РазноеДля чего служит кривошипно шатунный механизм – Кривошипно-шатунный Механизм Двигателя, Назначение, Принцип Действия и Характеристика КШМ, Диагностика и Ремонт Неисправностей, Конструкция с Чертежами и Схемами

Для чего служит кривошипно шатунный механизм – Кривошипно-шатунный Механизм Двигателя, Назначение, Принцип Действия и Характеристика КШМ, Диагностика и Ремонт Неисправностей, Конструкция с Чертежами и Схемами

Содержание

Кривошипно-шатунный механизм — Википедия. Что такое Кривошипно-шатунный механизм

Кривошипно-шатунный механизм (КШМ) предназначен для преобразования возвратно-поступательного движения поршня во вращательное движение (например, во вращательное движение коленчатого вала в двигателях внутреннего сгорания), и наоборот. Детали КШМ делят на две группы, это подвижные и неподвижные детали:

  • Подвижные: поршень с поршневыми кольцами, поршневой палец, шатун, коленчатый вал с подшипниками или кривошип, маховик.
  • Неподвижные: блок цилиндров (является базовой деталью двигателя внутреннего сгорания) и представляет собой общую отливку с картером, головка цилиндров, картер маховика и сцепления, нижний картер (поддон), гильзы цилиндров, крышки блока, крепежные детали, прокладки крышек блока, кронштейны, полукольца коленчатого вала.

Принцип действия

Прямая схема: Поршень под действием давления газов совершает поступательное движение в сторону коленчатого вала. С помощью кинематических пар «поршень-шатун» и «шатун-вал» поступательное движение поршня преобразуется во вращательное движение коленчатого вала. Коленчатый вал состоит из:

  • шатунных шеек
  • коренных шеек
  • противовеса

Обратная схема: Коленчатый вал под действием приложенного внешнего крутящего момента совершает вращательное движение, которое через кинематическую цепь «вал-шатун-поршень» преобразуется в поступательное движение поршня.

История

В природе

Задние конечности кузнечиков представляют собой кривошипно-шатунный механизм с неполным оборотом.
Бедро и голень человека и роботов-андроидов тоже представляют собой кривошипно-шатунный механизм с неполным оборотом.

В Римской империи

Самые ранние свидетельства появления на машине рукоятки в сочетании с шатуном относятся к пилораме из Иераполиса, 3-й век нашей эры, римский период, а также византийским каменным пилорамам в Герасе, Сирии и Эфесе, Малая Азия (6-й век нашей эры).[1] Ещё одна такая пилорама возможно существовала во 2 веке н. э. в римском городе Августа-Раурика (современная Швейцария), где был найден металлический кривошип.[2]

Уравнения движения поршня

Диаграмма показывающая геометрическое положение шатуннопоршневой оси — P, кривошипношатунной оси — N и центра кривошипа — O

Определения

l — длина шатуна (расстояние между шатуннопоршневой осью и кривошипношатунной осью)
r — радиус кривошипа (расстояние между кривошипношатунной осью и центром кривошипа, то есть половина хода поршня
A — угол поворота кривошипа (от «верхней мёртвой точки» до «нижней мёртвой точки»)
x — положение шатуннопоршневой оси (от центра кривошипа вдоль оси цилиндра)
v — скорость шатуннопоршневой оси (от центра кривошипа вдоль оси цилиндра)
a — ускорение шатуннопоршневой оси (от центра кривошипа вдоль оси цилиндра)
ω — угловая скорость кривошипа в радианах в секунду (рад/сек)

Угловая скорость

Угловая скорость кривошипа в оборотах в минуту (RPM):

ω=2π⋅RPM60{\displaystyle \omega ={\frac {2\pi \cdot \mathrm {RPM} }{60}}}

Отношения в треугольнике

Как показано в диаграмме, центр кривошипа, кривошипношатунная ось и шатуннопоршневая ось образуют треугольник NOP.
Из теоремы косинусов следует, что:

l2=r2+x2−2⋅r⋅x⋅cos⁡A{\displaystyle l^{2}=r^{2}+x^{2}-2\cdot r\cdot x\cdot \cos A}

Уравнения по отношению к угловому положению кривошипа (Угловая область)

Уравнения, которые описывают циклическое движение поршня по отношению к углу поворота кривошипа.
Примеры графиков этих уравнений показаны ниже.

Положение

Положение относительно угла кривошипа (преобразованием отношений в треугольнике):

l2−r2=x2−2⋅r⋅x⋅cos⁡A{\displaystyle l^{2}-r^{2}=x^{2}-2\cdot r\cdot x\cdot \cos A}
l2−r2=x2−2⋅r⋅x⋅cos⁡A+r2[(cos2⁡A+sin2⁡A)−1]{\displaystyle l^{2}-r^{2}=x^{2}-2\cdot r\cdot x\cdot \cos A+r^{2}[(\cos ^{2}A+\sin ^{2}A)-1]}
l2−r2+r2−r2sin2⁡A=x2−2⋅r⋅x⋅cos⁡A+r2cos2⁡A{\displaystyle l^{2}-r^{2}+r^{2}-r^{2}\sin ^{2}A=x^{2}-2\cdot r\cdot x\cdot \cos A+r^{2}\cos ^{2}A}
l2−r2sin2⁡A=(x−r⋅cos⁡A)2{\displaystyle l^{2}-r^{2}\sin ^{2}A=(x-r\cdot \cos A)^{2}}
x−r⋅cos⁡A=l2−r2sin2⁡A{\displaystyle x-r\cdot \cos A={\sqrt {l^{2}-r^{2}\sin ^{2}A}}}
x=rcos⁡A+l2−(rsin⁡A)2{\displaystyle x=r\cos A+{\sqrt {l^{2}-(r\sin A)^{2}}}}

