьезоэлектрической форсунки

1 — игла форсунки; 2 – уплотнение; 3 — пружина иглы; 4 — блок дросселей; 5 — переключающий клапан; 6 — пружина клапана; 7 — поршень клапана; 8 — поршень толкателя; 9 – пьезоэлектрический элемент; 10 — сливной канал; 11 — сетчатый фильтр; 12 — электрический разъем; 13 — нагнетательный канал.

Пьезофорсунка (пьезоэлектрическая форсунка) является самым совершенным устройством, обеспечивающим впрыск топлива в современных автомобилях. Форсунка применяется на дизельных двигателях с системой впрыска Common Rail. Основные преимущества пьезоэлектрической форсунки в точности дозировки и быстроте срабатывания. Благодаря этому пьезофорсунка обеспечивает многократный впрыск на протяжении одного рабочего цикла.

Как работает пьезофорсунка (пьезоэлектрическая форсунка)

Работа пьезофорсунки основана на изменении длины пьезокристалла при подачи напряжения. Пьезоэлектрическая форсунка состоит из: корпуса, пьезоэлемента, толкателя, переключающего клапана и иглы.

Пьезофорсунка работает по гидравлическому принципу. В обычном положении игла прижата к седлу силой высокого давления топлива. Электронный блок подает электрический сигнал на пьезоэлемент и его длина увеличивается, воздействуя на поршень толкателя, открывает переключающий клапан и топливо поступает в сливную магистраль. Давление над иглой падает, и за счет давления в нижней части игла поднимается, что приводит к впрыску топлива. Количество впрыскиваемого топлива зависит от длительности воздействия на пьезоэлемент и давления топлива в топливной рампе.

устройство, неисправности, чистка и проверка

Топливная форсунка (ТФ), или инжектор, относится к деталям топливной системы впрыска. Она управляет дозированием и подачей ГСМ с его последующим разбрызгиванием в камере сгорания и соединением с воздухом в единую смесь.

ТФ выступают в роли главных исполнительных деталей, относящихся к системе впрыска.

Благодаря им происходит разделение топлива на мельчайшие частицы путем разбрызгивания и его поступление в двигатель. Форсунки для любого типа моторов выполняют одинаковое назначение, однако различаются конструкционно и по принципу действия.

Топливные форсунки

Данный вид изделий отличается индивидуальным изготовлением под конкретный тип силового агрегата. Иначе говоря, универсальной модели этого устройства не существует, поэтому переставлять их с бензинового мотора на дизельный нельзя. В качестве исключения можно привести пример гидромеханических моделей от BOSCH, устанавливаемых на механические системы, работающие на непрерывном впрыске. Они находят широкое применение для различных силовых агрегатов в качестве составного элемента системы «K-Jetronic», хотя и имеют несколько модификаций, не связанных между собой.

Расположение и принцип работы

Схематично форсунка – это электромагнитный клапан, управляемый программно. Она обеспечивает подачу топлива в цилиндры в установленных дозах, причем установленная система впрыска определяет вид используемых изделий.

Как устроена форсунка

Топливо в форсунку подается под давлением. При этом блок управления мотором посылает электроимпульсы на электромагнит инжектора, которые активируют работу игольчатого клапана, отвечающего за состояние канала (открыто/закрыто). Количество поступающего топлива определяется длительностью поступающего импульса, влияющего на промежуток нахождения игольчатого клапана в открытом состоянии.

Расположение форсунок зависит от конкретного типа системы впрыска:

• Центральный – размещаются перед дроссельной заслонкой во впускном трубопроводе.

• Распределенный –всем цилиндрам соответствует отдельная форсунка, размещаемая у основания впускного трубопровода и осуществляющая впрыск ГСМ.

• Непосредственный –форсунки находятся вверху стенок цилиндра, что обеспечивает впрыск напрямую в камеру сгорания.

Форсунки для бензиновых моторов

Бензиновые моторы комплектуются следующими типами инжекторов:

• Одноточечные – подают топливо, расположены до дроссельной заслонки.

• Многоточечные – за подачу ГСМ на цилиндры отвечают несколько форсунок, располагаемых перед трубопроводами.

ТФ обеспечивают подачу бензина в камеру сгорания силовой установки, при этом конструкция таких деталей неразборная и не предусматривает ремонт. По стоимости они дешевле тех, что устанавливаются на дизельных моторах.

грязные форсунки

Как деталь, обеспечивающая нормальную работу топливной системы автомобиля, форсунки часто выходят из строя по причине загрязнения расположенных на них фильтрующих элементов продуктами сгорания. Подобные отложения перекрывают распылительные каналы, что нарушает работу ключевого элемента – игольчатого клапана и прерывает поступление топлива в камеру сгорания.

Форсунки для дизельных моторов

Правильную работу топливной системы дизельных двигателей обеспечивают два типа устанавливаемых на них форсунок:

• Электромагнитные, за работу которых отвечает специальный клапан, регулирующий поднятие и опускание иглы.

• Пьезоэлектрические, работающие за счет гидравлики.

Правильная настройка форсунок, а также степень их износа влияет на работу дизельного мотора, выдаваемую им мощность и объем расходуемого горючего.

Поломку или неисправность работы дизельной форсунки автовладелец может заметить по ряду признаков:

• Увеличился расход топлива при нормальной тяге.

• Машина не хочет двигаться с места и дымит.

• У авто вибрирует двигатель.

Проблемы и неисправности форсунок двигателя

Для поддержания нормальной работы топливной системы необходимо проводить периодическую чистку форсунок. По мнению специалистов, процедура должна выполняться каждые 20-30 тыс. км пробега, но на практике необходимость в таких работах возникает уже после 10-15 тыс. км. пробега. Это связано с некачественным топливом, плохим состоянием дорог и не всегда правильным уходом за машиной.

К самым актуальным проблемам, преследующими форсунки любого типа, относится появление на стенках деталей отложений, являющихся следствием использования низкокачественного топлива. Результатом является появление загрязнений в системе подачи горючей жидкости и возникновение перебоев в работе, потеря мощности мотором, чрезмерный расход ГСМ.

Причинами, влияющими на работу форсунок, могут быть:

• Чрезмерное содержание серы в ГСМ.

• Коррозия металлических элементов.

• Износ.

• Засорение фильтров.

• Неверная установка.

• Воздействие высоких температур.

• Проникновение влаги и воды.

Надвигающиеся неполадки можно определить по ряду признаков:

• Появление незапланированных сбоев при старте двигателя.

• Существенное увеличение расхода топлива в сравнении с номинальными значениями.

• Появление выхлопов черного цвета.

• Появление сбоев, нарушающих ритмичность работы мотора на холостом ходу.

Способы чистки форсунок

Для решения вышеназванных проблем требуется периодическая промывка топливных форсунок. Для устранения загрязнений применяют ультразвуковую очистку, используют особую жидкость, выполняя процедуру вручную, либо добавляют специальные присадки, позволяющие очистить форсунки без разбора мотора.

Заливка промывки в бензобак

Наиболее простой и щадящий способ очистки загрязненных форсунок. Принцип действия добавляемого состава заключается в постоянном растворении с его помощью имеющихся отложений в системе впрыска, а также частичное предотвращение их появления в будущем.

промывка форсунки с помощью присадок

Такая методика хороша для новых машин либо автомобилей с небольшим пробегом. В этом случае добавление промывки в бак с топливом выступает профилактикой, позволяющей поддерживать силовую установку и топливную систему машины в чистоте. Для машин с серьезными загрязнениями топливной системы данный способ не подходит, а в ряде случаев может нанести вред, усугубив имеющиеся проблемы. При большом количестве загрязнений смытые отложения попадают в форсунки и забивают их еще больше.

Чистка без снятия с двигателя

Промывка ТФ без разбора двигателя выполняется путем подключения промывочной установки непосредственно к мотору. Такой подход позволяет отмыть скопившуюся грязь на форсунках и топливной рампе. Двигатель на полчаса запускается на холостом ходу, подача смеси происходит под давлением.

промывка форсунок с помощью аппарата

Данный способ не используется на сильно изношенных двигателях, а также не подходит для автомобилей с установленной системой КЕ-Jetronik.

Чистка со снятием форсунок

При сильных загрязнениях двигатель разбирают на специальном стенде, снимают форсунки и выполняют их индивидуальную очистку. Подобные манипуляции дополнительно позволяют определить наличие неисправностей в работе форсунок с их последующей заменой.

снятие и промывка

Чистка ультразвуком

Очистка форсунок выполняется в ультразвуковой ванне для предварительно снятых деталей. Вариант подходит при сильных загрязнениях, не убирающихся очистителем.
Операции по очистке форсунок без снятия с двигателя в среднем обходятся владельцу автомобиля в 15-20 у.е. Стоимость диагностики с последующей чистой для одной форсунки в ультразвуке либо на стенде составляет около 4-6 у. е. Комплексные работы по промывке и замене отдельных деталей позволяют обеспечить бесперебойную работу топливной системе еще на полгода, добавив 10-15 тыс. км. пробега.

устразвуковая чистка топливных форсунок

Устройство инжектора и принцип работы инжектора на автомобилях

На сегодняшний день инжекторный (или, говоря по-научному, впрысковый) двигатель практически полностью заменил устаревшие карбюраторные двигатели. Инжекторный двигатель существенно улучшает эксплуатационные и мощностные показатели автомобиля (динамика разгона, экологические характеристики, расход топлива).

Содержание статьи:

Инжекторные системы подачи топлива имеют перед карбюраторными следующие основные преимущества:

  • Точное дозирование топлива и, следовательно, более экономный его расход;
  • Снижение токсичности выхлопных газов. Достигается за счет оптимальности топливно-воздушной смеси и применения датчиков параметров выхлопных газов;
  • Увеличение мощности двигателя примерно на 7-10% за счет улучшения наполнения цилиндров, оптимальной установки угла опережения зажигания, соответствующего рабочему режиму двигателя;
  • Улучшение динамических свойств автомобиля. Система впрыска незамедлительно реагирует на любые изменения нагрузки, корректируя параметры топливно-воздушной смеси;
  • Легкость пуска независимо от погодных условий.

Виды инжекторных систем

Первые инжекторы, которые массово начали использовать на бензиновых моторах все еще были механическими, но у них уже начал появляться некоторые электрические элементы, способствовавшие лучшей работе мотора.

Современная же инжекторная система включает в себя большое количество электронных элементов, а вся работа системы контролируется контроллером, он же электронный блок управления.

Всего существует 3 типа инжекторных систем, различающихся по типу подачи топлива:

  1. Центральная;
  2. Распределенная;
  3. Непосредственная.

Центральная (моновпрыск) инжекторная система

Центральная инжекторная система сейчас уже является устаревшей. Суть ее в том, что топливо впрыскивается в одном месте – на входе во впускной коллектор, где оно смешивается с воздухом и распределяется по цилиндрам. В данном случае, ее работа очень схожа с карбюратором, с единственной лишь разницей, что топливо подается под давлением. Это обеспечивает его распыление и более лучшее смешивание с воздухом. Но ряд факторов мог повлиять на равномерную наполняемость цилиндров.

Центральная система отличалась простотой конструкции и быстрым реагированием на изменение рабочих параметров силовой установки. Но полноценно выполнять свои функции она не могла Из-за разности наполнения цилиндров не удавалось добиться нужного сгорания топлива в цилиндрах.

Распределенная (мультивпрыск) инжекторная система

Распределенная система – на данный момент самая оптимальная и используется на множестве автомобилей. У этого инжектора топливо подается отдельно для каждого цилиндра, хоть и впрыскивается оно тоже во впускной коллектор. Чтобы обеспечить раздельную подачу, элементы, которыми подается топливо, установлены рядом с головкой блока, и бензин подается в зону работы клапанов.

Благодаря такой конструкции, удается добиться соблюдения пропорций топливовоздушной смеси для обеспечения нужного горения. Автомобили с такой системой являются более экономичными, но при этом выход мощности – больше, да и окружающую среду они загрязняют меньше.

К недостаткам распределенной системы относится более сложная конструкция и чувствительность к качеству топлива.