Скорость

Скорость по отношению к углу поворота кривошипа (первая производная взята, используя правило дифференцирования сложной функции):

x′=dxdA=−rsin⁡A+(12).(−2).r2sin⁡Acos⁡Al2−r2sin2⁡A=−rsin⁡A−r2sin⁡Acos⁡Al2−r2sin2⁡A{\displaystyle {\begin{array}{lcl}x’&=&{\frac {dx}{dA}}\\&=&-r\sin A+{\frac {({\frac {1}{2}}).(-2).r^{2}\sin A\cos A}{\sqrt {l^{2}-r^{2}\sin ^{2}A}}}\\&=&-r\sin A-{\frac {r^{2}\sin A\cos A}{\sqrt {l^{2}-r^{2}\sin ^{2}A}}}\end{array}}}

Ускорение

Ускорение относительно угла кривошипа (вторая производная взята, используя правило дифференцирования сложной функции и частное правило):

x″=d2xdA2=−rcos⁡A−r2cos2⁡Al2−r2sin2⁡A−−r2sin2⁡Al2−r2sin2⁡A−r2sin⁡Acos⁡A.(−12)⋅(−2).r2sin⁡Acos⁡A(l2−r2sin2⁡A)3=−rcos⁡A−r2(cos2⁡A−sin2⁡A)l2−r2sin2⁡A−r4sin2⁡Acos2⁡A(l2−r2sin2⁡A)3{\displaystyle {\begin{array}{lcl}x»&=&{\frac {d^{2}x}{dA^{2}}}\\&=&-r\cos A-{\frac {r^{2}\cos ^{2}A}{\sqrt {l^{2}-r^{2}\sin ^{2}A}}}-{\frac {-r^{2}\sin ^{2}A}{\sqrt {l^{2}-r^{2}\sin ^{2}A}}}-{\frac {r^{2}\sin A\cos A.(-{\frac {1}{2}})\cdot (-2).r^{2}\sin A\cos A}{\left({\sqrt {l^{2}-r^{2}\sin ^{2}A}}\right)^{3}}}\\&=&-r\cos A-{\frac {r^{2}(\cos ^{2}A-\sin ^{2}A)}{\sqrt {l^{2}-r^{2}\sin ^{2}A}}}-{\frac {r^{4}\sin ^{2}A\cos ^{2}A}{\left({\sqrt {l^{2}-r^{2}\sin ^{2}A}}\right)^{3}}}\end{array}}}

Пример графиков движения поршня

График показывает x, x’, x» по отношению к углу поворота кривошипа для различных радиусов кривошипа, где L — длина шатуна (l) и R — радиус кривошипа (r):

{\displaystyle {\begin{array}{lcl}x Единицами вертикальных осей являются: [дюймы] для положения, [дюймы/рад] для скорости, [дюймы/рад²] для ускорения.
Единицами горизонтальных осей является угол поворота кривошипа в [градусах].

Анимация движения поршня с шатуном одинаковой длины и с кривошипом переменного радиуса на графике выше:

{\displaystyle {\begin{array}{lcl}x

Анимация движения поршня с различными радиусами кривошипа

Применение

{\displaystyle {\begin{array}{lcl}x

Кривошипно-шатунный механизм используется в двигателях внутреннего сгорания, поршневых компрессорах, поршневых насосах, швейных машинах, кривошипных прессах, в приводе задвижек некоторых квартирных и сейфовых дверей. Также кривошипно-шатунный механизм применялся в брусовых косилках.

См. также

Другие способы преобразования вращательного движения в прямолинейное

Здесь была возможность смены Хойкена.

Примечания

  1. 1 2 Ritti, Tullia; Grewe, Klaus; Kessener, Paul (2007), «A Relief of a Water-powered Stone Saw Mill on a Sarcophagus at Hierapolis and its Implications», Journal of Roman Archaeology, 20, pp. 138—163
  2. ↑ Schiöler, 2009

Литература

  • Schiöler, Thorkild (2009), «Die Kurbelwelle von Augst und die römische Steinsägemühle», Helvetia Archaeologica Т. 40 (159/160): 113–124 

Ссылки

Кривошипно-шатунный механизм — это… Что такое Кривошипно-шатунный механизм?