Система непосредственного впрыска

Система непосредственного впрыска – разновидность распределенной и на данный момент самая совершенная. Она отличается тем, что топливо впрыскивается непосредственно в цилиндры, где уже и происходит смешивание его с воздухом. Эта система по принципу работы очень схожа с дизельной. Она позволяет еще больше снизить потребление бензина и обеспечивает больший выход мощности, но она очень сложная по конструкции и очень требовательна к качеству бензина.

Виды электронных форсунок

Существует классификация электронных форсунок, основывающихся на способе впрыска топлива. Выделяют такие три разновидности:

  • Электромагнитная. Зачастую характерна для бензиновых ДВС (и с прямым впрыском тоже). Конструкцию нельзя назвать очень сложной, а основными составляющими её частями выступают клапан с иголкой (электромагнитный), сопло. Контроль за работой указанной форсунки выполняется с помощью ЭБУ, обеспечивающего на обмотке клапана напряжение в наиболее подходящий для этого момент.
  • Электрогидравлическая. По большей части используют на дизельных движках. Являет собой электромагнитный клапан, дополненный камерой управления, а также сливным и впускным дросселями. Рабочий принцип этой разновидности форсунок основывается на участии давления самой топливной смеси в любой момент работы. За деятельностью электрогидравлической форсунки следит ЭБУ, именно он отправляет рабочие сигналы электромагнитному клапану.
  • Пьезоэлектрическая. Считается наиболее удачным устройством среди всех представленных, но может работать только на дизельных агрегатах с системой впрыска Common Rail. Основное преимущество этого типа — быстрота реакции, что гарантирует многократную подачу топлива за один полный цикл. В основе работы пьезоэлемента — гидравлический принцип действия (как и в предыдущем варианте), предусматривающий срабатывание поршня толкателя за счёт увеличения длины пъезоэлемента под воздействием электрического сигнала ЭБУ. Количество подаваемого за один раз топлива определяется продолжительностью такого воздействия и давлением топливной смеси в топливной рампе.

Принцип работы инжектора

Принцип работы инжектора на автомобилях можно условно поделить на 2 части — механическую составляющую и электронную.

К механической части инжектора относится:
  • топливный бак;
  • электрический бензонасос;
  • фильтр очистки бензина;
  • топливопроводы высокого давления;
  • топливная рампа;
  • форсунки;
  • дроссельный узел;
  • воздушный фильтр.

Конечно, это не полный список составных частей. В систему могут быть включены дополнительные элементы, выполняющие те или иные функции, все зависит от конструктивного исполнения силового агрегата и системы питания. Но указанные элементы являются основными для любого двигателя с инжектором распределенного впрыска.

Бак является емкостью для бензина, где он хранится и подается в систему. Электробензонасос располагается в баке, то есть забор топлива производится непосредственно им, причем этот элемент обеспечивает подачу топлива под давлением.

Далее в систему установлен топливный фильтр, обеспечивающий очистку бензина от сторонних примесей. Поскольку бензин находится под давлением, то передвигается он по топливопроводу высокого давления.

Для предотвращения превышения давления, в систему входит регулятор давления. От фильтра, через него по топливопроводам бензин движется в топливную рампу, соединенную со всеми форсунками. Сами же форсунки устанавливаются во впускном коллекторе, недалеко от клапанных узлов цилиндров.

Современная форсунка – электромагнитная, в ее основе лежит соленоид. При подаче электрического импульса, который поступает от ЭБУ, в обмотке образуется магнитное поле, воздействующее на сердечник, заставляя его переместиться, преодолев усилие пружины, и открыть канал подачи. А поскольку бензин подается в форсунку под давлением, то через открывшийся канал и распылитель бензин поступает в коллектор.

С другой стороны через воздушный фильтр в систему засасывается воздух. В патрубке, по котором движется воздух, установлен дроссельный узел с заслонкой. Именно на эту заслонку и воздействует водитель, нажимая на педаль акселератора. При этом он просто регулирует количество воздуха, подаваемого в цилиндры, а вот на дозировку топлива водитель вообще никакого воздействия не имеет.

Основным элементом электронной части является электронный блок, состоящий из контроллера и блока памяти. В конструкцию также входит большое количество датчиков, на основе показаний которых ЭБУ выполняет управление системой.

Для своей работы ЭБУ использует показания датчиков:

  • Лямбда-зонд, устанавливается в выпускной системе авто, определяет остатки несгоревшего воздуха в выхлопных газах;
  • Датчик массового расхода воздуха (ДМРВ), расположен в корпусе воздушного фильтрующего элемента, определяет количество проходящего через дроссельный узел воздуха при всасывании его цилиндрами;
  • Датчик положения дроссельной заслонки (ДПДЗ), установлен в дроссельном узле, подает сигнал о положении педали акселератора;
  • Датчик температуры силовой установки, располагается возле термостата, регулирует состав смеси в зависимости от температуры мотора;
  • Датчик положения коленчатого вала (ДПКВ), установлен возле шкива коленчатого вала;
  • Датчик детонации, расположен на блоке цилиндров;
  • Датчик скорости, установлен на коробке передач;
  • Датчик фаз,предназначен для определения углового положения распредвала, установлен в головке блока.

Элекробензонасос заполняет всю систему топливом. Контролер получает показания от всех датчиков, сравнивает их с данными, занесенными в блок памяти. При несовпадении показаний, он корректирует работу системы питания двигателя так, чтобы добиться максимального совпадения получаемых данных с занесенными в блок памяти.

На основе данных от датчиков, контролером высчитывается время открытия форсунок, чтобы обеспечить оптимальное количество подаваемого бензина для создания топливовоздушной смеси в необходимой пропорции.

При поломке какого-то из датчиков, контролер переходит в аварийный режим. То есть, он берет усредненное значение показаний неисправного датчика и использует их для работы. При этом возможно изменение функционирование мотора – увеличивается расход, падает мощность, появляются перебои в работы. Но это не касается ДПКВ, при его поломке, двигатель функционировать не может.

Преимущества инжектора и его недостатки

Если бы в этой системе не было преимуществ, инжекторы не получили бы столь широкое распространение. Надежность инжектора многие могут оспорить, ведь автомобилисты нередко сталкиваются с проблемами и неизлечимыми болезнями системы. Тем не менее, в технологии намного больше плюсов, которые привлекают покупателей и дарят определенные выгоды в поездке.

+ Преимущества — Недостатки
реальное понижение расхода топлива — инжектор может экономить, благодаря интеллектуальному управлению подачей топлива; чистка форсунок — если вы заливаете не слишком качественный бензин или не меняете вовремя фильтры топлива, форсунки будут забиваться и перестанут распылять бензин;
полное сгорание бензина — при правильных настройках инжектор обеспечивает полное сгорание топлива и определенную интенсивность поездки; прошивка «мозгов» в нужных режимах — на старых машинах иногда получается достичь невероятных результатов от перепрошивки, ведь технологии движутся вперед;
более выразительная динамика двигателя — водителю не приходится долгое время ожидать реакции при нажатии педали газа; замена бортового компьютера на более функциональный вариант ЭБУ для вашей модели автомобиля с подходящими настройками;
возможность смены прошивки — с помощью простой процедуры чип-тюнинга можно полностью изменить параметры авто; регулярная смена фильтров, как воздушного, так и топливного, с целью обеспечения нормальной работы инжектора;
технологичность и современность — машина с инжектором зачастую выбрасывает в атмосферу значительно меньше вредных веществ; использование качественного топлива в соответствии с предписанными производителем нормами и подходящим октановым числом;
устойчивая работа в любых условиях — для хорошей работы инжектора не требуется ручное управление заслонкой воздуха, двигатель хорошо заводится в мороз. регулярный сервис, своевременное обращение внимания на определенные недостатки работы автомобиля.

Несмотря на то, что инжектор дороже в обслуживании и более прихотлив к качеству бензина, его надежность и возможность широкой настройки параметров опережает на сотни шагов вперед карбюратор. В конце концов, за определенный пробег два типа мотора могут выйти одинаково в цене, только карбюратору нужно будет чаще уделять внимание, а инжектор сделать один раз и надолго.

И напоследок представляем вашему вниманию видео для более полного понимания принципа работы инжектора.

Работа форсунки инжектора — принцип действия форсунок в двигателе

Главная » Двигатели » Работа форсунки инжектора — принцип действия форсунок в двигателе

просмотров 1 473

На современных двигателях используются различные типы форсунок. О работе форсунок, их расположении и возможных проблемах пойдёт речь ниже.

Различие инжекторных форсунок

Форсунка инжектора служит для распыления поступающего топлива, которое подаётся под высоким давлением. По способу впрыска их можно разделить на три категории:

  1. Электромагнитного принципа действия.
  2. Электрогидравлическая.
  3. Пьезоэлектрический вариант.

Давайте в сжатой форме ознакомимся с каждым вариантом.

  • Электромагнитная форсунка.

Простейший вариант, который устанавливается на двигатели, в том числе моторы с непосредственным впрыском. Вид топлива: бензин.

  • Электрогидравлическая форсунка.

Она используется на дизельных двигателях. В том числе, агрегирует с системой Common Rail.

  • Пьезоэлектрическая форсунка.

Вариант более современный по сравнению с вышеперечисленными форсунками. Применяется на дизельных двигателях. Достаточно сказать, что скорость работы в четыре раза быстрее, чем у электромагнитной форсунки.

Принцип работы

По сути, форсунка – это ёмкость наполненная топливом, которое проходит под высоким давлением из топливной магистрали. Подача выполняется через фильтровочную сетку: это с одной стороны. С дугой, топливо, уже в распыленном состоянии, поступает в рабочую область двигателя при условии, что есть определённое напряжение на клапане форсунки.

Какие бывают форсунки и их расположение

Существует несколько видов комплекта, о котором идёт речь. Это:

  • низкоомные с рабочими показателями 1-7 Ом. В цепях может быть добавочное сопротивление от 5 до 8 Ом;
  • высокоомные с показателями 14-17 Ом.
  1. В рядном двигателе на четыре цилиндра задействована одна форсунка инжектора – это моно впрыск.
  2. В V-образном двигателе с шестью цилиндрами работают две форсунки при разделении процесса – это дубль моно впрыск.
  3. При работе одной форсунки на один цилиндр – это распределительный впрыск.
  4. При расположении одной форсунки, рабочая часть которой находится внутри цилиндра – это прямой впрыск.
  5. Одна форсунка на силовой агрегат с расположением рабочей части во впускном коллекторе – это пусковая форсунка.
  • Расположение.

Пусковая форсунка, находящаяся во впускном коллекторе, установлена таким образом, чтобы широкий факел распылённого топлива (до 900) поступал к впускным клапанам всех цилиндров.

Форсунку моно впрыска можно найти на месте установки карбюратора. Топливо поступает во впускной коллектор.

Форсунки распределительного впрыска располагаются на впускном коллекторе (район клапанной впуска каждого цилиндра). Если 2 клапана, следовательно, факел распылённого топлива состоит из 2 частей. Подача направлена на каждый клапан.

В зависимости от работы двигателя поступающее в него топливо регулируется показателями 80-130 рабочих атмосфер. Речь идёт о прямом впрыске топлива.

Не имеет значения, на каком виде топлива солярке или бензине работает самоходное транспортное средство. Часто возникают технические проблемы с форсунками. Эта деталь, отвечающая за впрыск горючего под высоким давлением из-за некачественного топлива, регулярно направляет автомобиль в ремонтные боксы. Водители должны знать, каким образом проверяется работа форсунки инжектора, если запуск двигателя затруднён.

Чем опасны сбои работы форсунок, и какие признаки вероятных проблем

Если электро форсунка льёт, то снижается КПД (коэффициент полезного действия) распыления топлива. Иными словами рассеивается форма пламени. Об этой проблеме сигнализирует чёрный или серый дым. Автомобиль неохотно заводится. Когда льют форсунки, может теряться мощность двигателя.

При льющей форсунке повышается расход топлива. Грязный фильтр может стать проблемой. Форсунка может не лить, а сбои в работе могут возникнуть из-за плохих свечей. Виной может стать топливный насос или ГРМ. Сложность пуска двигателя – это 90% нерабочих форсунок.

Зачастую когда в автомобиле не установлен фильтр тонкой очистки топлива, на сеточке форсунки скапливается грязь, которая не дает проходить топливу и как следствие отсутствие распыления топлива, а в худшем случае и вовсе двигатель может начать троить!

О проблемах во время езды может свидетельствовать рывки авто, в частности при наборе скорости. После переключения скоростей, и наборе скорости, машина может дёргаться. Разгон транспортного средства и выполнение манёвров, весьма затруднены. Если ездить с проблемами впрыска, что, кстати, не рекомендуют специалисты, может существенно уменьшиться продолжительность работы двигателя.

Дефекты необходимо безотлагательно исправлять. Страшно подумать, что может произойти на крутом подъёме или опасном спуске, если выйдет из строя форсунка.

Диагностика как профилактика и решение проблем на ранней стадии «технического заболевания»

В современной, «правильно» оборудованной СТО, можно провести диагностику форсунок без их снятия. Тестирование проходит весьма быстро. Упор делается на анализ шума. Высокочастотный приглушённый шум – это прямой путь на прочистку форсунок. При диагностике следует уделить внимание подаче топлива.  Проверка подачи питания начинается с отключения колодки инжекторной системы. С АКБ подсоединяют 2 конца провода, а другие закрепляются с форсунками. Проводится запуск двигателя  и выполняется контроль подачи, поступающего горючего. Результаты фиксируются, обрабатываются и делаются соответствующие выводы:

  1. Если происходит вытекание топлива, следовательно, возможны неполадки в электрической сети авто.
  2. Если топливо не вытекает, значит с форсунками всё в порядке.

Когда нужно измерить сопротивление на форсункак, можно прибегнуть к использованию омметра.  Далее, сравнить с рекомендованными значениями. Если обнаружены отклонения от норм нерабочая форсунка демонтируется. Её меняют на исправную. Далее снова проводится проверка сопротивления и заводится двигатель. Работы подразумевают снятие топливной рейки, а форсунки демонтируются вместе с рейкой.

В заключение

Топливная аппаратура вещь капризная, но проверку можно выполнить самостоятельно. Ведь многие водители неплохо разбираются в устройстве автомобиля. Поэтому спешить в сервисный центр не стоит. Экономьте собственные деньги.

Проголосуйте, понравилась ли вам статья? Загрузка…

Топливная система инжектора автомобиля — устройство и как работает

Топливная система автомобилей с электронным впрыском имеет ряд особенностей по сравнению с карбюраторным двигателем. Расскажем как работает топливная система инжектора, ее основная задача и устройство.

Устройство

Задачей системы подачи топлива является обеспечение подачи необходимого количества топлива в двигатель на всех рабочих режимах. Топливо подается в двигатель форсунками, установленными во впускной трубе. В систему подачи топлива инжектора входят следующие элементы:
  • электробензонасос 5;
  • топливный фильтр 6;
  • топливопроводы — подающий 8 и сливной 7;
  • рампа форсунок с топливными форсунками 9;
  • регулятор давления топлива 4;
  • штуцер контроля давления топлива 1.

Устройство система подачи топлива инжекторного двигателя

Электробензонасос

Электробензонасос конструктивно входит в модуль электробензонасоса, устанавливаемого на инжекторных автомобилях внутри топливного бака. Модуль включает в себя сам насос, датчик указателя уровня топлива, фильтр и завихритель для отделения пузырьков пара. Электробензонасос нагнетает топливо из топливного бака в подающий топливопровод. На инжекторных автомобилях применяется модуль погружного типа, то есть располагается непосредственно в топливном баке и охлаждается за счет бензина. Создаваемое насосом давление топлива значительно больше требуемого для нормальной работы двигателя на любых режимах.

Электробензонасос управляется контроллером системы через отдельное реле. Реле предотвращает подачу топлива при включенном зажигании и неработающем двигателе.


Топливный фильтр

Система топливоподачи предназначена для точной регулировки количества поступающего в двигатель топлива. Грязь в топливе может привести к неустойчивой работе форсунок и регулятора давления, быстрому их износу. Поэтому к чистоте топлива предъявляются особые требования.

В системе топливоподачи предусмотрен фильтр. Основу топливного фильтра составляет бумажный элемент с пористостью около 10 мкм. Интервал замены фильтра зависит от объема фильтра и степени загрязнения топлива.

Топливопроводы

Различают прямой и обратный топливопроводы. Прямой предназначен для топлива, поступающего из модуля электробензонасоса в топливную рампу. Обратный доставляет избыток топлива после регулятора давления обратно в бак.

Топливная рампа


Топливная рампа инжекторного двигателя
Топливо заполняет топливную рампу и равномерно распределяется на все форсунки. На топливной рампе кроме форсунок располагаются регулятор давления топлива и штуцер контроля давления в топливной системе. Размеры и конструктивное исполнение рампы устраняют локальные пульсации давления топлива вследствие резонансов при работе форсунок.

Регулятор давления топлива

Количество впрыскиваемого топлива должно зависеть только от длительности впрыска — времени открытого состояния форсунки. Поэтому разница между давлением топлива в топливной рампе и давлением во впускной трубе (перепад давления на форсунках) должна оставаться постоянной. Для этого служит регулятор давления топлива. Он пропускает обратно в бак излишки топлива.

Электромагнитная форсунка

Основное устройство дозировки топлива. Электромагнитная форсунка имеет клапанную иглу с насаженным магнитным сердечником.


В спокойном состоянии спиральная пружина прижимает клапанную иглу к уплотнительному седлу распылителя и закрывает выходное топливное отверстие. При прохождении электрического тока сердечник с клапанной иглой поднимается (на 60—100 мкм), и топливо впрыскивается через калиброванное отверстие. В зависимости от способа впрыска, частоты вращения и нагрузки двигателя время включения составляет 1,5—18 мс. Зависимость количества прошедшего через форсунку топлива от времени открытия при постоянной разности давлений — важнейший показатель работы форсунки. Не стоит менять форсунки на своем автомобиле на дорогие от иномарки. Как правило, хороших результатов это не дает, более действенный метод это очистка форсунок. Из вышесказанного видим, что форсунка — очень важный компонент системы впрыска. Поэтому она требует к себе большого внимания.

Как работает

Для нормальной работы двигателя необходимо обеспечить поступление в камеру сгорания двигателя топливовоздушной смеси оптимального состава. Смесь приготавливается во впускной трубе при смешивании воздуха и топлива. Контроллер подает на форсунку управляющий импульс, который открывает нормально закрытый клапан форсунки, и топливо под давлением распыляется во впускную трубу перед клапаном.

Поскольку перепад давления топлива поддерживается постоянным, количество подаваемого топлива пропорционально времени, в течение которого форсунки находятся в открытом состоянии. Контроллер поддерживает оптимальное соотношение топливовоздушной смеси путем изменения длительности импульсов. Увеличение длительности импульса впрыска приводит к увеличению количества подаваемого топлива — обогащению смеси. Уменьшение длительности импульса впрыска приводит к уменьшению количества подаваемого топлива, то есть к обеднению.

Наряду с точной дозировкой впрыскиваемой топливной массы имеет важное значение и момент впрыскивания. Поэтому количество форсунок соответствует количеству цилиндров двигателя.

Как работает форсунка инжектора. Устройство системы питания инжекторного двигателя

Министерство образования и науки Российской Федерации

Сыктывкарский лесной институт филиал

Федерального государственного бюджетного образовательного учреждения

высшего профессионального образования

Санкт-Петербургского государственного лесотехнического университета

им. С.М.Кирова

Факультет ЛТФ

Кафедра АиАХ

Лабораторная работа № 1,2

Дисциплина: ТЭА

Тема: Система питания инжекторного двигателя.

Выполнил Артеева Т. П., гр. 141

Проверил Юшков А. Н., к.т.н.

Зав. кафедрой Чудов В. И., к.т.н.

Сыктывкар – 2011

    Устройство системы питания инжекторного двигателя…..………………….4

    Основные неисправности системы питания.………………………………7

    1. Датчики………………………………………………………………….7

      Форсунки………………………………………………………………..9

      Бензонасос……………………………………………………………..11

    ТО системы питания………….………………..………………………….12

Введение

На сегодняшний день инжекторный двигатель практически полностью заменил устаревшую карбюраторную систему.

Инжекторный двигатель улучшает эксплуатационные и мощностные показатели автомобиля (динамика разгона, экологические характеристики, расход топлива и т.д.).

Инжектор позволяет длительное время соблюдать высокие экологические стандарты, без ручных регулировок, благодаря самонастройки по датчику кислорода.

Инжекторный двигатель. Основные достоинства.

Основные достоинства инжектора по сравнению с карбюратором: уменьшенный расход топлива, улучшенная динамика разгона, уменьшение выбросов вредных веществ, стабильность работы. Изменение параметров электронного впрыска может происходить буквально «на лету», так как управление осуществляется программно, и может учитывать практически большое число программных функций и данных с датчиков. Также современные системы электронного впрыска способны адаптировать программу работы под конкретный экземпляр мотора, под стиль вождения водителя, и т.п.

Инжекторный двигатель. Недостатки.

Основные недостатки инжекторных двигателей по сравнению с карбюраторными: высокая стоимость ремонта, высокая стоимость узлов, неремонтопригодность элементов, высокие требования к качеству топлива, необходимо специализированное оборудование для диагностики, обслуживания и ремонта.

Инжекторные системы питания двигателя классифицируются следующим образом. Моновпрыск или центральный впрыск — одна форсунка на все цилиндры, расположенная на месте карбюратора (во впускном коллекторе). В современных двигателях не встречается. Распределённый впрыск — каждый цилиндр обслуживается отдельной изолированной форсункой во впускном коллекторе. Одновременный — все форсунки открываются одновременно. Попарно-параллельный — форсунки открываются парами, причём одна форсунка открывается непосредственно перед циклом впуска, а вторая перед тактом выпуска.

  1. Устройство системы питания инжекторного двигателя

Рис.1. Схема подачи топлива двигателя с системой впрыска топлива

1 – форсунки; 2 – пробка штуцера для контроля давления топлива;3 – рампа форсунок; 4 – кронштейн крепления топливных трубок;5 – регулятор давления топлива; 6 – адсорбер с электромагнитным клапаном; 7 – шланг для отсоса паров бензина из адсорбера;8 – дроссельный узел; 9 – двухходовой клапан;10 – гравитационный клапан; 11 – предохранительный клапан;12 – сепаратор; 13 – шланг сепаратора; 14 – пробка топливного бака; 15 – наливная труба; 16 – шланг наливной трубы; 17 – топливный фильтр; 18 – топливный бак; 19 – электробензонасос; 20 – сливной топливопровод; 21 – подающий топливопровод.

Топливо подается из бака, установленного под днищем в районе задних сидений. Топливный бак ваз 2111 – стальной, состоит из двух сваренных между собой штампованных половин. Заливная горловина соединена с баком резиновым бензостойким шлангом, закрепленным хомутами. Пробка герметична. Бензонасос – электрический, погружной, роторный, двухступенчатый, установлен в топливном баке. Развиваемое давление — не менее 3 бар (3 атм).

Бензонасос ваз 2110 включается по команде контроллера системы впрыска (при включенном зажигании ваз 2112) через реле. Для доступа к насосу под задним сиденьем в днище автомобиля имеется лючок. От насоса по гибкому шлангу топливо под давлением подается к фильтру тонкой очистки и далее – через стальные топливопроводы и резиновые шланги – к топливной рампе.

Фильтр тонкой очистки топлива – неразборный, в стальном корпусе, с бумажным фильтрующим элементом. На корпусе фильтра нанесена стрелка, которая должна совпадать с направлением движения топлива.

Топливная рампа служит для подачи топлива к форсункам и закреплена на впускном коллекторе. С одной стороны на ней находится штуцер для контроля давления топлива, с другой – регулятор давления. Последний изменяет давление в топливной рампе – от 2,8 до 3,2 бар (2,8-3,2 атм) – в зависимости от разрежения в ресивере, поддерживая постоянный перепад между ними. Это необходимо для точного дозирования топлива форсунками.