Кривошипно-шатунный механизм (КШМ) предназначен для преобразования возвратно-поступательного движения поршня во вращательное движение (например, во вращательное движение коленчатого вала в двигателях внутреннего сгорания), и наоборот. Детали КШМ делят на две группы, это подвижные и неподвижные детали:

  • подвижные: поршень с поршневыми кольцами, поршневой палец, шатун, коленчатый вал с подшипниками или кривошип, маховик.
  • неподвижные: блок цилиндров (является базовой деталью двигателя внутреннего сгорания) и представляет собой общую отливку с картером, головка цилиндров, картер маховика и сцепления, нижний картер (поддон), гильзы цилиндров, крышки блока, крепежные детали, прокладки крышек блока, кронштейны, полукольца коленчатого вала.

Принцип действия

Прямая схема: Поршень под действием давления газов совершает поступательное движение в сторону коленчатого вала. С помощью кинематических пар «поршень-шатун» и «шатун-вал» поступательное движение поршня преобразовывается во вращательное движение коленчатого вала. Коленчатый вал состоит из:

  • шатунные шейки
  • коренные шейки
  • противовес

Обратная схема: Коленчатый вал под действием приложенного внешнего крутящего момента совершает вращательное движение, которое через кинематическую цепь «вал-шатун-поршень» преобразовывается в поступательное движение поршня.

Применение

Кривошипно-шатунный механизм используется в двигателях внутреннего сгорания, поршневых компрессорах, поршневых насосах, швейных машинах

См. также

Другие способы преобразования вращательного движения в прямолинейное

Ссылки

Кривошип — Википедия

Материал из Википедии — свободной энциклопедии

Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 26 июля 2019; проверки требует 1 правка. Текущая версия страницы пока не проверялась опытными участниками и может значительно отличаться от версии, проверенной 26 июля 2019; проверки требует 1 правка. Пистолет Люгера. При откате затвора кривошипный механизм выводится из положения «мёртвой точки» боковыми выступами рамки, воздействующими на цилиндрические выступы кривошипа на шарнире. Кривошип начинает вращаться и отправляет затвор в крайнее заднее положение.

Кривошип (англ. crank) — звено кривошипно-шатунного механизма, совершающее циклическое вращательное движение на полный оборот вокруг неподвижной оси. Используется для преобразования кругового движения в возвратно-поступательное и наоборот. Как правило, выступает в роли ведущего звена рычажных и зубчато-рычажных механизмов. Название кривошипа у коленчатых валов тяжелых двигателей — мотыль[1]. Переход от коренной шейки к шатунной, который и образует кривошип, также может называться «щека»[2].

При рассмотрении кривошипа в качестве входного звена механизмов, независимой переменной является угол поворота кривошипа φ. Его движение может быть как односторонним, так и реверсивным.

Из геометрических параметров выделяют радиус кривошипа r. В центральном кривошипно-шатунном механизме он находится в простейшем кинематическом соотношении с ходом поршня (ползуна):

S=2r{\displaystyle S=2r}

Как правило, в динамических расчетах ДВС все детали вращательного движения сводят к группе кривошипа с приведенной массой mк сведенной в точку на радиусе r.

На кривошип действует внешние силы, приложенные к шатунному шарниру (сила давления газов, силы сопротивления резанию и т.д.). При анализе их обычно раскладывают на тангенциальную и радиальную составляющие.

{\displaystyle S=2r} Кривошип (образован коренной и шатунной шейкой и двумя щёками). Прилив напротив шатунной шейки — противовес.

Также на кривошип действует центробежная сила, функция угловой скорости кривошипа:

KR = mк ω2 r

Эта сила является одним из факторов неуравновешенности КШМ. С ней борются установкой противовесов на шейке коленвала.

Изгибающий момент на кривошип может передаваться только в границах сил трения в шарнире, как правило в реальных конструкциях он незначителен.

В коренной шейке кривошипа возникают реакции, при анализе раскладываемые на горизонтальную и вертикальную.

В расчетах на прочность в рычажных механизмах обычно проверяют кривошип на сжатие и на разрыв. Кручение как правило отсутствует, а изгиб может появиться у тонких длинных стержней при потере устойчивости.

В зернотёрках кривошип представлен неявно, как часть диска. Отверстия вне центра указывают на не сохранившиеся рукояти. Римская кривошипная ручная дрель из Augusta Raurica, датированная 2-м веком до н.э.

Одним из первых примеров применения идеи кривошипа являются зернотерки. Первоначально в них использовалось поступательное движение жерновов, но в позднем каменном веке изобретены дисковые жернова с приводом от кривошипа.

В античности имелся большой набор инструментов использующих кривошип, например дрели-коловороты, в т.ч. для хирургических целей.

Кривошипы применялись в подъемных механизмах, метательных машинах и т.д. Распространение в странах с системами ирригации получили насосы с круговым приводом от упряжки животных или группы людей, которая воздействовала на кривошип. Аналогично действовали механизмы подъема якоря.

Одна из особенностей кривошипов в древности — сильная привязка к антропометрическим размерам. Как правило механизмы приводились в действие мускульной силой, поэтому радиус кривошипа был не более длины руки человека.

{\displaystyle S=2r} Кованые кривошипы коленчатого вала

В современных машинах кривошип выступает как отдельная деталь, так и как часть коленчатого вала.

Основные методы получения кривошипного колена в составе коленчатого вала:

Кривошипно шатунный механизм самая важная система двигателя

Кривошипно-шатунный механизм (КШМ), пожалуй, самая важная система двигателя.
Назначение кривошипно-шатунного механизма – преобразовывать возвратно-поступательное движение во вращательное и обратно.

Кривошипно шатунный механизмКривошипно шатунный механизм

Все детали кривошипно-шатунного механизма делятся на две группы: подвижные и неподвижные. К подвижным относятся:

  • поршень,
  • коленчатый вал,
  • маховик.

К неподвижным:

  • головка и блок цилиндров,
  • крышка картера.

Устройство кривошипно-шатунного механизма

Поршень похож на перевернутый стакан, в который укладываются кольца. На любом из них присутствуют два вида колец: маслосъемное и компрессионное. Маслосъемных обычно ставят два, а компрессионных – одно. Но бывают и исключения в виде: два таких и два таких — все зависит от типа двигателя.

устройство кривошипно шатунного механизмаустройство кривошипно шатунного механизма

Шатун изготавливается из двутаврового стального профиля. Состоит из верхней головки, которая соединяется с поршнем при помощи пальца, и нижней – соединение с коленчатым валом.

Коленчатый вал изготавливается в основном из чугуна повышенной прочности. Представляет собой несоосный стержень. Все шейки тщательно шлифуются, с соблюдением необходимых параметров. Существуют коренные шейки — для установки коренных подшипников, и шатунные – для установки через подшипники шатунов.

Роль подшипников скольжения выполняют разрезные полукольца, выполненные в виде двух вкладышей, которые обработаны токами высокой частоты для прочности. Все они покрыты антифрикционным слоем. Коренные крепятся к блоку двигателя, а шатунные — к нижней головке шатуна. Чтобы вкладыши хорошо работали, в них делают канавки для доступа масла. Если вкладыши провернуло – значит, имеется недостаточный подвод масла к ним. Это обычно происходит при засорении масляной системы. Вкладыши ремонту не подлежат.

Продольное перемещение вала ограничивают специальные упорные шайбы. С обоих концов обязательно применение различных сальников для предотвращения выхода масла из системы смазки двигателя.

кривошипно шатунный механизм двигателякривошипно шатунный механизм двигателя

К передней части коленвала крепится шкив привода системы охлаждения и звездочка, которая приводит в действие распредвал при помощи цепной передачи. На основных моделях выпускаемых сегодня автомобилей ей на замену пришел ремень. К задней части коленчатого вала крепится маховик. Он предусмотрен для устранения дисбаланса вала.

Также на нем стоит зубчатый венец, предназначенный для пуска двигателя. Чтобы при разборке и дальнейшей сборке не возникало проблем – крепеж маховика выполняется по не симметричной системе. От расположения меток его установки зависит и момент зажигания – следовательно, оптимальная работа двигателя. При изготовлении его балансируют вместе с коленчатым валом.

Картер двигателя изготавливается вместе с блоком цилиндров. Он служит основой для крепления ГРМ и КШМ. Имеется поддон, который служит емкостью для масла, а так же для защиты двигателя от деформации. Снизу предусмотрена специальная пробка для слива моторного масла.

Принцип работы КШМ

На поршень оказывают давление газы, которые вырабатываются при сгорании топливной смеси. При этом он совершает возвратно – поступательные движения, заставляя проворачиваться коленчатый вал двигателя. От него вращательное движение передается на трансмиссию, а оттуда – на колеса автомобиля.

А вот на видео показано как работает КШМ в тюнингованном ВАЗ 2106:

Основные признаки неисправности КШМ:

  • стуки в двигателе;
  • потеря мощности;
  • снижение уровня масла в картере;
  • повышенная дымность выхлопных газов.

Кривошипно-шатунный механизм двигателя очень уязвим. Для эффективной работы необходима своевременная замена масла. Лучше всего ее производить на станциях техобслуживания. Даже, если Вы недавно поменяли масло, и приходит пора сезонного ТО – обязательно перейдите на то масло, какое указано в инструкции по эксплуатации машины. Если в работе двигателя возникают какие-то проблемы: шумы, стуки – обращайтесь к специалистам – только в авторизированном центре Вам дадут объективную оценку состояния автомобиля.

Также на эту тему вы можете почитать:

Поделитесь в социальных сетях

Alex S 13 октября, 2013

Опубликовано в: Полезные советы и устройство авто

Метки: Как устроен автомобиль

Кривошипно-шатунный механизм

Категория:

   Крановщикам и стропальщикам

Публикация:

   Кривошипно-шатунный механизм

Ч

итать далее:



Кривошипно-шатунный механизм

Для чего служит кривошипно-шатунный механизм?

Кривошипно-шатунный механизм служит для преобразования возвратно-поступательного движения во вращательное, и наоборот.

Из скольких звеньев состоит кривошипно-шатунный механизм?