Регулятор давления топлива ваз 2111, ваз 2112 представляет собой топливный клапан, соединенный с подпружиненной диафрагмой. Под действием пружины клапан закрыт. Диафрагма делит полость регулятора на две изолированные камеры – «топливную» и «воздушную». «Воздушная» соединена вакуумным шлангом с ресивером, а «топливная» – непосредственно с полостью рампы. При работе двигателя разрежение, преодолевая сопротивление пружины, стремится втянуть диафрагму, открывая клапан. С другой стороны на диафрагму давит топливо, также сжимая пружину. В результате клапан открывается, и часть топлива стравливается через сливной трубопровод обратно в бак. При нажатии на педаль «газа» разрежение за дроссельной заслонкой уменьшается, диафрагма под действием пружины прикрывает клапан – давление топлива возрастает. Если же дроссельная заслонка закрыта, разрежение за ней максимально, диафрагма сильнее оттягивает клапан – давление топлива снижается. Перепад давлений задается жесткостью пружины и размерами отверстия клапана, регулировке не подлежит. Регулятор давления – неразборный, при выходе из строя его заменяют.

Форсунки крепятся к рампе через уплотнительные резиновые кольца. Форсунка представляет собой электромагнитный клапан, пропускающий топливо при подаче на него напряжения, и запирающийся под действием возвратной пружины при обесточивании. На выходе форсунки имеется распылитель, через который топливо впрыскивается во впускной коллектор. Управляет форсунками контроллер системы впрыска. При обрыве или замыкании в обмотке форсунки ее следует заменить. При засорении форсунок их можно промыть без демонтажа на специальном стенде СТО.

В системе впрыска с обратной связью применяется система улавливания паров топлива ваз 2110. Она состоит из адсорбера, установленного в моторном отсеке, сепаратора, клапанов и соединительных шлангов. Пары топлива из бака частично конденсируются в сепараторе, конденсат сливается обратно в бак. Оставшиеся пары проходят через гравитационный и двухходовой клапаны. Гравитационный клапан предотвращает вытекание топлива из бака при опрокидывании автомобиля ваз 2111, а двухходовой препятствует чрезмерному повышению или понижению давления в топливном баке.

Затем пары топлива попадают в адсорбер ваз 2110, где поглощаются активированным углем. Второй штуцер адсорбера соединен шлангом с дроссельным узлом, а третий – с атмосферой. Однако на выключенном двигателе третий штуцер перекрыт электромагнитным клапаном, так что в этом случае адсорбер не сообщается с атмосферой. При запуске двигателя контроллер системы впрыска начинает подавать управляющие импульсы на клапан с частотой 16 Гц. Клапан сообщает полость адсорбера с атмосферой и происходит продувка сорбента: пары бензина отсасываются через шланг в ресивер. Чем больше расход воздуха двигателем, тем больше длительность управляющих импульсов и тем интенсивнее продувка.

В системе впрыска без обратной связи система улавливания паров топлива состоит из сепаратора с двухходовым обратным клапаном. Воздушный фильтр ваз 2111 установлен в передней левой части моторного отсека на трех резиновых держателях (опорах). Фильтрующий элемент – бумажный, при установке его гофры должны располагаться параллельно оси автомобиля. После фильтра воздух проходит через датчик массового расхода воздуха и попадает во впускной шланг, ведущий к дроссельному узлу. Дроссельный узел закреплен на ресивере. Нажимая на педаль «газа», водитель приоткрывает дроссельную заслонку, изменяя количество поступающего в двигатель воздуха, а значит, и горючей смеси – ведь подача топлива рассчитывается контроллером в зависимости от расхода воздуха. Когда двигатель работает на холостом ходу и дроссельная заслонка закрыта, воздух поступает через регулятор холостого хода – клапан, управляемый контроллером. Последний, изменяя количество подаваемого воздуха, поддерживает заданные (в программе компьютера) обороты холостого хода. Регулятор холостого хода ваз 2112 – неразборный, при выходе из строя его заменяют.

Система подачи топлива инжекторного двигателя получила распространение в современных автомобилях и имеет ряд преимуществ перед топливной системой карбюраторного двигателя. В этой статье мы рассмотрим устройство инжектора и узнаем, как работает система подачи топлива инжекторного двигателя.

1.Устройство инжектора

Основная задача системы питания инжекторного двигателя заключается в обеспечении подачи оптимального количества бензина в двигатель при разных режимах работы. Подача бензина в двигатель осуществляется с помощью форсунок, которые установлены во впускном трубопроводе.

1.1.Устройство системы питания инжектора:

1. Электробензонасос — устанавливается в модуле, который располагается в топливном баке. Модуль также включает в себя такие дополнительные элементы, как топливный фильтр, датчик уровня бензина и завихритель.

Электробензонасос предназначен для нагнетания бензина из топливного бака в подающий топливопровод. Управление электробензонасосом осуществляется с помощью контроллера через реле.

2. Топливный фильтр — предназначен для очистки топлива от грязи и примесей, которые могут привести к неравномерной работе двигателя, неустойчивой работе инжектора, загрязнению форсунок. В инжекторных системах к качеству топлива предъявляются высокие требования.

3. Топливопроводы — служат для подачи топлива от бензонасоса к рампе и обратно от рампы в топливный бак. Соответственно существует прямой и обратный топливопроводы.

4. Рампа форсунок с топливными форсунками — конструкция рампы обеспечивает равномерное распределение топлива по форсункам. На топливной рампе располагаются форсунки, регулятор давления топлива и штуцер контроля давления в топливной системе инжектора.

5. Регулятор давления топлива — предназначен для поддержания оптимального перепада давления, который способствует тому, что количество впрыскивания топлива зависит только от длительности впрыска. Излишки топлива регулятор подает обратно в бак.

1.1.1.

Как работает система питания инжекторного двигателя?

Для стабильной работы двигателя необходимо обеспечить сбалансированное поступление топливовоздушной смеси в камеру сгорания. Приготовление топливовоздушной смеси происходит в впускном трубопроводе, благодаря смешиванию бензина с воздухом. Контроллер с помощью управляющего импульса открывает клапан форсунки и путем изменения длительности импульса регулирует состав топливовоздушной смеси.
Регулятор давления топлива поддерживает перепад давления топлива постоянным, соответственно количество топлива, что подается пропорционально времени, при котором форсунки находятся в открытом состоянии . Контроллер поддерживает оптимальное соотношение топливовоздушной смеси путем изменения длительности импульсов. Если длительность импульса увеличивается — смесь обогащается, если уменьшается — смесь обедняется.

Технический прогресс сейчас движется очень быстрыми темпами. Одной из наиболее активно развивающихся отраслей, является автомобилестроение. Здесь постоянно вводятся новые изобретения и конструктивные решения. Помогают в этом деле и ужесточающиеся нормы экологии.

Потому производители машин повсеместно внедряют новые разработки. Инжекторные агрегаты стали одной из разработок, стимулированных ужесточением требований токсичности выхлопа.

В инжекторном моторе горючее попадает в камеру сгорания не через , а впрыскивается специальными устройствами. Последние именуются форсунками или инжекторами.

Устройство форсунки:
a — форсунка одноточечного впрыска, б — форсунка распределенного впрыска 1 — фильтр, 2 — электрический разъем, 3 — обмотка электромагнита, 4 — корпус форсунки, 5 — сердечник, 6 — корпус клапана, 7 — клапан (б — игла клапана), 8 — уплотнительное кольцо, 9 — распылительное отверстие.

Откуда появился инжекторный двигатель?

В автомобилестроение инжекторные двигатели пришли в 1951 году, когда был создан автомобиль Goliath 700 Sport.

Правда в то время такая система питания не получила распространения среди автоконцернов. Вспомнили о данной системе питания лишь в 70-х годах, когда изменились нормы токсичности. В результате начался процесс вытеснения данными двигателями карбюраторных.

В итоге к концу века большая часть легковых авто и микроавтобусов имели именно такие моторы. Сегодня же все машины имеют такую систему питания.

Подвиды инжекторной системы питания

Отмечу, что инжекторная система питания имеет несколько подвидов. В зависимости от количества инжекторов выделяют моновпрыск или как его еще именуют, центральный впрыск, а также распределенный впрыск.

Первый имеет одну форсунку, устанавливаемую вместо карбюратора. Она осуществляет впрыск горючего во впускной коллектор единовременно во все цилиндры. Правда эта конструкция уже несколько устарела.

Сейчас все производители применяют распределенный впрыск, имеющий отдельную форсунку на каждом цилиндре.


Устройство системы распределенного впрыска:
1 — топливный бак; 2 — электробензонасос; 3 — топливный фильтр; 4 — регулятор давления топлива; 5 — форсунка; 6 — электронный блок управления; 7 — датчик массового расхода воздуха; 8 — датчик положения дроссельной заслонки; 9 — датчик температуры ОЖ; 10 — регулятор; 11 — датчик положения коленвала; 12 — датчик кислорода; 13 — нейтрализатор; 14 — датчик детонации; 15 — клапан продувки адсорбера; 16 — адсорбер.

Система распределенного впрыска подразделяется на подтипы:

  • одновременный впрыск – все форсунки одновременно впрыскивают порцию топлива;
  • попарно-параллельный. В данном случае форсунки работают попарно. Одни осуществляют впрыск на такте впуска, а другие – на такте выпуска. Данная система применяется в современных агрегатах при запуске;
  • фазированный впрыск осуществляется на такте впуска. Причем каждая форсунка имеет отдельное управление;
  • прямой впрыск имеет форсунки, которые находятся непосредственно возле цилиндров.

Видео — принцип работы системы питания инжекторного двигателя:

Инжекторные агрегаты обладают несомненными «плюсами», по сравнению с карбюраторными. Они менее токсичны, экономны, легко запускаются. Кроме того, таких моторов доступен в широком диапазоне оборотов.

Имеет данная система питания и «минусы»: более сложная конструкция, высокая чувствительность агрегата к . Кроме того, форсунки являются не ремонтируемыми узлами, что удорожает ремонт. Для диагностики же их состояния и очистки, СТО должно иметь современное дорогое оборудование.

Пьезоэлектрическая форсунка, устройство, принцип работы

Пьезофорсунка – самое совершенное устройство впрыска топлива, устанавливаемое на дизельные двигатели с системой Common rail в настоящее время. 

Преимуществом пьезофорсунок является быстрота их срабатывания – до 4х раз быстрей обычных электромагнитных инжекторов, и как следствие возможность многократного впрыска топлива в течение одного такта, а также гораздо более точная дозировка впрыскиваемого топлива.

Устройство пьезофорсунки

Все эти преимущества стали возможны благодаря использованию обратного пьезоэффекта в управлении форсункой, основанного на изменении размера пьезокристалла под действием напряжения.

Информация из Википедии: Пьезоэлектрический эффект — эффект возникновения поляризации диэлектрика под действием механических напряжений (прямой пьезоэлектрический эффект). Существует и обратный пьезоэлектрический эффект — возникновение механических деформаций под действием электрического поля. При прямом пьезоэффекте деформация пьезоэлектрического образца приводит к возникновению электрического напряжения между поверхностями деформируемого твердого тела, при обратном пьезоэффекте приложение напряжения к телу вызывает его деформацию.

Конструкция пьезоэлектрической форсунки схематично показана на рисунке:

1.            игла распылителя

2.            огнеупорная шайба

3.            пружина иглы распылителя

4.            блок дросселей

5.            переключающий клапан

6.            пружина клапана

7.            поршень клапана

8.            поршень толкателя

9.            пьезоэлемент

10.          канал обратки

11.          микрофильтр

12.          электрический разъем форсунки

13.          канал подачи топлива

 

 

 

 

 

 

Как и в обыкновенной CR форсунке, пьезоэлектрической форсунке используется гидравлический принцип: В закрытом состоянии инжектора – игла остается посаженой на седло, за счет высокого давления. При поступлении с ЭБУ (блока управления) электрического сигнала на пьезоэлемент – увеличивается его длинна, открывая переключающий клапан. Топливо начинает сливаться в обратку – давление выше иглы падает и игла, под давлением в нижней части поднимается, производя впрыск дизельного топлива.