Рекламные предложения на основе ваших интересов:

Кривошипно-шатунный механизм состоит из четырех звеньев: стойки, кривошипа, шатуна и поршня. Если ведущим звеном является поршень, то в криво-шипно-шатунном механизме происходит преобразование возвратно-поступательного движения во вращательное. Если же ведущим звеном является кривошип, то механизм преобразует вращательное движение кривошипа в возвратно-поступательное движение поршня (например, механизм поршневого насоса и т. п.).

На изучаемых автомобилях устанавливают V-образные, четырехтактные двигатели с жидкостным охлаждением. Двигатели 3M3-53-11 и ЗИЛ-130 (карбюраторные и газовые) с внешним смесеобразованием и принудительным воспламенением от электрической искры. Двигатель ЗИЛ-645 — дизельный, с внутренним смесеобразованием И’воспламенением от соприкосновения с нагретым в результате сильного сжатия воздухом.

Двигатели состоят из кривошипно-шатунного и газораспределительного механизмов и систем охлаждения, смазочной, питания, пуска и зажигания (у карбюраторных двигателей).

Кривошипно-шатунный механизм состоит из неподвижных (блока цилиндров, головки цилиндров, картера, поддона картера) и подвижных (поршней с пальцами и кольцами, шатунов, коленчатого вала с подшипниками, маховика) деталей.

Неподвижные детали. Блок цилиндров (рис. 1) является базовой деталью двигателя и представляет собой общую отливку с картером. В верхней части блока имеются отверстия для установки гильз цилиндров, расположенных в блоке в 2 ряда с углом развала 90°, что позволяет на одной шейке коленчатого вала устанавливать по 2 шатуна. Блок цилиндров двигателя 3M3-53-11 отливают из алюминиевого сплава, а двигателей ЗИЛ-130 и -645 — из серого чугуна. Нижняя часть отливки блока цилиндров является картером, в котором имеются постели для установки коленчатого вала и отверстия для распределительного вала.

Гильзы цилиндров, устанавливаемые на изучаемых двигателях,— мокрого типа (омываемые водой), изготавливают из серого легированного чугуна. Уплотнение гильз в нижней части осуществляется медным кольцом (у двигателя 3M3-53-11) или кольцами из маслобензостойкой резины (у двигателя ЭИЛ-130 кольца, у двигателя ЗИЛ-645 — 3: верхнее кольцо с конической наружной поверхность), нижние — круглого сечения). Для герметизации полостей цилиндров и жидкостной рубашки охлаждения кромки гильз выступают над верхней плоскостью блока на 0,02… 0,09 мм, что обеспечивает необходимое обжатие прокладки головки цилиндров по контурам гильз.

Рис. 1. Блок цилиндров V-образного двигателя: а — вид сверху; б — разрез; 1 —блок цилиндров; 2 — гильза цилиндра; 3 — рубашка охлаждения; 4— головка цилиндров; 5 — клапан; 6 — свеча зажигания; 7 — штанга толкателя; 8 — поршень; 9 — шатун; 10 — коленчатый вал

Головки цилиндров выполнены из алюминиевого сплава (у двигателей 3M3-53-11 и ЗИЛ-130) или чугуна (у двигателей ЗИЛ-645) по одной на каждый ряд цилиндров с вставными седлами и направляющими клапанор. Охлаждение головки цилиндров осуществляется жидкостью, циркулирующей во внутренней полости головки, которая вместе с внутренними полостями блока цилиндров составляет рубашку охлаждения 3 двигателя. Крепление каждой головки цилиндров к блоку у двигателя 3M3-53-11 осуществляется на шпильках 18-ю гайками (по 6 на каждый цилиндр), у двигателя ЗИЛ-130 — 17-ю болтами (по 5 на каждый цилиндр), у ЗИЛ-645 — 22-я болтами (по 7 на каждый цилиндр). Сверху головка цилиндров закрывается через прокладку крышкой. На правой крышКе двигателя ЗИЛ-645 имеется маслозаливная горловина.

Подвижные детали. Поршни имеют головку, бобышки для установки поршневого пальца и направляющую часть (юбку). На поршне делают кольцевые канавки для установки поршневых колец (рис. 2).

Рис. 2. Детали шатунио-поршневой группы двигателя ЗИЛ-130: 1 — маслосъемные кольца; 2 и 3 — осевой и радиальный расширители; 4 — чугунная вставка; 5 — компрессионные кольца; 6 — стопорное кольцо; 7— поршневой палец; 8 — поршень; 9 — шатун; 10— втулка; 11 — метка; 12 — шатунные вкладыши; 13 — крышка нижней головки шатуна

Поршни отливают из алюминиевого сплава. Направляющая часть поршней — разрезная. При сборке двигателей 3M3-53-11 и ЗИЛ-130 поршень устанавливают разрезом юбки в левую (по ходу автомобиля) сторону. На днище поршней двигателя ЗИЛ-645 имеется стрелка, которая при сборке с шатуном должна быть направлена в сторону, противоположную бобышке на поршневой головке шатуна, а при установке на двигатель должна быть направлена к развалу блока цилиндров.

Поршневые кольца изготовляют из серого чугуна (компрессионные) или стали (маслосъемные). Компрессионные кольца имеют разрезы (замки). На поршнях устанавливаются (у двигателей 3M3-53-11 и ЗИЛ-645) или (у двигателя ЗИЛ-130) компрессионных кольца и одно маслосъемное. Маслосъемные кольца изготовляют составными с пружинными расширителями: у двигателя ЗИЛ-130 маслосъемное кольцо состоит из двух стальных колец и имеет 2 расширителя — радиальный и осевой, у двигателя ЗИЛ-645 один расширитель — радиальный. Рабочая поверхность колец имеет хромовое покрытие.

Поршневые пальцы выполняют пустотелыми из стали и закрепляют в бобышках поршней при помощи стопорных колец. Этот способ крепления позволяет поршневому пальцу поворачиваться в головке шатуна и в бобышках поршня (плавающий палец).

Шатуны изготовляют из стали. Состоит шатун из стержня двутаврового сечения, верхней неразъемной и нижней разъемной головок. В верхнюю головку запрессовывают втулку. Крышка нижней головки шатуна крепится к нему двумя болтами. Переставлять крышки с одного шатуна на другой нельзя, так как шатуны с крышками обрабатывают совместно.

Коленчатый вал (рис. 3) имеет коренных и шатунных шейки, противовесы, фланец для крепления маховика. Осевая фиксация коленчатых валов обеспечивается упорными подшипниками. Противовесы служат для разгрузки коренных подшипников от действия центробежных сил. Для подвода смазки от коренных шеек к шатунным просверлены каналы. На носке вала крепится шестерня привода распределительного вала.

На каждой из четырех шатунных шеек, расположенных под углом 90°, устанавливают по 2 шатуна: один — левого, а другой — правого ряда цилиндров, номера которых указаны на схеме. Вкладыши подшипников коренных шеек изготавливают из стальной ленты, внутреннюю (рабочую) поверхность которой покрывают тонким слоем антифрикционного сплава. У двигателей 3M3-53-11 и ЗИЛ-130 внутренняя поверхность вкладышей изготовлена из высокооловянистого алюминия. Вкладыши двигателя ЗИЛ-645 — трехслойные, с внутренней поверхностью из свинцовистой бронзы.

Рис. 3. Кривошипно-шатунный механизм: а — детали: б — схема расположения шатунов; 1 — болт; 2— шайба; 3 — шкив; 4 — пылеотражатель; 5 — кольцо манжеты; 6 — маслоотражатель; 7 — распределительная шестерня; 8— шестерня привода масляного насоса; 9 — коленчатый вал; 10 и 29 — вкладыши подшипников нижней головки шатуна; 11— шатунный болт; 12 — шатун; 13 — поршневой палец; 14 — стопорное кольцо; 15 — поршень; 16 — маслосъемное кольцо; 17 — компрессионные кольца; 18 и 26 — подшипники коленчатого вала; 19 и 24 — упорные подшипники коленчатого вала; 20 — болт крепления маховика; 21 — штифт; 22 — маховик; 23 — фланец крепления маховика; 25 — коренные шейки; 27—шатунная шейка; 28—противовесы; 30 — крышка шатуна; 31 — шайба; 32 — гайка

Маховик отливают из чугуна и напрессовывают на него стальной зубчатый венец для пуска двигателя стартером. Маховик одновременно служит ведущим диском сцепления.

Крепление двигателя к раме. Двигатель 3M3-53-11 крепится к раме автомобиля в четырех точках на упругих опорах. Две передние опоры состоят из кронштейнов, привернутых к картеру двигателя, двух резиновых подушек и двух кронштейнов, укрепленных на раме. Задние опоры расположены под приливами картера сцепления на поперечине рамы и состоят из двух резиновых подушек, заключенных в металлические чашки и стянутых болтом.

Двигатели ЗИЛ-130 и -645 крепятся к раме автомобиля в трех точках. Передней опорой является кронштейн, установленный под крышкой распределительных шестерен и крепящийся через резиновые подушки к передней поперечине рамы. Задними опорами являются приливы на картере сцепления (у двигателя ЗИЛ-130) или кронштейны (у двигателя ЗИЛ-645), которые также через резиновые подушки крепятся к кронштейнам рамы.

Рис. 4. Крепление двигателей 3M3-53-1

Кривошипно-шатунный механизм служит для преобразования возвратно-поступательного движения поршней во вращательное движение коленчатого вала и передачи крутящего момента на трансмиссию. Он состоит из неподвижных (блока цилиндров, головки цилиндров, картера, поддона картера) и подвижных (поршней с пальцами и кольцами, шатунов, коленчатого вала с подшипниками, маховика) деталей.

Неподвижные детали. Блок цилиндров является базовой деталью двигателя и представляет собой общую отливку с картером. В верхней части блока имеются отверстия для установки гильз цилиндров. Цилиндры могут располагаться в блоке в один ряд вертикально (двигатель ГАЗ-24) или в два ряда V-образно под углом 90° (двигатели 3M3-53, ЗИЛ-130, КамАЗ). V-образное расположение цилиндров позволяет на одной шатунной шейке коленчатого вала укреплять по два шатуна. Блоки цилиндров двигателей отливают из серого чугуна (ЗИЛ-130, КамАЗ) или алюминиевого сплава (3M3-53, ГАЗ-24).