Количество впрыскиваемого топлива определяется двумя факторами: длительностью управляющего сигнала на пьезоэлемент и давлением топлива в рампе создаваемого наосом и регулируемого дозирующим клапаном.

В самое ближайшее время в 2015 году, в BOSCH Дизель Сервисах «БЕЛАВТОДИЗЕЛЬ», будет доступна возможность диагностики и восстановления пьезофорсунок BOSCH.

Описание сопел дизельных форсунок

(со схемой)

Участвующие детали

Форсунки дизельных форсунок представляют собой подпружиненные закрытые клапаны, которые впрыскивают топливо непосредственно в камеру сгорания или камеру предварительного сгорания при открытии форсунки. Форсунки форсунок ввинчиваются или зажимаются в головке цилиндров, по одному на каждый цилиндр, и заменяются в сборе.

Наконечник форсунки имеет множество отверстий для подачи распыленной струи дизельного топлива в цилиндр двигателя.Детали форсунки дизельного двигателя включают:

  • Теплозащитный экран. Это внешняя оболочка форсунки форсунки, которая может иметь внешнюю резьбу в месте уплотнения в головке блока цилиндров.
  • Корпус форсунки. Это внутренняя часть сопла, содержащая игольчатый клапан форсунки и пружину, а также резьбу во внешнем тепловом экране.
  • Игольчатый клапан дизельной форсунки. Это прецизионно обработанный клапан и кончик иглы, упирающийся в корпус инжектора, когда он закрыт. Когда клапан открыт, дизельное топливо впрыскивается в камеру сгорания.Этот проход управляется соленоидом с компьютерным управлением на дизельных двигателях, оборудованных системой впрыска с компьютерным управлением.
  • Напорная камера форсунки. Камера давления представляет собой обработанную полость в корпусе инжектора вокруг кончика иглы инжектора. Давление топливного насоса нагнетает топливо в эту камеру, заставляя игольчатый клапан открываться.
Работа форсунки дизельного двигателя

Форсунка дизельного топлива Duramax со всеми внутренними деталями.

Электрический соленоид, прикрепленный к форсунке форсунки, управляется компьютером и открывается, позволяя топливу течь в напорную камеру форсунки.

Топливо стекает вниз через топливный канал в корпусе форсунки в камеру давления. Высокое давление топлива в напорной камере заставляет игольчатый клапан подниматься вверх, сжимая возвратную пружину игольчатого клапана и заставляя игольчатый клапан открываться. Когда игольчатый клапан открывается, дизельное топливо выходит в камеру сгорания в виде полого конуса распыления. Узнайте больше о системах смазки и охлаждения двигателя здесь.

Любое топливо, которое протекает через игольчатый клапан в двигателе, возвращается в топливный бак через обратный канал и трубопровод.

Следующие шаги к сертификации ASE

Теперь, когда вы знакомы с форсунками дизельных форсунок, попробуйте наши бесплатные тесты на качество обслуживания автомобилей, чтобы узнать, как много вы знаете!

Часто задаваемые вопросы: что такое форсунка?

Какова функция форсунки?

Определение. Сопла форсунок взаимодействуют с поршнями в камерах сгорания. Когда поршень отводится от свечи зажигания, форсунка распыляет смесь топлива и воздуха в камеру сгорания.Форсунки можно рассматривать как «сердце» двигателя.

Что такое форсунка в двигателе?

Все газотурбинные двигатели имеют сопло для создания тяги, для отвода выхлопных газов обратно в свободный поток и для установки массового расхода через двигатель. Сопло находится после силовой турбины. Сопло — это относительно простое устройство, это просто трубка особой формы, через которую протекают горячие газы.

В чем разница между форсункой и форсункой?

Как существительные, разница между инжектором и соплом заключается в том, что инжектор — это любое из различных устройств, которые используются для впрыска чего-либо, в то время как сопло представляет собой короткую трубку, обычно сужающуюся, образующую вентиляционное отверстие шланга или трубы.

Что такое форсунка в дизельном двигателе?

Сопло относится к части узла сопла / иглы, которая взаимодействует с камерой сгорания двигателя. Инжектор обычно относится к держателю сопла и узлу сопла. Начало впрыска (SOI) или время впрыска — это время, когда начинается впрыск топлива в камеру сгорания.

Как работает форсунка?

Форсунка просто действует как распылительная форсунка, разбивая топливо на мелкие брызги — на самом деле он не контролирует поток топлива.Количество распыляемого топлива увеличивается или уменьшается механическим или электрическим блоком управления — другими словами, это похоже на включение и выключение крана.

Что такое функция инжектора?

Инжектор — устройство для впрыска жидкого топлива в двигатель внутреннего сгорания. Этот термин также используется для описания устройства для впрыска питательной воды в бойлер.

Что происходит в сопле?

Сопло — это носик на конце шланга или трубы, используемый для управления движением жидкости, такой как вода или воздух.Сужающееся сопло — это сопло, которое вначале становится большим, а затем становится меньше — с уменьшением площади поперечного сечения. Энергия в этом случайном движении преобразуется в более быстрое поступательное движение, известное как поток.

Каков принцип форсунки?

Сопло часто представляет собой трубу или трубку с различной площадью поперечного сечения, и ее можно использовать для направления или изменения потока текучей среды (жидкости или газа). Сопла часто используются для управления скоростью потока, скоростью, направлением, массой, формой и / или давлением потока, выходящего из них.

Какие бывают насадки?

Форсунка Форсунка. Наконечник форсунки — одна из самых важных и наименее дорогих частей системы распыления. Регулируемая насадка. Двойная вихревая форсунка. Выбор форсунки. Сопла с полым конусом — дисковые и стержневые. Плоские веерные форсунки. Форсунки Floodjet. Регулируемые насадки.

Каковы симптомы неисправной топливной форсунки?

Вот несколько признаков того, что с вашими топливными форсунками что-то не так. Пропуски зажигания в двигателе.Грязные топливные форсунки могут привести к пропуску зажигания в двигателе вашего автомобиля. Холостой ход становится грубым. Ваши баллоны с пробегом. Игла RPM начинает танцевать. Ваша машина не заводится.

Что такое насадка?

1а: выступ чего-то. b: короткая трубка с конусом или сужением, используемая (как на шланге) для ускорения или направления потока жидкости. c: деталь ракетного двигателя, которая ускоряет выхлопные газы из камеры сгорания до высокой скорости.

Сколько существует типов форсунок?

В системе впрыска дизельного топлива есть два типа форсунок.Они подразделяются на категории в зависимости от того, как топливо впрыскивается в систему: Механические топливные форсунки. Электронные топливные форсунки.

Как чистить форсунки дизельного топлива?

Как чистить дизельные форсунки Купите топливную присадку. Заведите машину и дайте двигателю прогреться в течение трех-четырех минут. Снимите и слейте топливный фильтр. Заполните весь фильтр и полость корпуса выбранной присадкой к топливу. Установите новый топливный фильтр для вашего дизельного автомобиля.

Как работают форсунки дизельного топлива

Рынок дизельных двигателей продолжает расти из года в год, поскольку потребность в надежных автомобилях малой и большой грузоподъемности возрастает в основном в странах второго и третьего мира.По мере совершенствования инфраструктуры во всем мире растет и потребность в надежных рабочих тележках. JD Power and Associates прогнозирует, что продажи дизельного топлива увеличатся более чем в три раза в следующие 10 лет, что составит более 10% от всех продаж автомобилей по сравнению с 3,6% всего 10 лет назад в 2005 году. С 2000 по 2005 год регистрация дизельных двигателей увеличилась более чем на 80%. более 550 000 автомобилей. С 2005 по 2015 год это число увеличилось еще на 67%.

Как работают топливные форсунки

Топливные форсунки — это небольшие электрические компоненты, которые используются для подачи топлива через спрей непосредственно во впускной коллектор перед впускным клапаном в дизельном двигателе.Форсунки дизельного топлива довольно сложны; инжектор имеет фильтр с высокими микронами на верхней стороне впуска, который соответствует маленьким отверстиям для подкожных инъекций внизу для распыления дизельного топлива. Дизельное топливо действует как источник смазки для внутренних частей форсунки. Основной источник выхода из строя форсунок — вода в топливе. Когда вода в топливе вытесняет смазочные свойства, внутренние детали быстро изнашиваются, и форсунка в целом может довольно быстро выйти из строя.

Форсунки — чрезвычайно важный компонент двигателя.Клапан форсунки открывается и закрывается с той же частотой вращения, что и дизельный двигатель. Типичная частота вращения дизельных двигателей в Северной Америке составляет около 1800. Это примерно 140 000 оборотов в час! Помимо воды в топливе, форсунки подвергаются воздействию частиц углерода и грязи, попадающих в агрегат через плохой элемент воздухоочистителя. Тип топлива, марка и используемые присадки также оказывают значительное влияние на ожидаемый срок службы топливной форсунки. ECM (модуль управления двигателем) управляет топливными форсунками в большинстве электрических дизельных двигателей.Дизельные форсунки постоянно находятся под напряжением при включении ключа независимо от того, включен ли двигатель. Контроллер ЭСУД заземляет форсунку, замыкая цепь и вызывая открытие форсунки. Контроллер ЭСУД после получения информации от различных управляющих датчиков определяет продолжительность времени, в течение которого форсунки должны быть заземлены, чтобы впрыснуть точное количество топлива, учитывая требуемую мощность двигателя в лошадиных силах.

Процесс открытия, закрытия дизельных форсунок и выдачи нужного количества топлива происходит за миллисекунды.Запуск цикла форсунки в среднем занимает от 1,5 до 5 миллисекунд. Форсунки дизельного топлива бывают разных форм и размеров в зависимости от марки и модели двигателя, а также потребляемой мощности. Автомобильные форсунки немного меньше, чем дизельные двигатели для тяжелых условий эксплуатации, и измеряются в кубических дюймах. Существует два типа форсунок дизельного топлива: первый называется впрыском в корпус дроссельной заслонки, где 1-2 форсунки расположены в самом корпусе дроссельной заслонки в дизельном двигателе и подают отмеренное количество распыляемого тумана топлива во впускной коллектор.Эта система подачи по существу заряжает впускной канал, а впускной клапан втягивает топливо в цилиндр двигателя. Вторая система подачи, известная как топливная форсунка с отдельным портом, является более новой и более экономичной. Портовый впрыск более эффективен, чем карбюратор, поскольку он подстраивается под плотность воздуха и высоту и не зависит от вакуума в коллекторе.

При впрыске через дроссельную заслонку неэффективность достигается тогда, когда в цилиндрах, ближайших к форсункам, смесь лучше, чем в наиболее удаленных.При впрыске с портом этот недостаток устраняется путем впрыска одинакового количества топлива в каждый цилиндр двигателя.

Детали инжектора

Каждый топливный инжектор немного отличается, но все они состоят из 15 основных частей, включая фильтр, направляющее кольцо, пружину сердечника, пружину седла, седло, полюсный наконечник, упор, катушку соленоида, корпус соленоида, кольцо сердечника, сердечник, корпус распылительного наконечника, директор и распылительный наконечник. Контроллер ЭСУД регулирует подачу топлива, поднимая шар с седла.Это позволяет топливу течь через отверстие седла, а затем выходить через неподвижную направляющую пластину с несколькими отверстиями. Направляющая пластина служит для направления факела распыления топлива. Этот тип инжектора имеет форму распыления под углом от 10 до 15 градусов. Распыление топлива этого типа форсунки аналогично форсунке дискового типа. Форсунки дискового и шарового типа по своей конструкции менее подвержены засорению.

Форсунки для дизельного топлива бывают разных форм и размеров, а также условий работы.В статье, размещенной здесь, объясняется разница между OEM, восстановленными, восстановленными и использованными форсунками. Capital Reman Exchange может помочь вам определить, какой тип топливной форсунки подходит для вашего дизельного двигателя.