Рис. 5. Блок цилиндров и схематический разрез V-образного двигателя

Гильзы цилиндров, устанавливаемые в изучаемых двигателях,— мокрого типа (обмываемые водой), изготовляются из чугуна с кислотоупорными чугунными вставками в верхней части для снижения износа. Уплотнение гильз в нижней части осуществляется двумя резиновыми (ЗИЛ-130) или медными (ГАЗ-53, ГАЗ-24) кольцами, а в верхней части — прокладкой головки цилиндров.

Нижняя часть отливки блока цилиндров является картером, в котором имеются постели для установки коленчатого вала и отверстия — для распределительного.

Головки цилиндров отливают из алюминиевого сплава. Они крепятся с помощью болтов и шпилек к блоку цилиндров. Для уплотнения между головкой и блоком цилиндров ставят сталеасбестовую прокладку. Как блок цилиндров, так и его головки имеют двойные стенки, образующие рубашку, в которой циркулирует охлаждающая жидкость.

В рядных двигателях (ГАЗ-24) головка цилиндров одна, а у V-образных (ЗИЛ-130 и 3M3-53) —две, по одной взаимозаменяемой головке на каждый ряд цилиндров. В двигателе КамАЗ-740 каждый цилиндр имеет свою головку.

Подвижные детали. Поршни служат для восприятия при рабочем ходе силы давления газов и ее передачи через поршневой палец и шатун на коленчатый вал. Поршень имеет головку, две бобышки и направляющую часть (юбку). Верхняя часть головки поршня называется днищем. Вследствие неодинакового нагрева головки и юбки поршня (головка больше нагревается, а поэтому и больше расширяется) диаметр головки выполняют меньше диаметра юбки. С внешней стороны головки поршня делают кольцевые канавки для установки поршневых колец.

Поршни отливают из алюминиевого сплава. Направляющая часть поршней (юбка) разрезная. Она имеет овальную форму с увеличенным диаметром в плоскости, перпендикулярной оси поршневого пальца. При сборке двигателя поршень разрезом юбки устанавливают в левую (по ходу автомобиля) сторону.

В головки поршней двигателей ЗИЛ-130 и КамАЗ залита чугунная вставка, в которой проточена канавка для установки верхнего компрессионного кольца.

Поршневые кольца служат для уменьшения утечки газов из цилиндра в картер (компрессионные), а также для удаления излишнего масла со стенок цилиндра (маслосъемные). Кольца изготовляются из серого чугуна (для маслосъемных колец иногда применяется сталь) и имеют разрезы (замки). На поршнях устанавливается по два (двигатели ГАЗ-24, 3M3-53, КамАЗ-740) или три (ЗИЛ-130) компрессионых кольца и одно маслосъемное. Маслосъемное кольцо двигателей ЗИЛ-130 и ГАЗ-24 состоит из двух стальных колец и двух расширителей — осевого ( и радиального. На двигателе КамАЗ-740 маслосъемное кольцо с одним расширителем — радиальным.

Рис. 6. Детали шатунно-поршневой группы:
1 и 5— маслосъемное и компрессионные кольца, 2 и 3 — осевой и радиальный расширители, 4 — чугунная вставка, 6 — стопорное кольцо, 7 — поршневый палец, 8 — поршень, 9 — шатун, 10 — втулка, 11 — метка, 12— шатунные вкладыши, 13— крышка нижней головки шатуна

Поршневой палец служит для подвижного соединения поршня с шатуном. Его изготовляют пустотелым из стали с поверхностной закалкой токами высокой частоты и закрепляют в бобышках поршня с помощью двух стопорных колец. Этот способ крепления позволяет поршневому пальцу поворачиваться в головке шатуна и в бобышках поршня (такой палец называется плавающим).

Шатун служит для передачи силы давления газов от поршня на коленчатый вал при рабочем ходе, а при вспомогательных тактах — от коленчатого вала к поршню. Изготовляется шатун из стали и состоит из стержня двутаврового сечения, верхней неразъемной и нижней разъемной головок. В верхнюю головку запрессовывают бронзовую втулку, а в нижнюю устанавливают шатунные вкладыши.

У V-образных двигателей на одной шатунной шейке устанавливают два шатуна так, чтобы у правого ряда цилиндров номер на шатуне был обращен назад, а у левого — вперед, т. е. должен совпадать с надписью на поршне «вперед».

Коленчатый вал воспринимает силу давления газов от поршней через шатуны и передает крутящий момент на трасмис-сию автомобиля. Он имеет коренные и шатунные шейки, щеки, противовесы, фланец для крепления маховика и носок с внутренней резьбой для ввертывания храповика. Изготовляется коленчатый вал из стали (ЗИЛ-130, КамАЗ-740) или высокопрочного чугуна (3M3-53, ГАЗ-24).

Рис. 7. Коленчатые валы:
а — восьмицилиндрового V-образного двигателя, б — четырехцилиндрового рядного двигателя; 1 и 3— коренные и шатунные шейки, 2 — противовесы, 4 — пробка, 5 — грязеуловитель, 6 — маховик с зубчатым венцом

Противовесы служат для разгрузки коренных подшипников от вредного действия центробежных сил. Для подвода смазки от коренных шеек к шатунным просверлены каналы. Коренными шейками коленчатый вал устанавливается в постели картера и крепится крышками.

У коленчатых валов 8-цилиндровых V-образных двигателей на каждой из четырех шатунных шеек, расположенных под углом 90 устанавливают по два шатуна: один — левого, а другой — правого ряда цилиндров, номера которых указаны на схеме. У двигателей ГАЗ-24 на шатунных шейках, расположенных попарно под углом 180 устанавливают по одному шатуну.

Вкладыши шатунных и коренных шеек коленчатого вала изготовляют из стальной ленты, внутреннюю (рабочую) поверхность которой покрывают тонким слоем антифрикционного сплава. У двигателей 3M3-53, ЗИЛ-130 и ГАЗ-24 рабочая поверхность вкладышей — из высокооловянистого алюминия. Вкладыши шатунов двигателя КамАЗ-740 — трехслойные, с рабочим слоем из свинцовистой бронзы.

Маховик отливают из чугуна. Он служит для вывода поршней из мертвых точек, осуществления вспомогательных тактов, равномерного вращения коленчатого вала, а также пуска двигателя стартером, для чего на обод маховика напрессован стальной зубчатый венец. Кроме того, маховик служит ведущим диском сцепления.

Рекламные предложения:


Читать далее: Газораспределительный механизм

Категория: — Крановщикам и стропальщикам

Главная → Справочник → Статьи → Форум


Лекция «Устройство кривошипно-шатунного механизма»

Кривошипно-шатунный механизм (далее сокращенно – КШМ) – механизм двигателя. Основным назначением КШМ является преобразование возвратно-поступательных движений поршня цилиндрической формы во вращательные движения коленчатого вала в двигателе внутреннего сгорания и наоборот.

— Устройство КШМ:

• Поршень

hello_html_579eb007.jpgИмеет вид цилиндра, изготовленного из сплавов алюминия. Основная функция этой детали заключается в превращении в механическую работу изменение давления газа, или наоборот, – нагнетание давления за счет возвратно-поступательного движения. Поршень представляет собой сложенные воедино днище, головку и юбку, которые выполняют совершенно разные функции. Днище поршня плоской, вогнутой или выпуклой формы содержит в себе камеру сгорания. Головка имеет нарезанные канавки, где размещаются поршневые кольца (компрессионные и маслосъемные). Компрессионные кольца исключают прорыв газов в картер двигателя, а поршневые маслосъемные кольца способствуют удалению излишков масла на внутренних стенках цилиндра. В юбке расположены две бобышки, обеспечивающие размещение соединяющего поршень с шатуном поршневого пальца.

• Шатун

hello_html_mb1c2f76.jpg

Изготовленный штамповкой или кованый стальной (реже – титановый) шатун имеет шарнирные соединения. Основная роль шатуна состоит в передаче поршневого усилия к коленчатому валу. Конструкция шатуна предполагает наличие верхней и нижней головки, а также стержня с двутавровым сечением. В верхней головке и бобышках находится вращающийся («плавающий») поршневой палец, а нижняя головка – разборная, позволяющая, тем самым, обеспечить тесное соединение с шейкой вала. Современная технология контролируемого раскалывания нижней головки позволяет обеспечить высокую точность соединения ее частей.

• Коленчатый вал

hello_html_m534ef87f.jpg

Изготовленный из стали или чугуна высокой прочности коленчатый вал состоит из шатунных и коренных шеек, соединенных щеками и вращающихся в подшипниках скольжения. Щеки создают противовес шатунным шейкам. Основная функция коленчатого вала состоит в восприятии усилия от шатуна для преобразования его в крутящий момент. Внутри щек и шеек вала предусмотрены отверстия для подачи под давлением масла системой смазки двигателя.

• Маховик

hello_html_m5731e491.jpg

Устанавливается на конце коленчатого вала. На сегодняшний день находят широкое применение двухмассовые маховики, имеющие вид двух, упруго соединенных между собой, дисков. Зубчатый венец маховика принимает непосредственное участие в запуске двигателя через стартер.

• Блок и головка блока цилиндров

hello_html_253a05d0.jpg

Блок цилиндров и головка блока цилиндров отливаются из чугуна (реже – сплавов алюминия). В блоке цилиндров предусмотрены рубашки охлаждения, постели для подшипников коленчатого и распределительного валов, а также точки крепления приборов и узлов. Сам цилиндр выполняет функцию направляющей для поршней. Головка блока цилиндра располагает в себе камеру сгорания, впускные-выпускные каналы, специальные резьбовые отверстия для свечей системы зажигания, втулки и запрессованные седла. Герметичность соединения блока цилиндров с головкой обеспечены прокладкой. Кроме того, головка цилиндра закрыта штампованной крышкой, а между ними, как правило, устанавливается прокладка из маслостойкой резины.

hello_html_74407242.jpg

hello_html_m1bd89d4e.jpg

Добавить комментарий

Ваш адрес email не будет опубликован. Обязательные поля помечены *