Категории товаров
Без категории, Дизельные топливные форсунки

— форсунки Common Rail

Дизельные форсунки за последние двадцать лет разработки дизельных двигателей стали все более сложными, но их основная конструкция довольно проста.Дизельное топливо из ТНВД попадает в корпус механической форсунки и начинает создавать давление. Как только давление становится достаточно высоким (около 4000 фунтов на квадратный дюйм), обратный клапан в форсунке поднимается со своего седла, и топливо разбрызгивается. Любой избыток топлива, который остается после открытия клапана, затем возвращается обратно через корпус инжектора, а затем обратно в топливный насос.

Ford выбирает другой путь
В 1994 году Ford изменил двигатели в своей серии F с непрямого впрыска на систему HEUI с прямым впрыском.HEUI означает впрыск гидравлического электронного блока и использует моторное масло в качестве привода для форсунки. Моторное масло используется для повышения давления топлива внутри форсунки, поэтому, если у вас двигатель Power Stroke на 7,3 или 6,0 л, убедитесь, что ваш двигатель залит маслом — и часто меняйте его — это то, что помогает заправлять ваш грузовик.

Системы Common-Rail
В 2001 году General Motors представила новую линейку дизельных пикапов с системой впрыска Common-Rail от Bosch. Хотя система впрыска Common Rail не нова, она помогла современным дизелям стать тише, эффективнее и экологичнее.В 2002 году Dodge вскочил на подножку системы Common Rail, как и Ford в 2007 году. Форсунки Common Rail намного сложнее, чем их более ранние аналоги, потому что они используют соленоид и две камеры давления для создания события впрыска. Соленоид приводится в действие компьютером автомобиля, который используется для изменения момента впрыска и запуска множественных событий впрыска. Многие новейшие дизельные двигатели на рынке используют сверхбыстрые форсунки, управляемые пьезоэлектричеством, сокращенно называемые пьезоинжекторами. Они используют кристаллы и электричество в качестве исполнительного механизма и могут запускать до пяти операций впрыска за один рабочий такт, что помогает снизить выбросы и снизить уровень шума двигателя.

Модификация форсунок
На самом конце форсунки находится форсунка, которая является частью, которая чаще всего модифицируется при покупке вторичных форсунок. Новые форсунки устанавливаются на старые корпуса форсунок, что обычно приводит к увеличению мощности за счет больших или дополнительных отверстий форсунок. Пока ТНВД и турбонагнетатель могут не отставать, большие форсунки будут подавать больше топлива в двигатель и производить большую мощность. Когда заказывается индивидуальный набор форсунок, каждая форсунка обозначается числом отверстий, умноженным на размер отверстия.Следовательно, форсунки 5×13 будут иметь пять отверстий на тринадцать тысяч дюймов. В случае очень больших форсунок также могут присутствовать внутренние модификации, поэтому обычно цены на более мощные модели повышаются.

Посмотреть все 8 фотоПожалуй, самая важная часть инжектора — это форсунка. Угол и форма распыления очень важны для горения и влияют на мощность, а также на экономию топлива.

Если картинка стоит тысячи слов …
Тогда видео должно стоить даже больше! Пока мы бродили по сети, мы наткнулись на это классное видео о том, как работает инжектор Common Rail.Мы не можем взять на себя ответственность за создание этого видео, но тот, кто снял видео, проделал отличную работу. В нем рассказывается о том, как работает инжектор, и даже показана замедленная анимация пилотного, основного и дополнительного впрыска внутри отверстия цилиндра. Проверьте это на http://www.youtube.com/watch?v=aGwV9ueHcz4.

Что такое дребезжание форсунки?
Распространено мнение, что дизельные форсунки просто распыляют топливо на поршень, как садовый шланг. На самом деле это не так, и правда гораздо интереснее.При правильной работе дизельные форсунки будут дребезжать (колебания нажимной пружины), и топливо будет подаваться на поршень со скоростью от 2000 до 3000 раз в секунду, что значительно улучшает распыление. Хотя события впрыска длятся всего доли секунды, это означает, что средний инжектор будет вибрировать как минимум несколько сотен раз во время каждого события впрыска. Подумайте об этом в следующий раз, когда поедете по дороге. DP

Посмотреть все 8 фото

Как работают топливные форсунки в автомобилях? Раскрытый!

Без бесшумной работы топливных форсунок в автомобилях автомобили вообще не двигались бы.Узнайте все подробности о том, как это работает. Прочитай сейчас!

Для экономии топлива и плавной работы Двигатель внутреннего сгорания нуждается в правильном количестве топливно-воздушной смеси в соответствии с его требованиями. Каково тогда назначение системы впрыска топлива и , как работают системы топливных форсунок в автомобилях?

Топливная форсунка может быть маленькой, но мощной

Что такое топливные форсунки?

Что такое на самом деле топливные форсунки? В Функция топливной форсунки состоит в том, чтобы подавать топливо в цилиндры двигателя, точно контролируя время впрыска, распыление топлива, а также другие параметры.

Какие типы топливных форсунок?

Сюда входят:

  • Насос-форсунка
  • Common Rail
  • Насос-форсунка

Принцип работы топливной форсунки на автомобилях с бензиновым двигателем

Автомобильные двигатели, работающие на бензине, используют так называемый непрямой впрыск топлива. Топливный насос отправляет бензин в моторный отсек, который затем впрыскивается во впускное отверстие через инжектор. Есть два пути к этому.Либо каждый цилиндр имеет отдельные форсунки, либо одна или две форсунки входят во впускной коллектор.

Были споры о том, что лучше, карбюратор или инжектор? Традиционно неидеальный карбюратор контролирует топливно-воздушную смесь. Его недостатком является тот факт, что только один карбюратор не может успешно обеспечить четырехцилиндровый двигатель необходимой топливно-воздушной смесью, необходимой в любое время, из-за расстояния между цилиндрами и карбюратором.Решением этого является использование сдвоенных карбюраторов, которые сложно правильно синхронизировать. Таким образом, карбюрация не так эффективна.

Чтобы решить всю проблему, в автомобили были установлены двигатели с впрыском топлива, что облегчало подачу топлива точно очередями. Эти двигатели хорошо оснащены, чтобы быть мощными и эффективными по сравнению с карбюраторными. Они также оказываются более экономичными и имеют меньше ядовитых выбросов.

Система топливных форсунок выглядит сложной, но ее действительно легко понять, не так ли?

Принцип работы топливной форсунки на автомобилях с дизельным двигателем

В то время как в автомобилях с бензиновым двигателем используется система непрямого впрыска топлива, в дизельных двигателях используется прямой впрыск, когда дизельное топливо впрыскивается прямо в цилиндр, который заполняется сжатым воздухом.В некоторых дизельных двигателях используется непрямой впрыск, когда дизельное топливо впрыскивается прямо в камеру сгорания. Он имеет особую форму и имеет узкий проход, соединяющий его с головкой блока цилиндров.

Воздух, который позже самовоспламеняется, втягивается в цилиндр и нагревается за счет сжатия таким образом, что распыленное топливо впрыскивается в крайнем такте сжатия. Масло в топливной форсунке в картере двигателя, использующего прямой впрыск топлива, имеет большое значение для здоровья двигателя.Использование правильного масла уменьшает отложения нагара на впускных клапанах, а также делает двигатель очень здоровым.

Как работают топливные форсунки

Все современные системы впрыска бензина используют непрямой впрыск. Насос топливной форсунки отправляет топливо под давлением через топливный бак в моторный отсек, где оно затем равномерно распределяется по каждому цилиндру, все еще находясь под давлением. Хотя системы различаются, топливо выпускается либо через впускной канал, либо через коллектор через инжектор.

Негерметичное уплотнение — обычная проблема

Что делает форсунка f uel

Работает как форсунка шланга, которая обеспечивает выход топлива в виде мелкого тумана. Здесь топливо смешивается с воздухом, проходящим через впускное отверстие или коллектор, после чего топливно-воздушная смесь попадает в камеру сгорания. Некоторые сложные автомобили с многоточечным впрыском топлива питают каждый цилиндр через собственный топливный насос форсунки, что делает процесс дорогостоящим.

Однако очень часто используется одноточечный впрыск, когда только один топливный насос форсунки питает все цилиндры, или один топливный насос форсунки питает каждые два цилиндра. Топливная рампа, форсунки, а также впускной коллектор являются отдельными компонентами, поэтому при сборке и скреплении между ними требуется уплотнение. Эти уплотнения топливных форсунок изготовлены из полиуретана или нитрильного каучука из-за их топливостойкости. Все части топливной форсунки работают вместе, образуя комплект топливной форсунки.

Эти широко обсуждаемые форсунки, через которые распыляется топливо, сначала закрываются соплом и ввинчиваются в головку блока цилиндров или впускной коллектор, а затем наклоняются так, чтобы распыление топлива было направлено на впускной клапан. Эти типы топливных форсунок во многом зависят от системы впрыска. Первая система использует непрерывный впрыск топлива, впрыскивающего во впускное отверстие во время работы двигателя.

Форсунка затем действует как распылительная форсунка, разбивая топливо на мелкие брызги (не контролируя поток топлива).Механический или электрический блок управления отвечает за уменьшение или увеличение разбрызгивания топлива, что похоже на закрытие или открытие крана. Вторая система называется впрыском по времени или импульсным впрыском. В этой системе топливо доставляется партиями, чтобы соответствовать такту впуска этого цилиндра. Как и в случае непрерывного впрыска, впрыск с заданным временем может управляться электрически или механически.

Как работают другие части системы форсунок

Давайте посмотрим на некоторые другие аспекты инжекторных систем и на то, как они работают

  • Поскольку существует взаимосвязанная система, соединяющая фильтр, топливный насос и топливные форсунки, эти Детали топливных форсунок могут забиться грязью и мусором.Очиститель топливной форсунки и проверка расхода топливной форсунки могут потребоваться для очистки нашей системы впрыска топлива от грязи, мусора и отложений. Если ваша топливная система забита, это может вызвать повреждение других деталей двигателя и снизить общую производительность автомобиля, его экономию топлива и даже полное отключение двигателя.

Лучше всего периодически проводить очистку топливной форсунки и проверку расхода топливной форсунки.

  • Фильтр топливной форсунки задерживает грязь, частицы ржавчины и мусор, попадающие в двигатель или систему впрыска топлива и вызывающие их повреждение.
  • Смазочные материалы для топливных форсунок поступают из топлива. Когда клапан закрывается, топливо остается вокруг напорной стороны форсунки, где оно не испаряется и не высыхает. Небольшое количество бензина действует как смазка, когда проходит над поршнем клапана и впрыскивается прямо в камеру сжатия. Однако бензиновые топливные форсунки не нуждаются в смазке, как дизельные топливные форсунки.
  • Калькулятор расхода топливных форсунок рассчитает и сообщит вам, какой размер топливных форсунок вам понадобится.Вам просто нужно просто ввести в него простые детали, и вы все получите. Пояснения к каждому входу находятся под калькулятором.

Очистить инжектор можно легко, если вы знаете, как это сделать.

Проблемы с форсункой

Как определить проблемы с топливными форсунками? Обнаружены некоторые из этих утечек или повреждений топливных форсунок или симптомы топливных форсунок:

  • Повышенный расход топлива
  • Низкие выбросы
  • Неровный холостой ход
  • Проблемы с запуском при горячем двигателе и многое другое

Топливная форсунка может выйти из строя и перестать нормально работать

Эти проблемы с топливными форсунками необходимо решать немедленно, чтобы двигатель автомобиля продолжал работать.Водители должны понимать, как работает давление в топливной форсунке и как оно применяется. Зная, чего ожидать от давления топлива, вы сможете диагностировать любую проблему с топливной системой. Это помогает автомобилю функционировать так, как вы хотите. Давление впрыска топлива во время каждого нормального процесса должно быть выше 1000-1200 бар для хорошего образования брызг, а также топливовоздушной смеси. Есть возможность довести до 1600-1800 бар.

Посмотрите, как работает система впрыска топлива:

Электронная система впрыска топлива в рабочем состоянии

Заключение

Хотя некоторые части этого должны были быть немного технологичными, надеюсь, теперь вы знаете ответ на вопрос: как работают системы топливных форсунок в автомобилях ? Вы также можете перестать спрашивать: что такое топливные форсунки на самом деле? Кроме того, не забывайте регулярно проверять топливные форсунки, используя эти простые советы по проверке топливных форсунок.Это необходимо для своевременного выявления признаков утечки топливной форсунки.

>>> Здесь только самые информативные советы по обслуживанию.

>>> Хотите самые свежие цены на автомобили? Просто нажмите здесь

>>> Хотите получить лучшее предложение на машину? Проверьте все автомобили, выставленные на продажу на Naijauto.com

Форсунки (автомобильные)

10,24.

Форсунки

Основными функциями инжектора являются:
(i) Для создания давления, при котором начинается впрыск,
(H) Для управления скоростью впрыска для достижения требуемой скорости увеличения давления
и процесса сгорания, который проходит без генерируя вредные выбросы,
(Hi) Для впрыска топлива в камеру сгорания таким образом, чтобы все оно распылялось,
, смешивалось с воздухом и испарялось в воздухе настолько полно и равномерно, насколько это возможно
в течение доступного времени, и
( iv) Мгновенное прекращение впрыска в подходящее время, без подтекания
или после впрыска, оставляя камеру сгорания полностью изолированной от топливной системы
.
Исходя из вышеизложенного, необходимо направить отверстия для впрыска к определенным частям камеры сгорания, а также иметь предельную точность размеров с очень узкими производственными допусками, которые также должны соблюдаться при эксплуатации. Форсунки для больших двигателей обычно не ввинчиваются в головку блока цилиндров, в отличие от свечей зажигания. Вместо этого они либо снабжены фланцами для крепления болтами, либо захват или пара захватов прикреплены болтами либо к фланцу, либо к корпусу инжектора, либо на них с болтами устанавливается что-то вроде седла.Однако для компактности, простоты и дешевизны некоторые форсунки для небольших двигателей с непрямым впрыском используют резьбу M22 или M24 для ввинчивания в головку.
Предварительно сжатая цилиндрическая пружина в большинстве форсунок прижимается к верхнему концу игольчатого клапана и, таким образом, удерживает его нижний конец на седле. Топливо, если шток клапана просачивается в камеру пружины, может задерживаться там, так что форсунка гидравлически блокируется. Трубное соединение в верхней части корпуса форсунки или рядом с ней отводит утечку обратно в насос, фильтр или топливный бак.
Клапан поднимается со своего седла за счет резко возрастающего давления топлива от 5 до 28 МПа, воздействующего на площадь поперечного сечения, равную площади отверстия направляющей за вычетом площади седла клапана. На начальную скорость подъема также влияют угол и ширина седла клапана. Сразу же после подъема клапана эта площадь увеличивается до площади направляющего отверстия за вычетом отверстия.
Как правило, самое высокое давление впрыска требуется для двигателей с турбонаддувом, а самое низкое — для двигателей IDI. Для прямого впрыска необходимо самое низкое давление около 20 МПа, при котором клапан начинает подниматься.Тем не менее, высокое давление, первоначально для открытия клапана, а затем еще более высокое для впрыска, обеспечивает хорошее распределение и проникновение струи, но при осаждении топлива на стенках камеры сгорания увеличивается выброс углеводородов. Поэтому для двигателей IDI такие высокие давления недопустимы из-за небольших камер сгорания и очень высоких скоростей завихрения. Среднее эффективное давление впрыска (MEIP) является важным критерием для определения производительности насоса по подаче топлива.
Высокая скорость потока через посадочное место клапана, помимо тенденции к началу испарения, распыляет топливо. Скорость подачи топлива и форма распыления зависят от эффективной площади поперечного сечения, длины и формы коротких проходов за головкой клапана или через отверстие или отверстия в наконечнике сопла. В сопле игольчатого типа большинство этих параметров в значительной степени зависит от профиля игольчатого продолжения его конца, или иглы.
10.24.1.


Описание и конструкция узла форсунки

Конструкция (рис. 10.48) и функции различных компонентов узла форсунки следующие.
Держатель форсунки представляет собой корпус из кованой стали с фланцами, прикрепленный болтами к головке блока цилиндров и поддерживающий различные детали. Впускной порт с резьбой сформирован для поддержки впускного адаптера, а подающее отверстие просверлено для пересечения стыка с напорной поверхностью между держателем сопла и корпусом сопла.В держателе сопла просверливается центральное отверстие для размещения шпинделя. На верхнем конце держателя сделано большое резьбовое отверстие с потайной головкой для поддержки регулировочной гайки крышки пружины.
Корпус форсунки представляет собой цилиндрический стальной корпус с буртиком и центральным отверстием, который поддерживает игольчатый клапан. Дно центрального глухого отверстия конически отшлифовано для образования седла клапана форсунки. В закрытом конце наконечника форсунки просверливают от трех до пяти очень маленьких отверстий для образования распылителя.

Рис.10,48. Инжекторный блок.
сопло. Внутренняя полость канавки, известная как топливный канал, обрабатывается на полпути вниз по центральному отверстию. Чтобы пересечь этот топливный канал, вокруг отверстия сопла просверливают три питающих отверстия, расположенных на равном расстоянии друг от друга. На напорной поверхности корпуса форсунки образована угловая канавка, чтобы топливо могло циркулировать и течь через три питающих отверстия.
Игольчатый клапан напоминает цилиндрический шпиндель, который имеет две секции разного диаметра. Часть большего диаметра образует внахлестку с корпусом сопла.Часть меньшего диаметра имеет большой зазор между ней и корпусом форсунки, а ее конец с конической шлифовкой под углом 60 градусов образует седло игольчатого клапана. Небольшая утечка между притертым корпусом сопла и иглой позволяет смазать трущиеся поверхности.
Шпиндель передает усилие пружины на игольчатый клапан от пружины, расположенной между регулировочной гайкой крышки пружины и отверстием с потайной резьбой в держателе форсунки. Поэтому игольчатый клапан прижимается к седлу корпуса форсунки.
Пружина форсунки представляет собой спиральную пружину сжатия, размещенную между регулировочной гайкой крышки пружины и шпинделем. Он расположен как с помощью верхней, так и нижней пружинных пластин. Пружина удерживает игольчатый клапан закрытым до тех пор, пока не будет достигнуто заданное значение давления открытия в топливной магистрали, а также закрывает игольчатый клапан, когда это давление в топливной магистрали падает. Давление в открывающейся топливной магистрали можно изменять, регулируя начальную степень сжатия пружины.
10.24.2.

Действие инжектора

Существующее топливо под давлением в трубопроводе высокого давления поступает во входное отверстие и затем проходит через каналы, заполняя угловое пространство, образованное между иглой и корпусом форсунки.Давление этого захваченного кольцевого столба топлива опускается на дно форсунки на нижнем конце и давит вверх на конический выступ иглы на верхнем конце. Сила пружины на этом этапе достаточно велика, чтобы удерживать иглу плотно на своем седле.
Когда давление топлива, создаваемое топливным насосом высокого давления, достигает некоторого заданного значения, нагнетательный клапан открывается, так что больше топлива поступает в трубопровод высокого давления. Это приводит к тому, что давление под сужающимся плечом иглы увеличивается до тех пор, пока сила от дна сопла не превысит нагрузку пружины.Следовательно, игла поднимается над своим гнездом, заставляя топливо выталкиваться через мешок и выходить из отверстий наконечника форсунки в виде тонко распыленной струи.
Генерируемое давление впрыска падает либо из-за сливного отверстия отверстия встроенного насоса, либо из-за того, что ролики выходят за пределы первого пика выступа кулачка в случае распределительного насоса. Сразу же нагрузка пружины превышает противодействующее остаточное давление в гидравлической системе, и игольчатый клапан закрывается.
10,24.3.

Скорость и работа впрыска


Вся работа по впрыску топлива состоит из двух частей; работа, которая должна быть выполнена при сжатии топлива от давления впрыска, pi до давления сжатия, p2, и работа подачи.

В приведенном выше выражении предполагается, что сжатие следует прямолинейному закону, поскольку изменение объема незначительно.
Работа по доставке определяется как,
Wd = (давление сжатия — давление в поддоне) x смещение плунжера, Дж / кг.
Для дальнейшего разъяснения этой статьи обратитесь к следующим примерам.
Пример 10.1. Шестицилиндровый четырехтактный дизельный двигатель с размером цилиндра 115 мм x 140 мм работает с теоретическим соотношением воздух-топливо 16: 1. Если условия всасываемого воздуха составляют 98,1 кПа, а объемный КПД 294 К и составляет 80%, определите максимальное количество топлива, которое можно впрыскивать в каждый цилиндр за цикл. Возьмем R = 287,14 Дж / кг · ° К.
Если частота вращения двигателя 1500 об / мин, давление впрыска 12262,5 кПа, давление сжатия 4120.2 кПа, а впрыск топлива занимает 20 ° хода кривошипа, определяют необходимый размер отверстия
, чтобы впрыснуть необходимое количество топлива. Удельный вес топлива составляет 768 кг / мСм, коэффициент разгрузки сопла = 0,95.




10.24.4.

Типы форсунок

Обычно используются три основных типа форсунок. К ним относятся (a) тип иглы, (6) тип отверстия и (c) тип двухступенчатого впрыска (Pintaux).Инжектор игольчатого типа.
Из-за быстрого завихрения воздуха в камерах сгорания двигателей IDI не требуется струя высокой энергии, характерная для инжектора дырочного типа, вместо этого обычно используется игольчатый тип. Штыревой клапан (рис. 10.51) обычно диаметром около 4-6 мм имеет коническую посадочную поверхность, под которой его конец имеет форму иглы, выступающей в отверстие. Обычно он поднимается со своего седла под давлением от 10 до 13 МПа, в зависимости от двигателя. Штифт не полностью поднимается из отверстия.Его профиль таков, что при подъеме меняющееся поперечное сечение углового зазора между ним и отверстием определяет как форму, так и объем струи. При использовании этого типа форсунок даже первоначально впрыскиваемое топливо должно хорошо распыляться. Характеристики подачи такой форсунки способствуют качественному приготовлению смеси и тихому горению.

Рис. 10.51 Сопло иглы. А. Высоко-пружинного типа. Б. Низкопружинного типа.
У некоторых игл есть параллельные стороны, а у других — приподнятые, образуя грибовидные головки, так что струя распространяется по мере выхода из отверстия.Некоторые просто сужаются, чтобы создать подобный эффект талии; однако наконечник имеет более резкое изменение сечения. Другие имеют параллельные боковые стороны, прилегающие к седлу клапана, а затем сужаются вниз или имеют другой профиль, так что площадь поперечного сечения выпускного отверстия постепенно увеличивается по мере подъема клапана. Это сглаживает переход от изначально ограниченной характеристики к полной, что способствует снижению шума и улучшению управляемости.

Рис. 10.52. Насадка Lucas с несколькими отверстиями.
A. длинный стержень. Б. Короткая ножка.
В этом инжекторе критическая площадь зазора между штифтом и отверстием. Если зазор слишком мал, скорость подъема игольчатого клапана увеличивается, вызывая шумное сгорание. Кроме того, в конце впрыска скорость посадки клапана снижается, что вызывает локальное накопление углерода и дым и несгоревшие углеводороды в выхлопе. Если отверстие слишком большое, это вызывает в основном шумное сгорание из-за того, что в течение периода задержки впрыскивается большое количество топлива.Однако прекращение инъекции не оказывает неблагоприятного воздействия; вместо этого более быстрое закрытие клапана является преимуществом с точки зрения качества распыления и отсутствия подтекания.
Размер отверстия и иглы также влияет на накопление нагара. Однако некоторое нарастание и, как следствие, дросселирование потока топлива неизбежно даже при соответствующих конструктивных мерах.
Чем меньше кольцевой зазор между иглой и отверстием, тем больше эффект самоочистки, вызывающий более медленное и равномерное накопление углерода.Для получения оптимальной формы струи и качества приготовления смеси очень важны форма выпускного отверстия и однородность сечения.
Правильная посадка и герметизация игольчатого клапана в конце впрыска важны для всех форсунок. Волны давления в топливе и вибрации в опорной пружине иглы и в механизме могут вызвать неудовлетворительное уплотнение. Отсутствие надлежащего уплотнения, особенно в двигателях с турбонаддувом с высокими номинальными характеристиками, может вызвать обратный выброс газов сгорания и, как следствие, нестабильность в гидравлической системе.Факторами, которые необходимо учитывать, являются посадочная поверхность, площадь отверстия, диаметр иглы, жесткость пружины и предварительное сжатие. Это также включает точность и строгие производственные допуски. Штоки и направляющие притираются вручную попарно с допусками в соответствии с

рис. 10.53. Наконечник сопла совпадает с осью камеры сгорания.
порядка 0,0025 мм. В наши дни иглы либо выборочно собираются в направляющие, либо подгоняются под шлифованные и шлифованные отверстия в сопле.Следовательно, нельзя менять местами клапаны и направляющие или корпуса.
Скорость накопления углерода также зависит от температуры. В случае, если температура сопла поднимается выше примерно 495 К, необходимо какое-то экранирование, чтобы снизить скорость передачи тепла к нему. Экран может быть короткой втулкой вокруг наконечника форсунки или просто расточкой в ​​отливке головки блока цилиндров. Если одного лишь экранирования недостаточно, может потребоваться охлаждение сопла.

Инжектор дырочного типа.

Инжектор дырочного типа используется в основном в двигателях с прямым впрыском и доступен в нескольких формах с одним отверстием или даже двумя или более. Оси отверстий должны быть перпендикулярны внешней поверхности наконечника насадки. Когда форсунка вставляется вертикально в центр свода камеры сгорания, в головке с четырьмя клапанами отверстия симметрично расположены вокруг наконечника (рис. 10.52). С другой стороны, если в двухклапанной головке он находится под наклоном и не по центру, отверстия чаще располагаются асимметрично (рис.10.53) так, чтобы струя симметрично распределялась в камере сгорания. В этом случае важно точное расположение форсунок при вращении.
Форсунки с отверстием также имеют альтернативные варианты размещения. Одно из них, называемое VCO (отверстие, закрытое клапаном), или сопло типа седла, показано на рис. 10.54A, в то время как сопло с двумя отверстиями конического типа показано на рис. 10.54B, а цилиндрическое глухое отверстие тип на рис. 10.54C. Обычно подъем иглы начинается при давлении от 15 до 25 МПа, что выше, чем у иглы игольчатого типа.Это связано с тем, что более высокие пиковые давления, возникающие в камерах сгорания с прямым впрыском во время закрытия клапана, в противном случае могут вызвать прорыв.

Рис. 10.54. Альтернативное расположение клапанов для форсунок с отверстиями. A. Насадка с закрытым клапаном или с отверстием под седло. B. Тип конического глухого отверстия. C. Цилиндрический тип глухого отверстия.
Объем мешочка насадки, пространство между концом мешочка и кончиком иглы, когда она находится на своем седле, должны быть минимальными. После прекращения впрыска высокая температура сгорания может испарить топливо, оставшееся в этом пространстве, и может попасть в камеру сгорания и участвовать в процессе сгорания, когда остается мало воздуха для его полного сгорания, вызывая черный дым и несгоревшие углеводороды в выхлопных газах.Этот объем мешочка можно уменьшить, укорачивая длину иглы и усекая ее конический конец. В некоторых случаях конец имеет сферическую форму, чтобы он мог еще плотнее прилегать к мешочку. Наконечники с усеченным конусом и сферические наконечники, которые Stanadyne предлагает в качестве вариантов для их карандашных инжекторов, показаны на рис. 10.55.

Форсунки с пружиной высокого и низкого давления.

На рис. 10.51A и B показаны, соответственно, типичные форсунки с высокой и низкой пружинами

Рис.10,55. Укороченные и сферические наконечники Stanadyne для карандашного инжектора.
производства Lucas. Первоначально форсунки с высокой пружиной (рис. 10.51A) были обычным явлением, но позже стали использоваться модели с низкой пружиной (рис. 10.51B) из-за меньшей массы его возвратно-поступательных частей.
В инжекторе с низкой пружиной Lucas LRC два соединителя обратной утечки, установленные на верхнем конце камеры пружины, возвращают утечку через иглу в фильтр или резервуар. Форсунку необходимо разобрать, чтобы вставить соответствующую прокладку под пружины для регулировки предварительного натяжения пружины.Утечка вверх по направляющей игольчатого клапана проходит через канал в камеру пружины, где она проходит через два вышеупомянутых соединителя обратной утечки.
Форсунки с низкой пружиной были первоначально разработаны для двигателей с турбонаддувом, но теперь они более широко используются, чем форсунки с высокой пружиной, даже на безнаддувных силовых агрегатах. Поскольку из-за меньшей инерции игольчатого клапана и пружины в сборе они закрываются быстрее и поэтому больше подходят для контроля выбросов.
Двухступенчатые форсунки или форсунки Пинто.
Сопло Пинто (рис. 10.56A) было разработано совместно CAV и Ricardo для применения в камере сгорания Ricardo Comet IDI. В этой форсунке предусмотрена возможность холодного пуска, благодаря чему она лучше, чем у одноступенчатого типа. С тех пор у большинства этих двигателей есть свечи предпускового подогрева для холодного пуска, поэтому сейчас очень немногие двигатели имеют этот тип

Рис. 10.56. Типичная дуэльная пружина двухступенчатая насадка Пинто.
инжектор. Термин Pintaux — это сокращенное сочетание слов pintle a secondary jet.
Распыление из форсунки игольчатого типа обычно коаксиально форсунке. Для всех характеристик двигателя струю лучше всего направлять вниз по потоку в воздушный вихрь, в сторону камеры сгорания, удаленную от ее горловины. Однако при холодном пуске струю лучше впрыскивать в центр вихря, где воздух наиболее теплый, вдали от охлаждающего эффекта стенок камеры сгорания.
Для соответствия этим двум требованиям сопло Пинто имеет два отверстия, одно осевое, а другое меньшего размера, направленное под углом (рис.10.56B и C). Иголка имеет форму, которая частично блокирует осевое отверстие до тех пор, пока игла не поднимется достаточно далеко от своего гнезда. Следовательно, первоначально впрыск происходит в основном через меньшее наклонное отверстие, которое направляет струю к центру камеры сгорания. Впоследствии, когда игла поднимается из осевого отверстия, около 90% топлива впрыскивается через нее в нижнем направлении, оставляя только 10% для прохождения через наклонное отверстие меньшего диаметра. Компания
Perkins применила альтернативный метод создания эффекта двухступенчатого впрыска в своем 2-литровом дизельном двигателе с прямым впрыском для грузового вездехода.И начальная, и последующая струи направлены по одной оси. В форсунку Lucas последовательно установлены две пружины с разной скоростью. Первоначально игла поднимается только за счет пружины с малой скоростью. По мере увеличения давления в насосе пружина второй ступени сжимается, и топливо впрыскивается под высоким давлением. Скорость нарастания давления во время процесса впрыска увеличивается с увеличением частоты вращения двигателя. Следовательно, отношение начального расхода топлива к расходу основного топлива уменьшается с увеличением числа оборотов двигателя.Это не обеспечивает ни оптимального снижения шума на низких скоростях, а также дыма, ни потери мощности на высоких скоростях и нагрузках. Типичная двухступенчатая форсунка показана на рис. 10.56D.

больших форсунок, маленьких форсунок, мы любим все форсунки — держатели Diesel Performance

Еще один вопрос, который мы часто задаем здесь, в Holders Diesel: «Какой размер форсунки мне выбрать, и, что более важно, какой размер форсунки?» В этой статье мы рассмотрим форсунки топливных форсунок.

Начнем с функции форсунки. Что он вообще делает? Форсунка — это последняя часть форсунки перед тем, как топливо попадет в цилиндр для сгорания. Основная функция форсунки состоит в том, чтобы распылять топливо в цилиндре в распыленном состоянии (в виде тумана), чтобы его можно было легко воспламенить и сжечь, и, следовательно, запустить двигатель с максимальной отдачей. Таким образом, очевидно, что меньшая форсунка будет иметь меньшие распылительные отверстия, а форсунка большего размера будет иметь более крупные распылительные отверстия.При одинаковом давлении впрыска меньшее сопло будет лучше распылять топливо из-за меньших распылительных отверстий, в то время как большее сопло также не будет распылять, но оно будет пропускать больше топлива за такое же количество отведенного времени.

Что означают размеры форсунок? Ну,% размера форсунки — это просто количество топлива, которое форсунка рассчитана на пропускание сверх размера массы. Для справки:

Сток — сток

30% — Расходы на 30% больше, чем запасы

75% — Расход на 75% больше, чем запас

100% — Расходы на 100% больше, чем на складе

И это касается сопел любого размера.

Почему так важно распыление топлива? Когда ваше топливо хорошо распылено, оно горит лучше, чище и дает хорошую чистую энергию. С хорошей атомизацией вы получите лучший расход топлива, меньше дыма и более низкую температуру выхлопных газов. По этой причине тем, кто использует свой грузовик в основном для буксировки или ежедневной езды без особых модификаций, как правило, лучше и удобнее использовать насадку меньшего размера, такую ​​как стандартный размер 30%.

Форсунка определяет только, насколько быстро вы можете подать X количество топлива. Он не заставляет «запасную» топливную форсунку пропускать больше топлива, чем уже есть. Это просто изменяет способность опорожнять инжектор за разное время. Независимо от того, кто настраивает автомобиль, вы не можете изменить механический размер инжектора путем настройки, это то, что есть. Вы можете вернуть ширину импульса в настройках, но размеры форсунок не меняются, поэтому топливо просто распыляется или распыляется по-другому.

Итак, какая насадка подходит вам? Ну, это во многом зависит от того, для чего вы используете свой грузовик и какой размер инжектора вас интересует.Например, большинство наших клиентов с инжекторами 6.0 Power Stroke 155cc-190cc используют 30% форсунок, и это наш самый популярный размер форсунок. Эта форсунка достаточно мала, чтобы по-прежнему хорошо распылять топливо, но достаточно увеличивает размер, чтобы добиться очень заметной разницы в мощности. Например, сопло 30% без проблем пропускает топливо, достаточное для выработки 600 лошадиных сил на задних колесах. Но реальное преимущество этой форсунки заключается в том, что она достаточно мала, чтобы хорошо распылять топливо и хорошо работать при буксировке и ежедневной езде, при этом работая чисто и прохладно.Форсунка 30% очень универсальна, поэтому она самая популярная.

Что делать, если вам требуется больше мощности, чем может дать 30% -ная форсунка? Вот здесь и появляются более крупные форсунки. Может быть, пора увеличить размер сопла, давайте поговорим о сопле инжектора 75%. Обычно мы делаем это на наших топливных форсунках 205 куб. Форсунка с 75% -ным расходом топлива будет опорожнять топливо быстрее, поэтому вы сможете впрыснуть топливо в цилиндр за более короткое время.Это значительно помогает увеличить мощность при более высоких оборотах. Это лучше всего подходит для соревнований или дизельных грузовиков «горячей улицы». Однако жертва заключается в том, что, хотя вы и увеличиваете мощность, грузовик, естественно, будет становиться все горячее и дымнее, поэтому он не будет столь удобен для буксировки или идеален для повседневной езды. Как видите, есть компромисс с любым размером сопла, который вы выбираете, и не существует «универсального размера».

Короче говоря, просто помните, что чем меньше размер форсунки, тем лучше распыление и тем лучше способность буксировать и поддерживать низкую температуру выхлопных газов, в то время как форсунка большего размера будет производить больше мощности в сочетании с форсункой правильного размера.Выбранный размер сопла должен отражать модификации вашего грузовика и то, для чего вы его используете. Вы всегда можете позвонить нам в магазин или написать нам по электронной почте, если у вас есть вопросы о вашей конкретной настройке и использовании для вашего грузовика. Просто проведите исследование и примите обоснованное решение о выборе размера инжектора.

-Rykan Держатель

.
Добавить комментарий

Ваш адрес email не будет опубликован.